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ABSTRACT
The proliferation of knowledge-sharing communities and the ad-
vances in information extraction have enabled the construction of
large knowledge bases using the RDF data model to represent en-
tities and relationships. However, as the Web and its latently em-
bedded facts evolve, a knowledge base can never be complete and
up-to-date. On the other hand, a rapidly increasing suite of Web
services provide access to timely and high-quality information, but
this is encapsulated by the service interface. We propose to lever-
age the information that could be dynamically obtained from Web
services in order to enrich RDF knowledge bases on the fly when-
ever the knowledge base does not suffice to answer a user query.

To this end, we develop a sound framework for appropriately
generating queries to encapsulated Web services and efficient algo-
rithms for query execution and result integration. The query gen-
erator composes sequences of function calls based on the available
service interfaces. As Web service calls are expensive, our method
aims to reduce the number of calls in order to retrieve results with
sufficient recall. Our approach is fully implemented in a complete
prototype system named ANGIE1. The user can query and browse
the RDF knowledge base as if it already contained all the facts from
the Web services. This data, however, is gathered and integrated on
the fly, transparently to the user. We demonstrate the viability and
efficiency of our approach in experiments based on real-life data
provided by popular Web services.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services; H.2.4
[Systems]: Distributed databases, Query processing

General Terms
Algorithms

1ANGIE: Active Knowledge for Interactive Exploration
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1. INTRODUCTION
1.1 Motivation

Recent projects like DBpedia [5], YAGO-NAGA [35, 23], Free-
base [36], KnowItAll [6], or Intelligence-in-Wikipedia [42] have
successfully created very large semantic databases with many mil-
lions of facts. The knowledge is typically represented in RDF, the
W3C standard for Semantic-Web data. An RDF knowledge base
can be seen as a graph, whose nodes are entities (e.g., persons, com-
panies, movies, locations) and whose edges are relationships (e.g.,
bornOnDate, isCEOof , actedIn). Often, this graph can be visual-
ized in a browser, so that users can explore the graph interactively.
To query the knowledge base, the user (or a program on behalf of
the user) can pose queries in the W3C-endorsed SPARQL[41] lan-
guage which supports filters and joins in a schema-free manner.

The knowledge stored in these knowledge bases may be huge,
but it can never be complete. It inevitably exhibits gaps and these
may irritate the user during exploration and knowledge discovery.
Consider, for example, a user who is interested in finding more in-
formation about Herta Müller, who just received the Nobel prize in
literature. Knowledge bases will likely contain incomplete infor-
mation. For instance, on the day she received the prize, Wikipedia
contained her birthdate, birthplace, citizenship, and only a few
books and awards, although she is the author of many more nov-
els, stories, essays, and poems. Another query where the knowl-
edge base is bound to be incomplete would be: “Which other 21st-
century writers have won prestigious prizes and could be consid-
ered for the Nobel prize?”.

On the other hand, there is a growing number of Web services
that provide a wealth of high quality information. If these Web ser-
vices could be tapped for the knowledge graph, many more user
queries could be answered. For example, there are several Web ser-
vices about books and authors (ISBNdb, Amazon, AbeBooks).
Other Web services provide data about songs and music albums,
movies and videos, etc. The eConsultant2, for example, lists hun-
dreds of public Web services, and their number is constantly grow-
ing. But these services can be accessed only through an encap-
sulated API; answers to queries are returned in a semi-structured
format (XML) but we cannot directly access the data and we can-
not observe a database schema that the service may use internally.
There are tools for mapping the XML structure of service-call re-
sults into the RDF representation that we need for the knowledge
graph, but there is no viable solution for automatically generating

2http://webdeveloper.econsultant.com/
web-services-api-services/



the service calls that are needed in order to answer a user’s knowl-
edge query.

A naive solution would exhaustively generate all possible service
calls before-hand, and materialize all the data returned by these ser-
vices and integrate them into the knowledge base. However, this is
practically infeasible, due to both query-load constraints and legal
reasons, and it could not guarantee the freshness of the knowledge
base either. Web sites bound the number of calls coming from the
same IP address, or charge each call with a fee. However, if only
the data that is relevant for a given query could be dynamically re-
trieved in the current user context, a much larger number of user
queries could be answered with satisfactory recall.

This is our vision of Active Knowledge. An active knowledge
base is a dynamic federation of knowledge sources where some
knowledge is maintained locally and other knowledge is dynami-
cally retrieved from Web services and mapped into the local knowl-
edge base on the fly. This process should be transparent to the user
or application program that runs on the knowledge base, so that
the user sees the data from both the local knowledge base and the
external Web services as a single comprehensive RDF knowledge
base. This simplifies the querying and application development
against the knowledge base, and would enable a knowledge-as-a-
service paradigm as recently pursued by companies like cyc.com,
freebase.com, or trueknowledge.com (but none of these
is able to tap on third-party Web services). More precisely, the task
that we tackle in this paper is, given a SPARQL query, to retrieve
the necessary – and only the necessary – data from Web service via
automatically generated function calls and dynamically mapping it
into the knowledge base. This poses several technical challenges:

(1) Web service calls typically require input parameters of cer-
tain types. For example, certain Web services require as input the
name of an author, others require the name of a book or an ISBN.
The system has to call the appropriate Web services with appro-
priate input parameters. Even worse, the answer to the query may
require the composition of multiple service calls. For example, the
Web service of MusicBrainz requires as input the id of a singer
(as defined by the MusicBrainz Web site) and returns the titles
of the songs of that singer. Hence, if the user starts with the singer’s
name, the id of the singer must be obtained by a prior service call
before invoking the request for the song titles.

(2) The data offered by different Web services overlaps, and
there are multiple methods from the same Web service API that
could fulfill the same purpose. For instance, information about a
book can be obtained by a search by author name, by ISBN, by ti-
tle, or by year. Therefore, different sequences of service calls can
be used to retrieve the same data. Given the cost and latency of a
Web service call, unnecessary calls have to be avoided by all means.
This requires the calls to be planned in a way that redundancy of
answers is minimized. Since a Web service API encapsulates the
data and does not expose a data source schema, schema properties
cannot be exploited for this purpose.

(3) Different Web services come with different quality-of-
service properties like latency and coverage. We would like to sat-
isfy the user’s information need with a minimal number of calls.
Hence, Web service qualities have to be taken into account, too,
when computing the best sequence of Web service calls in order to
satisfy a user query.

These considerations lead us to the following problem of cou-
pling an RDF knowledge base with external Web services: Given
a SPARQL query against the knowledge base, and given a maxi-
mal number of Web service calls that can be executed, compute the
largest number of answers to the query. If infinitely many calls

are allowed, compute the maximal number of answers that can be
obtained by sequences of Web service calls.

1.2 Contributions and Outline
We have developed the system ANGIE that carries out our

paradigm of active knowledge for interactive querying and explo-
ration. Web services act as dynamically and transparently incorpo-
rated components of the knowledge base, with seamless on-the-fly
integration of service results into query answers.

We propose a Semantic-Web-oriented model for the declarative
definition of service functions, to register and naturally embed the
Web services in the local knowledge base. When a Web service is
called, its results are transformed into RDF, and are dynamically
added to the local knowledge base.

The salient property of our system is its reconciliation of two
paradigms: data warehousing and query mediation. We see the
warehousing of Web service results as an elegant solution to ad-
dress the incompleteness of both knowledge bases and Web ser-
vices. At every moment of the query evaluation, the local knowl-
edge base maintains a measure of the incompleteness of the current
answer. Subsequent calls can use the data returned by the previous
calls to fill the gaps. No special mechanism is needed to handle
the transfer of values from the output of a service call to the in-
put of another call in the compositions of function calls. Despite
these innovations, our approach does not require a new query pro-
cessing engine. Rather, it naturally extends existing work on local
RDF query processing, and we actually employ one of the fastest
RDF/SPARQL open-source engines for our prototype [27].

This paper’s key contributions are: (1) A language to represent
Web service interfaces in our framework. The language extends
Datalog with limited access patterns [20], by distinguishing be-
tween relationships among input parameters that must be verified
as a condition to execute the call, and the relationships returned by
the call. (2) An algorithm for automatically generating appropriate
service calls, with awareness of call execution costs and quality-
of-service properties of the Web services. The algorithm orders
the service calls according to a principled cost model. (3) A proto-
type system and extensive experiments, using the publicly available
YAGO collection [35] as a local knowledge base and additional
data dynamically obtained from comprehensive, timely, and popu-
lar Web services about books and music.

We discuss related work in Section 2. Sections 3 and 4 describe
our Semantic-Web-oriented framework for the dynamic coupling
of Web services and the local knowledge base. Section 6 and 7
are dedicated to the query-evaluation algorithms of our framework.
Section 8 describes the system architecture of our prototype, and
finally, we evaluate our system in Section 9.

2. RELATED WORK
A method of a Web Service API is a function that takes as input

some parameters and returns as value a semi-structured document,
usually XML. Using existent tools [16], mappings can be prede-
fined in the system so that the XML fragments in the results of
calls to the function are translated to RDF-style graphs, according
to the schema of the knowledge base. Hence, we can simply see
a function as a parameterized SPARQL [41] query, whose result is
an RDF fragment.

2.1 Answering queries using views
As shown in [28], SPARQL queries can be translated to Datalog

queries, hence we are essentially dealing with conjunctive queries
on views. Syntactically, the definition of a function is similar to the
views with limited access patterns [14, 15]. The functions have lim-



ited access patterns because in order to execute a Web service call,
one must provide binding values for the input parameters. How-
ever, there is a semantic difference between the Web service APIs
and the views in data integration systems: The schema of the meth-
ods in the Web service API is typically not known. Hence, one
cannot apply optimization techniques e.g., [22], to eliminate redun-
dant views. A site can define two distinct functions with the same
signature. For instance, the Web site last.fm exports two func-
tions that take as input an artist name and return songs sang by that
artist. The first function returns the top ten songs, while the second
function returns the last ten songs that were listened recently by the
users of last.fm.

Our problem is similar to that of answering queries using views
in data integration system in that we answer user queries by rewrit-
ing the initial query into a set of queries (rewritings) that are ex-
ecuted on the remote data sources. However, in our setting the
query evaluation is bounded by the maximal number of calls. This
changes the approach to solve the problem, as we show next. De-
pending on the setting (query optimization or data integration) there
are two distinct query rewriting problems. In the first case, the
views are complete, the number of the views is limited, and the
result is an equivalent rewriting. In the second case, the views are
incomplete, the algorithm must scale up to a large number of views,
and the result is a maximal contained query. Because Web services
are incomplete we shall compare only to the second problem. We
use as basis of comparison the language of the rewritings.

Conjunctive queries. There exist a number of standard algo-
rithms, most notably BUCKET [26] and MINICON [29]. These
algorithms, however, do not consider services whose only role is
to provide values for the parameters of a subsequent service, even
though this might be the only way to use this second service. Fur-
thermore, they do not support recursive query plans. But, as shown
in [25], even non-recursive queries require recursive query plans if
the views have limited access patterns.

Conjunctive queries with binding patterns. In [14, 15] (with im-
provements in [22, 18]), the authors show that for every query there
is a finite rewriting using the views, albeit a recursive one. This al-
gorithm proceeds by rewriting a so-called Local As View system
into a so-called Global As View system, by inverting each Data-
log rule and introducing Skolem terms. The algorithm first com-
putes the consequences of the rules (i.e. it instantiates all possible
function calls); then it uses a bottom-up evaluation to compute the
answers. The central weak point of this approach for our scenario
is the bottom-up computation. It is simply impossible to enumer-
ate all Web service results, because most Web services restrict the
number of calls coming from an IP address, so that the algorithm
would be stopped before the first step is completed. Our approach,
in contrast, searches to minimize the number of calls after which
execution answers are output.

The authors of [32, 43] provide a different approach to query
rewriting, targeting equivalence of rewritings. This approach, how-
ever, assumes that the views are complete.

2.2 Knowledge Representation Formalisms
XML languages. Since XML is the de facto standard for Web ser-

vices, one could think of choosing XML as the data model for the
global schema. Still, this does not eliminate the necessity of map-
ping the schema of the Web service to the schema of the knowledge
base. With XML as with RDF, the result of a Web service call must
be re-structured according to the schema of the knowledge base.
Furthermore, it is infeasible to store the semantic graph in XML
documents, and to query it using XPath. The query engine would
spend most of the time chasing XLink links. Our approach, in con-

trast, uses the RDF-3X [27] engine, which is a native RDF query
engine.

Object oriented. Early works in data integration [19] used an
object-oriented language for the rewritings. For the same reasons
as above, these approaches are less adequate for the Semantic-Web-
oriented (RDF-style) knowledge bases we consider.

Description Logics. The standard reasoning formalism for RDF
data is OWL, with its flavors OWL Full, OWL DL and OWL lite.
In [9], it is shown that the Description Logic language DL-Lite can
be embedded in an extension of the Datalog language. The major
extension consists in allowing existentially qualified variables in
the heads of the rules. The problem of reasoning on the knowledge
base, however, is orthogonal to our problem.

Sources with querying capabilities. Recent works have investi-
gated sources that have querying capabilities by themselves [38,
10]. Our work, in contrast, focuses on Web services, which have
no such capabilities.

2.3 Other styles of data integration
ActiveXML. The concept of embedded Web services was intro-

duced by the ActiveXML paradigm [1]. But the ActiveXML frame-
work has no capabilities to compute all the Web call compositions
that answer the query. It does not address the problem of answering
querying using views.

Mashup Systems. In contrast to the mash-up approaches [34, 21],
our system acts like a mediator system, where the query dynami-
cally combines data from local and external sources, on demand.

Linking Open Data Project. The Linking Open Data Project
aims to link Semantic Web resources into a global and distributed
graph that spans several Web sites [8]. The resources are linked
using URIs and RDF specifications. However, the integration of
dynamic components such as Web services has not been consid-
ered yet.

2.4 Complementary problems
The Deep Web. The Deep Web is the part of the Web that is ac-

cessible only by Web forms and Web service APIs. There is much
work on the automatic construction of wrappers for Web forms
(e.g., [11, 17]). This work is complementary to ours, because it
is not concerned with the exploitation of Web services. On the con-
trary, the work can be used to construct Web services from Web
forms [33]. These Web services can then provide the input to our
system.

Schema mappings and Data Fusion on the Fly. In the present
work, we assume that the mapping between the schemas of the
Web Services and the schema of the knowledge base is given. The
(semi) automatic creation of schema mappings has been addressed
in a large corpus of works, e.g., [16, 3, 24]. Furthermore, we are
not concerned with entity disambiguation and data fusion in this
paper. Data fusion is an important component of our system, but
it has been vividly addressed in previous work (e.g., [4]). In this
work, we develop at a clean model for query rewriting, and we
see the disambiguation and data fusion algorithms as an orthogonal
problem.

2.5 Other Web Services applications
Web service composition. A number of works address the prob-

lem of automatic composition (or orchestration) of the Web ser-
vices carrying out complex interactions between Web applica-
tions [7, 12]. Our work, in contrast, is concerned with answering
queries using Web services wrapping parameterized queries.

Another problem is to determine the composition of Web ser-
vices that can answer a parameterized user query [37], or return
objects of a given type [31]. In our model, the user queries are not
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Figure 1: A semantic graph

parameterized. Furthermore, in Section 7, we show how to use the
constants in the query, as well as the relationships from the knowl-
edge base where the constants appear to reduce the number of Web
calls.

3. DATA MODEL

3.1 RDFS and Semantic Graphs
In tune with recent work [35, 5, 23], we represent our knowledge

base in the RDFS standard [39]. In RDFS, knowledge is modeled
as a semantic graph. A semantic graph is a directed labeled graph,
in which the nodes are entities (such as individuals, classes, and
literals) and the labeled edges represent relationships between the
entities. A fragment of a sample semantic graph is shown in Fig-
ure 1. Formally, a semantic graph can be defined as follows.

DEFINITION 1 (SEMANTIC GRAPH). Let Rel be a set of re-
lation names and let Ent ⊇ Rel be a set of entities. A semantic
graph over Rel and Ent is a set of edges G ⊂ Ent×Rel×Ent.

Thus, a semantic graph is seen as a set of triples. This allows
two entities to be connected by two different relationships (e.g.,
two people can be colleagues and friends at the same time). A
triple of a semantic graph is called a statement.

In RDFS, there is a distinction between individual entities (such
as Dario Fo) and class entities (such as the class Actor). Individu-
als are linked by the type relationship to their class. For example,
Dario Fo is linked to the class Actor by an edge (Dario Fo, type,
Actor). The classes themselves form a hierarchy. More general
classes (such as Artist) include more specific classes (such as Ac-
tor). This hierarchy is expressed in the semantic graph by edges
with the subclassOf relationship, e.g. (Actor, subclassOf, Artist).

3.2 Query Language
As query language, we consider a subset of the standard RDFS

query language SPARQL [41].

DEFINITION 2 (QUERY). A query over a set of variables
V ar for a semantic graph G ⊂ Ent × Rel × Ent is a semantic
connected graphQ ⊂ (Ent∪V ar)×(Rel∪V ar)×(Ent∪V ar).

Figure 2 shows two example queries. The first one asks for the
prizes won by Dario Fo. The name of the prize is represented by

Q1

Dario Fo ?x

Prize
wonPrize type Q2

Dario Fo Franca Rame
?r

Figure 2: Two sample queries

a variable. The second query asks for Dario Fo’s relationship to
Franca Rame. In this case, the relationship itself is a variable.

DEFINITION 3 (QUERY ANSWER). An answer to a query Q
on a semantic graph G is a graph homomorphism σ : Q→ σQ ⊆
G that preserves the entity and relation names, and substitutes the
variables in Q with entities and relationships names from G.

For instance, consider again the semantic graph shown in Fig-
ure 1. The query Q2 has an answer in the semantic graph because
there is the substitution σ(?r)=marriedTo. σ(Q2)=(Dario Fo, mar-
riedTo, Franca Rame) is a sub-graph of the semantic graph.

3.3 Functions
In our model, the user can query for data that is not yet in the

knowledge base. This knowledge is retrieved on the fly by call-
ing Web services. We consider a Web service method as being a
function. We see a function as a parameterized query.

DEFINITION 4 (PARAMETERIZED QUERY). A parameterized
query is a queryQ ⊂ (Ent∪V ar)×(Rel∪V ar)×(Ent∪V ar),
where the set of variables is partitioned in two sets: input variables,
denoted with I , and output variables, denoted with O.

The variables in I must be bound to their actual values before the
query is executed. Thus, at execution time, the parameterized query
becomes a query as defined above. The answer of the query asso-
ciates binding values for the variables in O.

While the local knowledge base is given extensionally, the
knowledge provided by the functions is given intensionally. That
is, the function definitions do not provide the data itself, but they
define a way to obtain it. Conceptually, the extensional data and
the intensional data form one large knowledge base. The user can
browse this knowledge base transparently, without noticing the dif-
ference between intensional and extensional knowledge.

DEFINITION 5 (FUNCTION DEFINITION). A function defini-
tion is a parameterized query f ⊂ (Ent ∪ I ∪ O) × (Rel ∪ I ∪
O) × (Ent ∪ I ∪ O) where the set of edges is partitioned in in-
put edges (input conditions) and output edges so that each variable
occurring in an input edge is an input variable.

As a condition to execute the function call, the inputs edge con-
ditions must be verified in the local knowledge. The output edges
are instantiated once the result of the function is retrieved.

Consider a function that returns for a given writer the books that
he/she wrote. The valid inputs are person names. Consequently, a
input edge would be the edge (?x, type, Person), and as an output
conditions the edges (?x, type, Writer), (?x, wrote, ?y), where ?y is
instantiated by the function call.

In practice, Web services may define also optional input parame-
ters. The optional parameters can be seen as variables having a dual
state. They can be either input or output variables. Because a call
must provide bindings for at least one input variable, they do not
change the problem. With some technical details, the algorithms
can handle them. For clarity, we ignore optional parameters here.
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s1 s2 s3

inputEdgeOf
outputEdgeOf

outputEdgeOf
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Writer ?x ?y Book

Figure 3: A function definition.

GRAPH REPRESENTATION In our model, the function definitions
themselves are part of the local knowledge base. Every function
definition is identified by an entity representing the function. The
edges of the function definition are reified. In this process, variable
names become nodes in the semantic graph. Each reified edge is
connected to the function identifier by an edge representing the in-
putEdgeOf or outputEdgeOf relationship. Figure 3 shows an exam-
ple. The function getBooks has the input edge (?x, type, Writer).
It has as output edge (?x, wrote, ?y).

This way, the function definitions are integrated completely into
the semantic graph. Thereby, function definitions become first class
citizens of the knowledge base. Thus, it is possible to query the
knowledge base for functions that have certain properties.
COMPARISON WITH DATALOG Datalog queries [2] are conjunc-
tive queries of the form:

q(X̄)← r1(X̄1), r2(X̄2), . . . rn(X̄n)

where q and r1, r2, . . . rn are predicate names. The predicate
names refer to database relations. The tuples X̄1, X̄2, . . . X̄n con-
tain either variables or constants. The query must be safe, i.e.,
X̄ ⊆ X̄1, X̄2, . . . X̄n (every variable in the head must also appear
in the body).

Furthermore, in order to model the input and the output parame-
ters, adornments attached to queries have been introduced in [32].
If the head of the query has n attributes, then an adornment consists
of a string of length n composed of the letters b and f . The mean-
ing of b is that a binding value must be provided for the variable in
that position. For example, the function in Figure 3, can be written
in Datalog syntax as follows:

getBooks(?x,?y)bf ← wrote(?x,?y), Writer(?x), Book(?y)

where the adornment bf says that ?xmust be bound (input variable)
and ?y is free (output variable).

There are two semantic differences between our function defini-
tion and the views with limited access pattern [14]. First, the func-
tion definition is not a source description, but a description of the
result returned by a call to the function. The methods in Web ser-
vice APIs published by some Web site are not defined with respect
to a schema of the source. Hence, one cannot apply optimization
techniques e.g., [22], to eliminate redundant views. Second, we
make the distinction between input and output edges. The role of
input edges is to restrict the set of values that are valid inputs for
function calls. Previous works ignored that Web sites protect the
access to their Web services (or forms) against too many requests
coming from the same IP.
INTENSIONAL RULES In Datalog, predicates can be defined ex-
tensionally (by declaring instantiated atoms) or intensionally (by
declaring a rule). This principle carries over naturally to our data
model. The role of extensionally defined predicates in Datalog is

taken over by concrete edges in the semantic graph. The role of
intensionally defined predicates is taken over by intensional rules.
An intensional rule is given by an ordinary function definition that
is not connected to any Web service. Furthermore, all variables that
occur in output edges must occur in input edges. If such an inten-
sional rule is called, the output edges are added to the knowledge
graph without reference to any Web service. Since the input edges
act as conjunctive conditions, intensional rules have the same ex-
pressive power as domain-restricted Horn clauses with binary pred-
icates in Datalog.

4. QUERY EVALUATION
Given a user query, the problem is to evaluate it using the lo-

cal knowledge base and the set of functions defined in the system.
As described in Section 3.3, we treat the functions as intensional
(i.e. active) components of the knowledge base and represent them
within the knowledge base. The vision is to unfold (i.e. material-
ize) intelligently the intensional parts of the knowledge base so that
the local knowledge base be able to answer to the user query.

Given a SPARQL query (see Section 3.2), one should compute
the sequence of calls whose results, when added to the knowledge
base, can answer the query. Note that the functions have input pa-
rameters. Hence, for a function, the number of corresponding calls
is equal to the cardinality of the function domain. A brute force
solution that enumerates and executes all possible function calls is
not feasible due to the large volumes of data generated by all the
calls.

The problem is challenging because, in order to obtain the de-
sired values for the output of a function, one should not only pro-
vide valid input values, but those judicious input values that return
the desired result. Furthermore, some input values may only be ob-
tained as the results of other calls. For instance, in Figure 5, the
function f1 can be called to retrieve the books written by Herta
Müller only if her id is provided as input. Input values for the f1
can be directly obtained from the database, or can be obtained using
the function call f2(Herta Müller).

4.1 Existing techniques
Algorithms such as BUCKET [26] or MINICON [29] that were

developed for data integration systems cannot be directly applied to
our framework due to the presence of limited access patterns. These
algorithms do not consider functions whose only role is to provide
values for a subsequent Web call. The algorithm for views with
limited access patterns presented in [14] is closest to our frame-
work. It is guaranteed to produce the maximal contained rewrit-
ings. The focus is on computing the maximal number of answers
and not how to compute the first answers fast, with a limited num-
ber of calls. The key idea in [14] is to construct a set of inverse
rules for each view. An inverse rule shows how to construct tuples
for the database relations from the result of a view. For instance,
consider a function that given an author name and a conference,
returns the papers published by the author in that conference:

getPapersbfb(?a,?p,?c)← authorOf(?a,?p), publishedIn(?p, ?c)

For the relations in the body of the rule above, the inverse rules are:

authorOf(?a,?p) ←getPapersbfb(?a,?p,?c)
publishedIn(?p, ?c)←getPapersbfb(?a,?p,?c)

A special rule dom (domain) is also added. Its role is to generate
the domain from which the output variables of functions may take
values. This set is extended with the constants in the query and
in the database base. A Datalog query is evaluated on the newly



obtained Datalog program using the bottom-up technique [2]. We
cannot test such technique due to the limitations on the number of
Web calls that one IP address can invoke. One can think that the
top-down technique [2] can be used instead, because of its prop-
erties of pushing the selections. For example, let us consider the
query:

q(?p)← authorOf(’Alice’,?p), publishedIn(?p, ’SIGMOD’)

Then, the term authorOf(’Alice’,?p) can be expanded in an SLD (Se-
lective Linear Definite) derivation tree that uses the above defined
inverse rules:

authorOf(’Alice’,?p), publishedIn(?p, ’SIGMOD’)
|

dom(?c), getPapersbfb(’Alice’, ?p, ?c)

Note that ?c must be bound in order to execute the call. As sug-
gested in [14], the literal dom(?c) is introduced in order to be used
to bind values for ?c, in a left to right evaluation. Hence, this tech-
nique is also limited in its ability to push selections to views with
limited access patterns.

Our next algorithms can match at once a subset of edges in a
query with a subset of edges in a function. For instance, in our ex-
ample we can detect that the two edges of the query can be obtained
in the answer of the function getPapers, and we can directly bind
?a to Alice and ?c to SIGMOD. We can see this as an extension of
the inverse rules. The extension consists in allowing for multiples
literals in the heads of the inverse rules.

5. PRELIMINARIES
We model function calls by help of partial instantiations.

DEFINITION 6 (PARTIAL INSTANTIATION). A partial instan-
tiation for a function f ⊂ (Ent∪I∪O)×(Rel∪I∪O)×(Ent∪
I ∪O) is a graph homomorphism

σ : f → J ⊂ (Ent ∪ V ar)× (Rel ∪ V ar)× (Ent ∪ V ar)

that preserves the names of entities and relationships, and maps
variables either to entity and relationship names or to new vari-
ables (σ : I → Ent ∪ V ar and σ : O → Ent ∪ V ar).

The partial instantiation will instantiate some variables of the func-
tion with entity or relation names. Other variables of the function
definition are simply given new variables names.

Now, a function call is simply a partial instantiation that binds
all input variables:

DEFINITION 7 (FUNCTION CALL). A function call for a
function definition f ⊂ (Ent∪ I ∪O)× (Rel∪ I ∪O)× (Ent∪
I ∪ O) is a partial instantiation that maps variables in I to entity
and relationship names so that the input edges form a sub-graph
of the local semantic graph, and maps the variables in O to new
variables in a new variable set V ar.

σ : f →W ⊂ (Ent ∪ V ar)× (Rel ∪ V ar)× (Ent ∪ V ar)

The execution of the function call will instantiate variables in
Var. The result of a function call W is a new graph R ⊆ Ent ×
Rel × Ent that is homomorphic with W . Now we are ready to
define the evaluation of a query:

DEFINITION 8 (EVALUATION). An evaluation for a query
Q, with a set F of function definitions for Web services, and a
semantic knowledge graph G ⊇ F , is a list of function calls
W1,W2, . . . ,Wn, with the corresponding results R1, R2, . . . Rn,
so that

Q((G \ F ) ∪R1 ∪R2 . . . ∪Rn) ⊆ Q(G)

where Q(G) is the answer of Q for the knowledge base G.

If the input value in Wj comes from the result of some call Wi ,
then we write Wi ≺Wj , and we say that Wi and Wj are executed
in pipeline. The construction of evaluation expressions relies on
an intermediary structure that we define in the following. We first
note that, for every edge of the knowledge graph, we can construct
a trivial function that has this edge as output edge. Let Fdb denote
this set of functions.

DEFINITION 9 (QUERY COVER). A cover for a query Q on
an instance of our data model, is a set of function instantiations
J1, J2, . . . , Jn for the functions f1, f2, . . . , fn ∈ F ∪ Fdb, (on a
common graph Q ∪ J1 ∪ J2 ∪ . . . Jn), so that:

(i) For each input attribute of some Ji, there is an instantiation Jj
where the attribute is output.

(ii) For each edge (triple) of Q, there is an instantiation Jj where
the edge is output edge.

For two partial instantiations Ji and Jj that have the property (i)
above, we denote Jj ≺ Ji. Note that two Web calls Wj ≺ Wi

correspond to two instantiation Ji respective Jj so that Jj ≺ Ji.
One can see the partial instantiation as nodes in a directed graph
structure where the edges are ≺ relationships.

EXAMPLE 1. Consider the Figure 5. More RDF triples match-
ing the edge (?w, wrote,?x) can be obtained as the result of calls
to the function f1. A partial instantiation Jf1 for f1 is then defined
so that σ1(?id1) = ?id and σ1(?w1) = ?w. The graph in the right
side represents the query cover. Now, f2 can provide triples match-
ing the edge (?w, hasId, ?id). We add to the query cover Jf2 , a
partial instantiation for f2, so that σ2(?id2) = ?id and σ2(?w2) =
?w. Note that ?id is output attribute in Jf2 and input attribute in
Jf1 . Hence Jf2 ≺ Jf1 ≺ Q. Furthermore, let f3 be a function
that can provide relationships that match the edge (?w wonPrize
?p). In summary, we have three partial instantiations in the query
cover.

Jf1 = {(?w, wrote, ?x), (?w, hasId, ?id)}
Jf2 = {(?w, hasId, ?id)}
Jf3 = {(?w, wonPrize, “Nobel prize in literature")}

EVALUATION FOR INFINITE NUMBER OF WEB CALLS In [25],
the authors show that for views with limited access patterns there
might be no bound on the size of the rewriting. As an example,
consider the following function:

fbf (?x,?y)← Artist(?x), Artist(?y), Collaborated(?x,?y)

and a query requesting all the entities of type Artist. For each
artist in the knowledge base and, for each retrieved artist, a lot more
artists could be discovered by calling the function f . Note that the
chain of recursive calls of f is not bound by the size of the query. In
general, one can envision Web services which implement functions
that generate infinite domains. For instance, consider a function
that given a year, returns the next year in which a total sun eclipse
will occur.
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6. DEPTH-FIRST ALGORITHM
This algorithm relies on a depth-first-search strategy to expand

the query cover and on a left to right evaluation. Algorithm 1 com-
putes and outputs the rewritings for a query in the spirit of the
chronological backtracking strategy used in Prolog.

Algorithm 1 DF(Funct F , Cover C, Stack St, Query Q)
1: J ← St.pop();
2: if (J.depth = MAX || St.empty) then
3: return C;
4: end if
5: for (f ∈ {fdb} ∪ F ) do
6: for (Ji so that (Ji = σ(f)) ∧ (Ji ≺ J) ∧ (Ji 6∈ C)) do
7: J .addChild(Ji);
8: DF(C ∪ Ji, St.push(Ji));
9: executeWebCallsFor(Ji)

10: end for
11: end for

The algorithm implements a recursive depth-first search for con-
structing the derivation tree. The query cover is constructed by
recursive calls to the function DF. The function takes as input the
set of functions F , the current configuration of the query cover C,
a stack St with the instantiations J for which the derivation tree
should be computed. The function fdb is a local function that is
added for uniformity, so that both the extensional predicates and
the intensional predicates are accessed using functions. In the be-
ginning, both the stack St and the query cover consist of the query
Q. At each recursion step, one partial instantiation J is removed
from St and new partial instantiations Ji so that Ji ≺ J are added
to C and to the stack St.

Consider for instance the query Q in Figure 4, and the function
definitions defined on the right-hand side of the figure. Q asks for
the books written by Albert Camus, f1 is a function-composition
rule equivalent to the Horn clause:

released(?a,?b)← hasId(?a,?id), idWrote(?id,?b)

function f2 maps an artist to its id in the LibraryThing
database, f3 maps the id to the books written by the author and
f4 returns the collaborators and the id of the collaborators.

The algorithm searches a substitution that satisfies at least an
edge of Q. In our case, we can have a substitution σ for f1 i.e.
σ(?x)=Albert Camus and σ(?w)=?x. Hence, the partial instantia-
tion J1 = σ(f1) is appended to the query cover, and J1 is pushed
into the stack. In the derivation tree we have J1 ≺ Q. In the
next steps, the algorithm removes J1 from the stack and unfolds
the derivation tree for it. It tries to find the functions that satisfy the
edges marked with hasId and idWrote. The algorithm always tries
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Figure 5: Query Q and function definitions f1 and f2 (left) and
query cover Q ∪ Jf1 ∪ Jf2 (right).

to use the local database function to early bind input parameters. In
our example, the algorithm chooses fdb to satisfy the edge marked
with hasId. The id of Albert Camus is extracted from the database.
Note that another possible choice is f2. In the next step (if at least
one of the function returned an id of Albert Camus), the algorithm
chooses f3 to satisfy the edge marked with idWrote. The result is
a rewriting that “covers” the initial query completely. The tree in
Figure 4 denotes the derivation tree that is constructed by the DF
algorithm. J1, J2, and J3 denote the partial instantiations for f1,
f2, and f3, respectively.

Note that the presented algorithm relies excessively on a depth-
first search strategy. In case there is an infinite rewriting of the input
query, the algorithm will descend into a non-terminating recursion.
For instance, note that the function f4 returns also relationships for
the relation hasId. Furthermore, the function can be called recur-
sively, so that more hasId are returned. For the completeness of the
solution, one should take into account these relationships. In or-
der to prevent infinite loops, we bound the depth of the derivation
tree by MAX. Our next algorithm exploits an intuitive cost model
for the early binding input parameters in function instantiations, to
prioritize the evaluation of partial instantiations.

7. F-RDF ALGORITHM
The Depth-First algorithm may descend into one branch of the

derivation tree and it may use the total number of allowed function
calls without even producing a single answer. Our next algorithm
improves over the depth first algorithm in that it first unfolds lazily
the query cover, without executing the Web calls. Then, it par-
tially orders the values used as inputs for calls. It prioritizes those



values from the local knowledge base that are in the results of lo-
cal queries consisting of some of the predicates and constants in the
query. Hence, instead of pushing the constants in an recursive chain
of the nested calls without any target, the new approach tries to use
as bindings the values that are in relationship with possible query
answers. Furthermore, the algorithm estimates the cost of execut-
ing a pipeline of web calls that might contribute with relationships
to the query answer.

For a function f , one can extract from the database the values for
its input bindings, and execute the set of function calls. Note that
the sequence of calls might be unbound, because the response of a
call can contain new binding values for the inputs for f . We call the
list of all function calls that can be defined for f , the exhaustive list
of calls for f . This algorithm avoids producing the exhaustive list
of calls from the beginning, and instead, searches first for a better
strategy. The key is to choose first those bindings that verify some
of the conditions in the query.

7.1 Lazy construction of the query cover
To simplify, but without losing the generality of the solution, we

ignore in the following the edges labeled with type in the query
cover Q ∪ J1 . . . ∪ Jn. As a pre-filtering step, we check for every
node of the function instantiation if its type is compatible with the
type of the matched node in the cover. For each partial instantiation
J in the cover, we construct local queries that extract bindings for
the input attributes. The queries are constructed as connected sub-
graphs of the query cover. The local queries contain at least a node
that is labeled with a constant in the initial query. We denote the
local queries using the term binding queries.

As example, consider the query in Figure 5. Note that unlike
the example in Figure 4, the name of the writer ?w must to be
computed. Those values that satisfy already some constraints in Q
are better candidates to be part of the final solution. Several sub-
queries of Q can be considered. For instance, one can select values
for ?w so that:

{ (?w, citizenOf, ’France’), (?w, wonPrize, ’Nobel prize in literature’)}

Let B be a binding query for a partial instantiation J . For each
binding query B, we can write it as the conjunction of two queries
B = QB ∪ PB , where QB ⊆ Q. PB is a path (or union of
paths) from an input attribute in J to a node in Q. We construct the
binding queries, incrementally, as follows.

Case (1) If J∩Q 6= ∅. Since the query cover is connected (union
of connected graphs), then for each input attribute in J , there is a
path to nodes in Q.

Case (2) If J ∩Q = ∅. In this case, there is a sequence

J = Ji ≺ Ji−1 . . . ≺ J1 ≺ Q

in the derivation graph. Note that Jk ∩ Jk−1 6= ∅ for all k ∈
{1, . . . n}, and J1∩Q 6= ∅. LetBi be a binding query for Ji. Then,
one can compute a binding pattern Bi for Ji as the conjunction
betweenBi−1 (of Ji−1) and a path (or union of paths) in Ji∪Ji−1.
A path has the origin in an input attribute of Ji and reaches an input
attribute in Ji−1 that occurs also in Bi−1.

EXAMPLE 2. Consider the query in Figure 6. The query asks
for the titles that the Queen Victoria has had. The function h1 can
be used to obtain the titles. Note that h1 takes as input the house
(dynasty) and the name of the person. Let J1 be the partial instan-
tiation for h1 so that σ1(?p) = “Queen Victoria”. Assume that the
house information is missing from the local database. However, the
function h2 can provide it. Let J2 be the partial instantiation for
h2 so that σ2(?p) = “Queen Victoria”. Assume that the local base
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Figure 6: Lazy query construction.

contains the names of some of her children, but not their house at-
tribute. Hence, the binding query B2 =(?c1, hasParent, “Queen
Victoria”) has answers. Therefore, the lazy construction continues
to append another instantiation for h2, as showed in Figure 6. Let
J3 where σ3(?p) =?c1, be the new instantiation. The recursive
construction can continue until a descendant for whom the house
attribute is stored in the local base is found (e.g. “Elisabeth II”
of house Windsor), or no new generations are reached. Once a
binding for all inputs is found, the evaluation proceeds bottom-up.

7.2 Quality of Web service calls
The operation that has the largest impact on the total execution

time is the execution of Web calls. The algorithm should prior-
itize the execution of the calls in Web call composition that lead
to a solution with a smaller cost. Consider an instantiation Ji so
that Ji ≺ . . . ≺ J1 ≺ Q. Based on the quality of the functions
fi, . . . , f1 that correspond to the instantiations, we can estimate the
quality of the instantiation Ji.

DEFINITION 10 (QUALITY OF SERVICE). The quality of
service for a function f is a triple (p, t, ~avg), where p is the proba-
bility for which the function f returns a non-empty answer, t is the
average response time, ~avg is a vector that contains for each edge,
the average number of corresponding triples in the results of the
calls.

We define the quality of a partial instantiation Ji as a hierarchy of
parameters:

QoJ(Ji) = (
∑

k∈{i,...1}

tk,
∏

k∈{i,...1}

pk,
∏

k∈{i,...1}

pk · avgk)

Consider a Web call Wi of Ji. The first component of the QoJ(Ji)
denotes the probability for which a complete list of calls Wi ≺
. . . ≺ W1 is computed if the bindings for the Web call Wk−1 are
chosen arbitrarily from the result of Wk. The second component is
the time necessary to execute the Web calls Wi ≺ . . . ≺ W1. The
third component is the estimation for the total number of Web calls
corresponding to Ji−1 ≺ . . . ≺ J1, where avgk is a scalar that
denotes the average number of Web calls Wk−1 that use as inputs,
values that are output by Wk.

7.3 Algorithm
The F-RDF algorithm uses the lazy construction strategy de-

scribed in Section 7.1 to construct the query cover. The algorithm



checks for early bindings for the input attributes of the instantia-
tions. For each partial instantiation, we keep the list of query bind-
ings, and of their results. More precisely, for a partial instantiation
J we keep the list of tuples (B, QB , RB ,WB) where RB denotes
the list of answer of B, and WB represents the list of Web calls
whose inputs are obtained in the result of B. The list of tuples is
sorted according to the sub-query QB ⊆ B, from the most selec-
tive QB (with the largest number of edges) to the least selective
one. The Algorithm 2 stores the partial instantiations in a priority
queue denoted with L. The instantiations are partially sorted ac-
cording to the next rule, and secondly, according to the quality of
the instantiation QoJ.

RULE 1 (PRECEDENCE OF WEB CALLS). If Jj ≺ Ji and
Bj and Bi are two binding queries corresponding to Jj and Ji,
respectively so that QBj ⊇ QBi , then all the calls in WBi are
executed before the calls inWBj

The rule makes sure that the information present in the local
database is used to obtain fast the first results. Note that a Web
call of Jj is pipelined with a Web call of Ji in order to be used in
an answer of the query. As a consequence of the rule, we have the
following property:

PROPERTY 1. For a pipeline of calls

W1 ≺ . . .Wi−1 ≺Wi . . . ≺Wn

so that their input values are the results of B1, . . . , Bn, where
QB1 ⊇ . . . ⊇ QBn , if the input values of Wi are already in the
knowledge base, then the calls Wk for k ≥ i are executed first.

The binding input of Wi can be present in the knowledge base by
other means than the result ofWi−1. Usually, the same metadata is
replicated on multiple Web sites. As observed in [13], many of the
Web databases copy from one another. This property is important
because a new result of the query is produced with only calling at
most (n− i) Web calls in the pipeline.

Algorithm 2 F-RDF(Funct F , Query Q, int MAX_CALLS)
1: while L.notEmpty() && calls ≤MAX_CALLS do
2: J(B,QB , RB ,WB) = L.getF irst();
3: for (W ∈ WB) do
4: W .execute();
5: end for
6: for (Ji(Bi, _, _, _) so that Bi ⊆ B ∪ J) do
7: update RBi ;
8: end for
9: LazyCoverExtension();

10: end while

7.4 Properties
Our algorithm guarantees that it produces first the composition

of function calls that take as input the constants in the query, and
whose answers added to the knowledge base produce new answers
for the query. Only after this sequence is produced, it considers the
exhaustive lists of calls.

PROPERTY 2. If there is a sequence of Web calls

W1 ≺W2 ≺ . . . ≺Wn

so that the inputs of eachWi are in the result of a binding queryBi

(possibly as the result of previous calls), then the sequence of calls
is output by the algorithm before the exhaustive list of calls.

Proof Sketch: For simplicity sake, assume that all functions have
exact one input. We prove that a list of partial instantiations J1 ≺
J2 ≺ . . . ≺ Jn, corresponding to the Web calls is added to the
cover. J1 is added because B1 has no empty results. When the
results of W1 is added to the knowledge base, then the query B1 ∪
J1 has answers. Then, there is a binding query B2 = B1 ∪ J2
whose answers contain the input value for W2. According to the
principle used to construct the cover, J2 is added to the cover, and
W2 will be then executed. The proof is then by induction.

In practice, such sequence of calls exists. Web sources define
functions for both direct and inverse relationships between input
and output. Hence, Web sites allow for navigation in the remote
graph of resources following both senses of a relationship (edge).

In the following, we show that determining finite rewritings to a
query is PSPACE-complete.

THEOREM 1. Let Q be a query expressed by our query lan-
guage (as defined in Section3.2), and let F be the set of function
definitions. Determining a finite query cover of Q with functions
from F is PSPACE-complete in the size of G.

Proof Sketch: For the lower bound, our proof is by reduction
from the General Geography (GG) problem, which is known to be
PSPACE-hard. As for the upper bound, we give an algorithm that
computes a finite rewriting to the query in PSPACE. For a given
GG graph with a designated node Q, we run a breadth-first search
from Q and construct for each edge (u, v) that we encounter at an
odd level (assuming that the outgoing edges of Q are at level 1), a
new function with output variable v and input variable u. Analo-
gously, for each edge (v, z) that we encounter at an even level, we
introduce a new function with input variable z and output variable
v. The node Q represents our query. The intuition behind this re-
duction is that Player II can choose any possible output, and Player
I has to respond with the appropriate input. It can be shown that
there is a winning strategy for Player I if and only if there exists a
cover for the query.

THEOREM 2. The F-RDF produces the complete list of Web
calls for an evaluation with an unbounded number of calls.

Proof Sketch: The proof is based on the following observation:
for any partial instantiation Jj , F-RDF will expand all instantiations
Ji for which Ji ≺ Jj . We call this property the exhaustive neigh-
borhood search (ENS) property. The proof is by contradiction. As-
sume that there is a query cover J1, ..., Jk that cannot be found by
F-RDF. Then there must be some partial instantiation Ji, 1 ≤ i ≤ k
with Ji ≺ Jj for some j, 1 ≤ j ≤ k that could not be discovered
by the F-RDF. By the ENS property follows that Jj could not have
been discovered by the F-RDF either. We can continue this argu-
mentation recursively until we reach Q, which could not have been
discovered either by the F-RDF. This is by the construction of F-
RDF a contradiction.

8. SYSTEM ARCHITECTURE
The overall architecture of our system is illustrated in Figure 7.

The system uses the existing YAGO ontology [35], which consists
of 2 million entities and 20 million facts extracted from various



encyclopedic Web sources. In addition, we extended the knowl-
edge with a built-in collection of function definitions for the follow-
ing Web services: MusicBrainz, LastFM, LibraryThing,
ISBNdb, AbeBooks, and IVA (Internet Video Archive). In our
envisioned long-term usage, the function definitions would either
be automatically acquired from a Web-service broker/repository or
they could be semi-automatically generated by a tool, e.g., [3].
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Figure 7: System architecture of the ANGIE.

Query Translation Module This is the core component of the
project. The module takes as input a user query, and translates it
into a sequence of function compositions. It implements the algo-
rithms DF and F-RDF. The translation module continuously sends
SPARQL queries and Web calls to the RDF-3X processor, which
responds with new results.

SPARQL processor The SPARQL queries are executed using the
RDF-3X processor [27]. The processor has been modified to accom-
modate the management of Web service calls. It is responsible for
scheduling the execution of the function calls, and integrating the
results in the processing of the input query. The calls are executed
via the Mapping Tool (discussed below), which is in charge of re-
mote invocation of the Web services. The Mapping Tool responds
to the processor with the list of triples representing the answers of
the calls. The RDF-3X processor combines the triples from the lo-
cal knowledge base and the triples received from the mapping tool
to produce a uniform output. The query translation and the query
execution are interleaved.

The Mapping Tool This component executes the Web service
calls. It mediates between the function declarations in the knowl-
edge base and the schema of the XML documents that the function
call returns. For this purpose, every function has two mappings
associated with it: The lowering mapping defines how the input
values of a function call are translated to the parameters of a REST
(or SOAP) call. The call is sent to the remote site that provides the
Web service. A call will yield values for the output variables in an
XML fragment. The lifting mapping defines how the XML nodes
in the answer are mapped to entities in the knowledge base. We use
the XSLT standard [40] for this purpose. The entities can then be
handled by the RDF-3X processor.

User Interface The user interface allows the user to query the
knowledge base in the language described in Section 3.2. Queries
are sent to the query translator module and answers are retrieved
from there. Furthermore, the user can also display the knowledge
base as a hyperbolic graph. One exploration step in this GUI re-
trieves and visualizes the neighborhood around a given entity. Such
a browsing step translates into a simple query that retrieves the
neighbors of that entity.

A detailed description of the system architecture can be found in

the demo paper [30].

9. PERFORMANCE EVALUATION
In this section, we present the experimental evaluation of our

system on a set of popular Web services. Our results demonstrate
the effectiveness and the efficiency of the F-RDF algorithm pro-
posed in Section 7.2. We compare the F-RDF algorithm with the
Prolog-style backtracking strategy of the DF algorithm, presented
in Section 6. As a second competitor, we choose a modification
of the F-RDF algorithm with a randomized strategy for choosing
the next function calls. F-RDF and F-RDF Random both use the
lazy strategy for constructing the query cover; and both algorithms
generate Web calls using, as bindings, values extracted from the
local knowledge base via binding queries. In contrast to F-RDF,
F-RDF Random does not prioritize the list of partial instantiations
according to the rules given in Section 7. Note that for a sequence
of interrelated Web calls, the order cannot be changed by any of
the strategies. Finally, the DF algorithm relies on depth-first search
with backtracking.

9.1 Testbed and Methodology
EVALUATED METHODS We have implemented all algorithms, i.e.
DF, F-RDF and F-RDF Random, as part of the query answering
component of our prototype system. The fully functional system
is implemented in Java. For all the algorithms, we set the bound
for the total number of Web service calls to 1500. As performance
metrics, we measured the total number of answers output by each
algorithm, the number of Web service calls, and the time necessary
to output the answers.
PLATFORM The configuration of the machine that we used for the
experiments is as follows: Pentium(R) Dual-Core CPU 2.50GHz
with 2 MB cache, 2 GB memory, Debian 4.3.2, Kernel version
2.6.30, ServerX, JVM 1.6, gcc 4.3.2 .
DATA SOURCES For our experiments, we consider the following
Web sites, which export rich information from different domains
via Web services: isbndb.org, librarything.com, and
abebooks.com for books, internetvideoarchive.com
for movies, musicbrainz.org, last.fm, discogs.com,
and lyricWiki.org for music. All these Web sites allow users
to query the underlying data based on various search criteria sup-
ported by corresponding service calls. For each Web service API,
we defined mapping functions from the XML output into the RDF
knowledge base.
QUERIES For our experiments, we consider only queries for which
the answers cannot be found in the local knowledge base (i.e., they
can only be retrieved through Web services). We have tested our
system for various queries. In Table 10, we show seven representa-
tive queries for which we report results. For each of the seven query
templates, we evaluate a set of similar queries by varying the con-
stants. A total of 70 queries have been used in the measurements.
Most of the queries have different alternative ways of composing
function instantiations. Usually, this leads to a high number of Web
service calls.
PROFILING WEB SERVICES In order to calibrate the cost param-
eters of different Web services, we ran series of service calls. For
each function definition, we executed 200 corresponding service
calls, using as input entries selected from the YAGO knowledge
based [35], which in turn was extracted from Wikipedia. We com-
puted the average response time for each type of functions. For
each edge in the function definition, we compute the average num-
ber of RDF triples matching the function edge in the call results.
Furthermore, for each edge in the function definition, we measure
the incompleteness of the external Web service, as the fraction of
call results returning non-matching (i.e., irrelevant) triples. Fig-



Q1 Q2 Q3 Q4 Q5 Q6 Q7

Answ. calls Answ. calls Answ. calls Answ. calls Answ. calls Answ. calls Answ. calls
DF 1 6 32 490 3 78 1 13 2 11 11 71 4 7

F-RDF (R) 1 0 28 409 5 268 1 11 26 107 23 154 4 3
F-RDF 1 0 42 80 5 238 1 5 26 34 23 48 4 2

Figure 8: Evaluation results
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Figure 9: Distribution of answers during the evaluation

Q1 “Frank Sinatra” bornOnDate ?birthday
Q2 ?author wrote ?book

?author hasWon “Nobel Prize in Literature”
?author isCitizenOf “Greece”

Q3 “Frank Sinatra" hasChild ?child
“Frank Sinatra” isMemberOf ?collaboration
?child isMemberOf ?collaboration

Q4 “Reese Witherspoon” marriedTo ?spouse
“Reese Witherspoon” actedIn ?movie
?spouse actedIn ?movie

Q5 “Jane Austen” wrote ?book
?title titleOf ?book
?title titleOf ?movie
?actor actedIn ?movie

Q6 “Frank Sinatra” hasChild ?child
?child sang ?song

Q7 “Kristin Scott Thomas” actedIn ?movie
?title titleOf ?movie
?title titleOf ?book
?author wrote ?book

Figure 10: Queries

ures 11 and 12 show the results for the edges (?x, sang, ?y) and (?x,
wrote, ?y), respectively. Note that the singer name cannot be used
alone as input to any of the functions about the sang relationship.
Instead, the function can accept only the id of a person, as defined
by the MusicBrainz Web site. One can obtain the id using a
prior call to another function; the function getArtistId provides the
id of a singer when the singer name is given as input.

9.2 Results
EXPERIMENT 1: ANSWERS & WEB CALLS In Figure 8, we
present the results of the seven queries showed in Figure 10. The
evaluation in each case was bound to 1500 Web calls. In this
setting, the number of answers returned by each algorithm serves

Web Site Function Name (?x,?y) avg. p t (sec)
Music- songsByArtistId (O,O) 15.22 0.99 0.93
Brainz songBySongId (O,O) 0.89 0.99 0.57

songByTitle (O,I) 5.06 0.99 0.92
last.fm songBySongId (O,O) 1.00 0.08 0.46

songsByTitle (O,I) 5.81 1.00 0.89

Figure 11: For the function edge (?x, sang, ?y), the average
number of matching triples in Web service call results.

Web Site Function Name (?x,?y) avg. p t (sec)
isbndb booksByAuthorId (O,O) 0.56 1.00 0.69

booksByTitle (I ,O) 1.46 0.99 1.41
AbeBooks bookByTitle (O,I) 2.19 0.99 1.92

booksByAuthor (I ,O) 7.28 0.99 1.93
booksByISBN (I ,O) 6.10 1.00 1.07

Library- bookByTitle (O,I) 0.71 0.85 1.85
Thing bookByISBN (O,O) 0.31 0.96 0.86

bookById (O,O) 1.85 0.74 0.80

Figure 12: For the function edge (?x, wrote, ?y), the average
number of matching triples in Web service call results.

as comparison metric. The F-RDF algorithm produces the largest
number of answers in each case. The figure also shows the number
of calls after which all output answers are computed. We note that
for the cases where the constants can be pushed as input parameters
in Web calls e.g. Q1, the number of Web calls leading to answers
is small for all the algorithms. For queries where compositions of
Web calls are necessary, the number of Web calls increases consid-
erably, and the difference between F-RDF and DF becomes obvi-
ous. In Figures 9, the left most graph shows the relation between
the number of answers and the number of Web calls that are exe-
cuted in order to obtain the answers. The second graph shows the
relationship between the number of output answers and the evalua-
tion time. The F-RDF algorithm converges fast to its total number



of answers, and outputs the largest number of answers with respect
to its competitors.
EXPERIMENT 2 The second experiment illustrates the effect of
warehousing the data used in the evaluations of similar queries that
preceded the current query. We show that the algorithm F-RDF
makes uses of the local data in order to reduce the number of Web
calls. Consider the following scenario. A user is exploring infor-
mation about Frank Sinatra. Assume that he asks Q3 and then Q6.
We measure the number of calls necessary to execute Q6 after Q3

was executed, and we compare it with the case where only Q6 is
executed. In Figures 9, the right most graph shows the results.
EXPERIMENT 3 This experiment measures the precision and the
recall of the query results. We consider 100 queries that ask for
the books published by an author whose name is given. More than
98% of the output books were correct answers.

10. CONCLUSION
This paper has introduced a system for dynamically incorporat-

ing data from Web services into an RDF knowledge base, on de-
mand for given user queries. We call this paradigm “Active Knowl-
edge”, as it allows the knowledge base to actively and automati-
cally complete or update its facts on entities or topics that the user
is currently exploring. This happens transparently to the user, so
that all browsing and querying of facts remains to be via RDF and
SPARQL.

We emphasize again that our setting is different from a source-
schema integration problem, as the Web services only provide en-
capsulated functions and do not expose any data schemas. The
technical focus of this paper has been on efficiently generating se-
quences of function calls, with appropriately set parameters, to be
executed by Web services based on judicious cost estimates. We
could demonstrate, by experiments with a large knowledge base
and prominent real-life Web services, that our algorithms obtain
high recall with good answers delivered within the allowed cost
budget for external service calls.
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