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ABSTRACT

The feasibility of Federated Learning (FL) is highly dependent on the training and inference capabilities
of local models, which are subject to the availability of meaningful and annotated data. The availability of
such data is in turn contingent on the tedious and time-consuming annotation job that typically requires
the manual analysis of training samples. Active Learning (AL) provides an alternative solution allowing
a Machine Learning (ML) model to automatically choose and label the data from which it learns without
involving manual inspection of each training sample. In this work, we explore how FL can benefit from
unlabelled data available at each participating client using AL. To this aim, we propose an AL-based FL
framework by employing and evaluating several AL methods in two different application domains. Through
an extensive experimentation setup, we show that AL is equally useful in federated and centralized learning
by achieving comparable results with manually labeled data using fewer samples without involving human
annotators in collecting training data. We also demonstrated that the proposed method is dataset/application
independent by evaluating the proposed method in two interesting applications, namely natural disaster
analysis and waste classification, having different properties and challenges. Promising results are obtained
on both applications resulting in comparable results against the best-case scenario where each sample
is manually analyzed and annotated (Baseline 1), and improvement of 3.1% and 4% with best methods
respectively over the training sets with irrelevant images on natural disaster and waste classification datasets
(Baseline 2).

INDEX TERMS

Federated Learning; Deep Learning; Active Learning; CNNs; LSTM; Natural Disasters; Waste Classifica-
tion

I. INTRODUCTION

Federated Learning (FL) is a machine learning (ML) tech-
nique that enables collaborative training of an ML model
across multiple decentralized edge devices without sharing
their data. In recent years, FL has been widely explored in
different privacy-sensitive application domains. Apart from
several other factors, the feasibility of FL in an application is
also constrained by the availability of quality annotated data

at each participating client to properly train local models.
The process of data collection and annotation is one of the
main bottlenecks especially in supervised ML where human
annotators are generally used to annotate training data for
an ML model [1]. To this aim, usually, a large population
is involved in a crowd-sourcing activity to manually analyze
and annotate data. The process involves two key challenges.
Firstly, each sample is needed to be carefully analyzed, which
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is a tedious and time-consuming job. Secondly, the process
does not guarantee the selection of quality samples, which
are more meaningful for a model, having an impact on the
model’s performance. Active Learning (AL), a learning strat-
egy that allows a learning algorithm to interactively query an
information source to pick and label new training samples,
provides a potential solution to these challenges. On the one
side, it allows ML algorithms to choose the data from which
it learns, and eases the annotation process on the other hand
by automatically labeling training samples from a large pool
of unlabelled samples via a model trained on a very small
manually annotated dataset.

The existing literature on FL assumes the availability of
pre-defined fixed manually labeled training set at each client.
However, in many cases, each client may have a large variety
of unlabelled data, which could be utilized in training the
local models resulting in an ultimate improvement in the
performance of the global model.

In this work, we aim to explore how unlabelled data at a
client could be exploited in an FL environment by proposing
a novel AL-based FL framework to utilize the unlabelled data
available at each client in building a global model collabo-
ratively without sharing data in a multi-stake environment.
To this aim, we employ and evaluate multiple AL methods
with different sampling and disagreement strategies. More
specifically, two pool based methods, namely (i) uncertainty
sampling and (ii) query by committee, are analyzed with
three different sampling and disagreement strategies, respec-
tively.

In the current implementation, as a first step to avoid com-
plexities in terms of communication and biases of learners
at each client, we keep the AL task offline where the com-
munication with the server starts once the data at each client
is annotated. On the one hand, the offline AL reduces the
communication rounds in FL by avoiding sample selection
at each communication round. On the other hand, choosing
and annotating training samples during FL (i.e., at each
communication rounds) may introduce complexities in the
convergence of the global model due to biases of the samples
chosen at each communication round as the global model
will be used as a learner in that case. In such a case, there
would be two main challenges. Firstly, if we keep the number
of samples to be picked at each iteration very high, there
will be higher variations in the performance of the global
model, and secondly, keeping it low will increase the number
of communication rounds. Besides these challenges, another
concern related to the so-called online active learning-based
federated learning is that it would require a higher number
of manually annotated initial training sets (i.e., seed) as we
would need to split it among all the clients to train the learner.

The proposed method is evaluated in two interesting
applications—namely, (i) natural disaster analysis in social
media images, and (ii) waste classification—in which there
is little annotated data but an abundance of unlabelled data.
Besides the novelty in the methodology, the work also ex-
plores a different aspect of the applications compared to the

existing literature on the applications including our previous
contributions (i.e., natural disaster analysis [2]–[4] and waste
classification [5]) as detailed in Sections II, and it is expected
to provide a baseline for future work in the domain.

The main contributions of the work can be summarized as:

• We explore the possibility of automatically labeling
training samples in FL via a novel framework for
building a global model by utilizing the unlabeled data
available at each local device.

• We evaluate the performance of two pool based AL
methods with six different sampling and disagreement
strategies in both federated and centralized learning,
where a model is trained by uploading data from all
participating parties to a server on the cloud, in two
different applications.

• We show that AL is equally beneficial in both feder-
ated and centralized learning by achieving comparable
results without involving manual annotation.

• We also show that the performance of FL could be
significantly affected in the case of the unavailability
of sufficient training samples at each client to train the
local models, however, AL could be useful in such cases
to obtain relevant samples without involving human
annotators.

The rest of the paper is organized as follows. Section
II describes the existing literature on AL, FL and both
applications. Section III provides a detailed description of
the proposed methodology. Section IV provides the details
of the datasets, experimental setup, conducted experiments
and results. Section V lists the lessons learned from the
experiments and finally Section VI provides some concluding
remarks and future research directions.

II. RELATED WORK

In this section, we provide a survey of the existing literature
on the different aspects of the work including AL, FL, and the
two applications, namely (i) natural disaster analysis, and (ii)
waste classification, used for the evaluation of the proposed
method.

A. ACTIVE LEARNING

In literature, AL has been widely exploited for image, text,
videos, and multimedia retrieval in different application do-
mains [3], [6]–[9]. For instance, in our previous work [10], an
AL learning-based technique has been employed for social
events recognition in personal photo-collections where an
SVMs classifier is used as a learner to identify and annotate
relevant pictures in photo collections. More recently, we also
analyze the effectiveness of pool-based AL methods in the
classification of disaster-related images [11]. Sun et al. [12]
utilized AL for context-aware image annotation by exploiting
the associated additional information available in the form
of meta-data. In detail, four different features namely geo-
location information, time stamps, users’ tags, and camera
tags are used in clustering to categorize images into different
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labeled groups. In [13], AL has been employed in person re-
identification through an AL framework namely early AL,
which annotates pairs of images instead of an instance. As the
name suggests, the framework is applied at the early stages of
the experiments when no pre-labeled samples (i.e., reference
point) are available for human annotation. Ngo et al. [14]
proposed an AL scheme for content-based image retrieval
where a ranking function exploiting SVMs scores along with
another similarity measurement between the queered image
and the images in a database. Yuan et al. [15] on the other
hand propose a multi-criteria AL scheme to automatically
annotate samples for training their CNN architecture for
image classification.

AL has also been proved very effective in other challeng-
ing applications, such as the classification of hyperspectral
images, where usually a limited number of training samples
are available to train an ML model. For instance, Cao et al.
[16] proposed a CNN-based AL framework for the classifica-
tion of hyperspectral images by firstly training a CNN model
on a smaller collection of annotated pixels, which is then used
to annotate/pick potential pixels from the unlabelled pool.
In [17], AL techniques are employed in a fusion framework
combining spatial and spectral information for the classifi-
cation of hyperspectral images. The AL scheme is mainly
used to acquire the most relevant training samples for the
framework.

The proven performance of AL techniques in such rele-
vant and challenging applications provides a basis for our
proposed solution, and evaluation in the two applications as
detailed in Section IV-A.

B. FEDERATED LEARNING

Existing literature on FL mainly focuses on the challenges
associated with the optimization of a global model with non-
IID, unbalanced, and highly distributed data, and focuses
on ensuring privacy and communication efficiency [18]–
[21]. For instance, McMahan et al. [22] proposed a global
optimization technique namely FedAvg to deal with the
unbalanced and non-IID nature of data in an FL environment,
where parameters of locally trained models are combined
efficiently. To reduce the communication rounds, the frame-
work selects a fraction of clients in each iteration instead of
all participants. One of the main limitations of FedAvg is its
inefficacy in dealing with heterogeneous data. To cope with
heterogeneous data sources in an FL environment, Li et al.
[23] proposed a modified version of FedAvg namely FedProx
guaranteeing convergence in heterogeneous networks. To this
aim, a proximal term has been added to the objective function
of the model to deal with the heterogeneity associated with
partial information. Smith et al. [18] proposed a multi-tasking
based learning framework namely MOCHA to analyze how
multi-tasking can cope with statistical challenges associated
with FL. In contrast to the state-of-the-art solutions, instead
of a single global model, multiple global models are trained
one for each node.

A large portion of the literature also aims at the protection

of model updates. In FL, data privacy has been categorized
as global and local privacy [24]. The former aims at ensuring
the privacy of the global model’s parameters while the latter
ensures that the local parameters are kept private. In [25], a
Secure Multiparty Computation (SMC) protocol is developed
to secure local model updates from the server where the
server can only aggregate the local models. Differential pri-
vacy techniques have also been employed for the protection
of model’s updates in FL [26].

In the literature, FL has been deployed in several applica-
tions, such as sentiment analysis, monitoring, and tracking
activities of mobile users, different tasks of autonomous
vehicles, and healthcare [27], [28], where data is distributed
at multiple devices.

To the best of our knowledge, the literature still lacks in
solutions for utilizing unlabelled data available to clients. We
believe this is one of the interesting directions to be explored,
which may ultimately improve the performance of the global
model.

C. NATURAL DISASTER ANALYSIS

Natural disaster analysis in images from different social
media platforms is one of the interesting key applications
that recently got the attention of the multimedia and signal
processing community [3], [29]. Over the past few years,
several interesting solutions covering different aspects of
natural disaster analysis have been proposed. In [3], we
provided a detailed survey of different solutions proposed for
disaster analysis in images, videos, text, and remotely sensed
data. In our previous work [4], we proposed a tool namely
“Jord” to crawl, analyze, and filter disasters-related infor-
mation obtained from social media and satellites. Similarly,
Johnson et al. [30] analyzed Twitter data for the detection and
classification of hurricane-related images. In [31], disaster-
related images from social media are analyzed for damage
estimation.

Disaster analysis in images has also been part of the
benchmark competition namely MediaEval for three con-
secutive years since 2017, where a different aspect of nat-
ural disasters has been analyzed each year [32], [33]. In
MediaEval-2017, 2018, and 2019, the competition focused
on retrieval of flood-related content from social media, route
passability analysis in a flooded region, and multi-modal
flood-level estimation in news, respectively [32], [33]. The
majority of the proposed solutions for these tasks rely on
existing pre-trained models, such as AlexNet, GoogleNet,
VggNet, and ResNet, which are either fine-tuned on the task-
specific smaller datasets or used as feature descriptors [3].
For instance, in [34], existing pre-trained CNNs models are
used for retrieval of disaster-related images. Similarly, in
[35] multiple deep models pre-trained on Imagenet are used
for the classification of flooded and non-flooded routs in
social media images. We also contributed to the MediaEval
challenge in our previous works [2], [36]. In [36], a CNN
and Generative Adversarial Networks (GANs) based solution
has been proposed for the detection of food-related events
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in social media and satellite imagery. In [2], we proposed a
deep architecture based framework for identification passable
routs after floods in both social media and satellite imagery.

The existing work mostly focuses on a single type of natu-
ral disaster events. For instance, all the three tasks proposed
in the MediaEval challenge are based on food events, only.
To the best of our knowledge, the domain lacks in a large-
scale benchmark dataset covering several types of disaster
events, and this is one of the main motivations in the selec-
tion of the application for the proposed framework [3]. The
unavailability of annotated and the abundance of unlabelled
data available on different social media platforms make it a
better choice for the evaluation of the proposed work. On
one side, the proposed framework allows us to overcome
the unavailability of training samples issues. On the other
side, it will enable collaborative learning in a multi-party
environment without sharing their data, leading to improved
data privacy.

D. WASTE CLASSIFICATION

Waste classification is another interesting smart city appli-
cation that has been widely explored in the literature. More
recently, some interesting image-based solutions have also
been introduced for waste classification [5], [37], [38]. For
instance, Adede et al. [38] fine-tuned a pre-trained model
namely ResNet on waste materials images. Vo et al. [39] also
employed a pre-trained model namely ResNext for classifi-
cation of waste into organic, inorganic, and medical waste.
In [40], a detailed comparison of deep learning and tradi-
tional methods have been provided. In [41], a CNNs based
framework namely “compostNet” is proposed for image-
based classification of meal waste. Chu et al. [42] proposed
a multilayer hybrid deep learning-based solution for waste
materials classification and recycling. On the other hand, in
our previous work [5], we employed several fusion methods
for improved waste classification, where the fusion schemes
are used to combine the capabilities of the different deep
models in both early and late fusion.

The recent work in the literature shows the interest of
the computer vision and ML community in the application.
However, one of the key challenges in the domain is the
unavailability of large-scale benchmark datasets. We believe
a large collection of waste-related images could be easily
obtained and the proposed framework could help in dealing
with the data annotation, without involving manual annota-
tion, as well as data privacy if multiple parties are involved in
the learning process.

III. METHODOLOGY

There are three main components of the framework, namely
(i) feature extraction, (ii) AL, and (iii) FL as illustrated in
Figure 1, which provides the block diagram of the proposed
methodology for our AL-based FL framework. The process
starts with feature extraction from input images via an ex-
isting pre-trained deep model namely ResNet [43] (Section
III-A). Subsequently in the AL phase, a classifier is trained

on a smaller annotated training set also known as a seed. The
classifier is also known as the learner is then used to annotate
and pick unlabelled samples from a large-scale unlabelled
pool of images via different sampling and dis-agreement
strategies iteratively (Section III-B). The AL process contin-
ues until a sufficient number of training samples are obtained
from the unlabelled pool of images. Finally, the training
samples acquired through AL are used to train local ML
models at participating clients, which are then aggregated to
form a global model (Section III-C).

A. FEATURE EXTRACTION

Since the main focus of the work is to analyze how FL can
benefit from unlabelled data available to each participating
client using AL, thus, for feature extraction, we adopted
rather a standard method without digging deeper in this
aspect of the work. To this aim, we employed ResNet pre-
trained on a large-scale ImageNet dataset [44] to extract
object-level features from the input images. Our choice of
the deep model for feature extraction is motivated by some
recent works on the both applications [5], [34], [38], [45].
It is important to mention that the feature extraction part is
independent of the AL and FL parts so it is expected that the
choice of the model used for feature extraction will not have
much impact on the overall analysis and insights of the AL-
based FL. We used the ResNet configuration with 101 layers
where features are extracted from the last fully connected
layer without any fine-tuning and retraining.

B. ACQUISITION OF TRAINING SAMPLES VIA AL

The basic goal of the AL phase is to acquire and label training
samples from the unlabelled pool of images available at local
devices. To this aim, we relied on pool-based AL methods
where a model, for example, “θ", is used to pick and annotate
training samples from a pool of unlabelled samples namely
p = {xj}

n
j=1. To this aim, the model “θ" is initially built on

a smaller manually annotated set namely “Seed". We mainly
utilized two pool-based methods, namely (i) uncertainty sam-
pling and (ii) query by committee. Uncertainty sampling
methods allow a learner/model to judge the usefulness of
a sample to be picked from a pool based on uncertainty
(i.e., how much uncertain the learn is in assigning a label
to the sample). On the other hand, query by committee relies
on several hypotheses/learners in the selection of a sample,
and the decision is made based on disagreement among the
learners.

Both methods are evaluated under several sampling and
disagreement strategies. The basic motivation for the evalu-
ation of the methods under different sampling and disagree-
ment strategies is to provide a detailed comparative analysis
of the available strategies, which are expected to provide a
base-line for future work in the domain. For the uncertainty
sampling method three sampling strategies namely Least
confidence, Margin Sampling, and Entropy Sampling. On
the other hand, query by committee method is evaluated
under three disagreement strategies, namely Vote Entropy,
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FIGURE 1: Block diagram of the proposed AL-based FL framework. The framework is mainly composed of two blocks,
namely AL and FL where the output of the AL block is provided as input to the FL block.

Consensus Entropy, and Max Disagreement. The sampling
and disagreement methods are described below.

• Least Confidence: This strategy picks the sample for
which the learner/model is least confident, and can be
computed using Eq. 1, where s represents the sample to
be chosen, and y

′

is the most probable label.

Ulc(S) = argmax
s

1− pθ(y
′

|s) (1)

• Margin Sampling: It aims to pick the sample/instance
having the least difference between the probabilities of
the two most probable classes as shown in Eq. 2. Here s
is the sample to be predicted and y

′

1, y
′

2 are the two most
probable labels.

Ums(S) = pθ(y
′

1|s)− pθ(y
′

2|s) (2)

• Entropy Sampling: The strategy selects the sample with
the highest entropy as calculated by Eq. 3 where P (y|x),
UES and Y represent posterior probability, uncertainty
measure and output, respectively.

Ues(x) = −
∑

yǫY

Pθ(y|x) log2 Pθ(y|x) (3)

• Vote entropy: It is a query by committee generalization
of uncertainty sampling with entropy sampling relying
on the distribution of the votes in sample selection, and
can be computed using Eq. 4. Here yi represents all
possible labels, C represents the number of committee
learners/classifiers while V (yi) shows the number of
learners/classifier predicting label y′ .

QCve(S) = argmax
s

−
∑

i

V (yi)

C
log

V (yi)

C
(4)

• Consensus entropy: Instead of vote distribution, this
method firstly computes the consensus of learn-
ers/classifiers by averaging their class probabilities. The
entropy of the consensus probability is then computed
using Eq. 5, and an instance with the highest consensus
entropy is selected.

QCce(S) =
1

C

C∑

c=1

Pθ(yi) (5)

• Maximum disagreement: The method computes each
learner/classifier’s disagreement with the consensus
probabilities and chooses the sample having maximum
disagreement for a learner.

In the AL part, as a first step, a learner is trained on the
seed (a small manually labeled) which is then used to predict
labels for the samples in an unlabelled pool of images and
add them to the seed under a criterion defined in the un-
derlying sampling and disagreement strategy. It is important
to mention that it is an iterative process where the most
relevant sample is fetched from the pool at each iteration.
The process will keep fetching samples from the pool until
a stopping criterion is met. The max number of iterations is
a key parameter to be chosen as after certain iterations the
relevancy of the selected sample will start decreasing and AL
will force to add irrelevant samples in the training set at a
certain point. To this aim different strategies could be used to
fix the number of iterations. One of the possible solutions is
to stop the process when the accuracy of the model reaches
a stable point. Our stopping criteria are based on the max
number of iterations, which is represented as “N" in the
following Algorithm 1.

C. BUILDING THE GLOBAL MODEL IN FL

ENVIRONMENT

The final component of our framework is based on an FL
architecture, inspired by Federated Averaging (FedAvg) al-
gorithm [22], to build a global model by combining the
stochastic gradient descent (SGD) of the local models. Figure
2 describes the basic architecture of the FL algorithm, where
parameters ‘θt" of the global model are shared by the server
among the participating clients, which in response train their
local models on their data. After successful training, the
parameters of the local models (e.g., “θkt of the nth client) are
shared with the server to update the parameters of the global
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Algorithm 1 Acquisition/annotation of training samples via
AL at each client
Require: Input images, learner (i.e., a classification algo-

rithm) and sampling or dis-agreement strategies for query
selection.

Ensure: Labels for samples from unlabelled pool of images.
Step 1: Division of data into seed (an initial small

training set) and unlabelled pool of images.
for i=1:N do

Step 2: Train learner/model on seed.
Step 3: predicting labels for the samples in the unla-
belled pool of samples and selection/queering samples
to be added in seed.

end for

model (i.e., “θ(t+1)"), which repeats the process by sharing
the updated model’s parameters with the clients again. The
process continues for a certain number of communication
rounds.

In our case, a total of five clients participate in FL, while
a Recurrent Neural Network (RNN) namely Long short-term
memory (LSTM) has been used as the learning algorithm.
It is important to mention that LSTM is trained on the deep
features extracted with a pre-trained model namely ResNet
as described earlier. The choice of LSTM is motivated by
the fact that re-training a deep CNNs each time to update
the model in FL requires heavy computation resources at
the edge devices. Thus, the hybrid CNN-LSTM model will
help to combine the capabilities of CNNs and RNNs for
better image classification as reported in [46], [47]. Details of
the LSTM model in terms of the number of layers, number
of neurons in a layer, and other parameters are provided in
Section IV-B.

For building the global model via aggregation of the local
models’ parameters, we adopted the optimization algorithms
namely FedAvg [22]. Algorithm 2 provides the pseudo-code
of FedAvg algorithm. The algorithm is divided into two
parts. The first part shows the operations on the server-side
while the second part depicts the operations made by each
client. Here θt represents the parameters of the global model
while θk K, B, E, η, nk, and n show the kth local model’s
parameter, the total number of clients, mini Batch size, the
total number of training iterations, learning rate, data size at
client k, and the size of the whole data, respectively.

Moreover, the details of the FL parameters, such as
the number of communication rounds, the total number of
clients, and the number of clients contacted per iteration, are
provided in Section IV-B.

IV. EXPERIMENTS AND RESULTS

A. DATASETS

In this section, we provide the details of the datasets used in
both applications are provided below.

Server

Ck C3 C1C2C4

Updated ModelAggregation (FedAvg)

First Round Only
Initialization

Clients

FIGURE 2: Block diagram of FL architecture [48]. The
process starts with the initialization of the global parameters
by the servers, which are then shared with k clients. The
clients then update the parameters via training on local data
and then send it back to the server, which repeats the process.
Here “θt represents the parameters of the initial global model
while K, n, nk, θkt , and θ(t+1) represent the total number of
clients, size of the whole data, the data size of the kth client,
the parameters of the local model trained by the kth client,
and the updated parameters of the global model at time t+1,
respectively.

Algorithm 2 Building a federated model via FedAvg algo-
rithm with a total number of K clients [22], [48].

Require: K, B, E, nk, n, η, and n .
Ensure: θt global model’s parameters.

Operations on the server side:

for each communication round t= 1, 2, 3 ... do

(i) Select a fraction of clients m = CxK where C ∈
(0, 1)
(ii) Download θt to each client k
for each client k∈m do

(i) Wait Client k for synchronization
(ii) Compute θt =

∑m

k=1
nk

n
θk

end for

end for

Operations on the clients’ side (suppose client at K):

θk = θt
for each iteration 1 to E do

for batch b ∈ B do

θk = θk − η ▽ Lk(θ
k, b)

end for

end for

return θ
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1) Natural Disaster Analysis

For this application, we crawled images from social media
platforms. In total, the dataset is composed of more than
7,000 natural disaster-related images from eight different
disasters, namely cyclone, drought, earthquake, floods, land-
slide, thunderstorms, snowstorms, and wildfires. Figure 3
depicts some sample images from the dataset. We divided the
dataset into training and test sets. The test set is composed
of 2,540 images while the training set contains more than
5,000 images. The training set is further divided into a
smaller manually annotated dataset also known as “Seed”
and a larger pool of unlabelled images. Further details of the
subsets of the training set are provided in Section IV-B.

2) Waste Classification Dataset

For waste classification, we used a benchmark dataset pro-
vided in [49]. The dataset is composed of a total of 2,527
images from six different waste categories, namely card-
board, glass, metal, paper, plastic, and trash. Figure 4 pro-
vides sample images from the dataset. To cover different
challenges, such as rotation and illumination issues, the
images are taken at different angles under different lighting
conditions. Similarly to natural disaster analysis applications,
the training set is further divided into “seed" and pool of
unlabelled images where the labels of the images are ignored.
Besides, irrelevant images are added to the unlabelled pool of
images to challenge the learner in picking relevant samples
for the training purposes. More details are provided in the
next subsection.

B. EXPERIMENTAL SETUP

To show the effectiveness of the proposed AL-based FL
framework, we conducted several experiments. On one side,
we evaluate and compare the performances of the AL meth-
ods in the FL environment against two baselines, namely
(i) Baseline 1 (i.e., manually annotated training set) and
(ii) Baseline 2 (i.e., the one containing impurities, which
we termed as a loosely labeled set). Since the work aims
to evaluate the benefits of active learning in a federated
learning environment thus, we believe, the two baselines
seem more feasible options for comparisons instead of SoA
in both domains. The first baseline shows the best-case
scenario, where manually annotated training data is available,
while the second scenario represents the worst case where a
model is trained on a dataset containing a reasonable amount
of irrelevant samples. To this aim, the waste classification
dataset is synthesized by adding up-to 35 to 40% irrelevant
images in the unlabelled pool of images. On the other hand,
the natural disaster analysis application represents a more
practical scenario where the second baseline is trained on a
collection of images from social media with the correspond-
ing tags/queries without manual inspection and removal of
irrelevant images. However, for the manually annotated base-
line, all the images are manually analyzed and annotated via
crowd-sourcing.

TABLE 1: Salient parameters used during experimentation

Parameters Values

Max. AL iterations in the Natural Disaster Use Case 2000
Max. AL iterations in the Waste Classification Use Case 1500

Total clients 5
Max. communication rounds 50

Number of clients contacted per round 5
Number of epochs 10

Batch size 10
Total number of LSTM layers 2

Number of neurons in the first layer of LSTM 100
Number of neurons in the second layer of LSTM 20

We also aim to show how the performance of AL methods
vary when deployed in federated and centralized learning. In
addition, we analyze how the performance of a global model
is affected by clients with fewer samples. The experiment
setup is kept unchanged for both AL and FL throughout
the experiments. In the next subsections, we provide the
details of the experimental setup specific to AL and FL. In
Table 1, we summarize the parameter values used during the
experimentation process.

1) Active Learning

The most important parameters to be set in the AL part are the
number of images/samples in “Seed" (i.e., the initial training
set for the learner) and the maximum number of iterations
defining the stopping criteria for AL. In practice, the size of
the seed depends on the availability of the manually anno-
tated training samples for an application. Since the learner is
trained on the seed so the number and quality of samples in
the seed are very crucial for the performance of the learner
[50]. However, acquiring more annotated samples for the
initial training set requires human labor, thus, it shows a
trade-off between the labor required for annotation and the
performance, which is one of the main themes of AL. For
a successful AL method, it is very crucial to obtain better
results with a smaller seed. In our experiments, we started
with a total of 160 and 120 samples (20 images from each
class) in the seed for natural disaster and waste classifi-
cation applications, respectively, which are then iteratively
increased through the query selection schemes by adding
the most relevant image at each iteration. Moreover, we
used a total of 2000 and 1500 iterations for natural disaster
analysis and waste classification, respectively. It is important
to mention that the test and seed sets are manually annotated.

2) Federated Learning

Similar to the AL part, a fixed experimental setup has been
used for FL throughout the experimentation. For instance, the
dataset is divided into six parts where five of them cover the
training set and are distributed among five clients in such a
way that each client gets sufficient samples from each of the
classes. The sixth part is composed of the test images only.
It is important to mention that the division of the training
set into clients is based on the fewer samples in the dataset.
The LSTM, which is used as the learning model, is composed
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FIGURE 3: Sample images from the natural disaster dataset. The dataset is composed of eight different classes.

FIGURE 4: Sample images from the waste classification dataset. The dataset is composed of six different classes.

of two layers (containing 100 and 20 neurons, respectively),
dropout, and a classification layer. The dropout layer, which
randomly removes certain features by setting them to zero,
is used to deal with the data over-fitting issue. Some other
key parameters of the FL framework include the number
of communication rounds and clients contacted per round,
which is set with values of 50 and 5, respectively. Moreover,
to analyze the impact of variation in the number of clients
on the performance of the framework, we also experimented

with various number of clients as detailed in Section IV-C.

C. EXPERIMENTAL RESULTS

1) Natural Disaster Analysis in Social Media Images

Figure 5a provides the experimental results of the proposed
framework under different sampling and disagreement strate-
gies in both centralized and federated learning in terms of
accuracy on the natural disaster analysis dataset. As can be
seen, no significant differences have been observed in the
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(a) Natural Disaster Dataset.

(b) Waste Classification Dataset.

FIGURE 5: Comparison of the AL methods in Federated
Learning (#clients = 5) and Centralized Learning environ-
ments under different sampling and disagreement strategies.

performance of the AL methods under different sampling
and disagreement strategies after the maximum number of
iterations. However, during experiments, we observed sig-
nificant variations in the performances of the methods under
these sampling and disagreement strategies at the initial 500
iterations. One of the possible reasons is that the perfor-
mance stabilizes after a certain number of iterations for
all of the methods. Generally query by committee methods
are observed to achieve the highest accuracy a bit sooner
(i.e., with fewer samples) compared to uncertainty method.
Since one of the key motivations of the AL method is to
obtain higher or comparable results with fewer samples than
manually annotated datasets, thus on this basis, we can say
query by committee method performed better than uncer-
tainty method in terms of obtaining the maximum accuracy
with fewer samples. As far as the performance of the AL
methods in centralized and federated learning environments

is concerned, interestingly the performance of the methods
is comparable in most of the cases except query by com-
mittee with consensus entropy-based disagreement scheme
where the performance is slightly reduced in FL compared to
centralized learning.

We also evaluate the methods in terms of other metrics,
namely precision, recall, and F-measure, which will help to
evaluate the methods in a fair way by considering the imbal-
ance classes of the dataset in generally and after deploying
the AL methods in particular, where a higher number of
samples may be obtained from the unlabelled pool for certain
classes compared to the others. As can be seen in Table
2a, a mostly similar trend has been observed in the results
also in terms of weighted precision, recall, and F-measure.
In order to better describe the variation in the performance
of the methods, we also provide the standard deviation of
the variations in the performance of methods in FL and CL
setups. The lower values of the standard deviation suggest
a lower impact on the performance in FL with an added
privacy.

2) Waste Classification

Figure 5b provides experimental results of the proposed
framework on the waste classification dataset. One of the
main objectives of the experiments on the waste classification
dataset, which is slightly smaller in the number of images, is
to analyze the impact of fewer samples on the performance in
centralized and federated learning as AL results in a further
reduction in the number of training samples. Thus, it is im-
portant to analyze the feasibility of the proposed framework
on a smaller dataset. Similar to natural disaster analysis, com-
parable results are obtained with AL methods using fewer
training samples without involving manual annotation in both
federated and centralized learning. Similarly, there’s no clear
winner among the AL methods under different sampling
and disagreement strategies, however, query by committee
methods obtain the highest accuracy with fewer samples
compared to the uncertainty methods.

In contrast to the natural disaster analysis use-case, in
waste classification, a slight reduction can be observed in the
performance of the AL methods when deployed in central-
ized and federated environments. One possible reason could
be the lower number of samples in the waste classification
dataset overall as well as in certain classes. For instance,
trash, cardboard, and metal classes have fewer samples. In
the FL the dataset is further divided into five subsets each
allocated to a client to train a local model where the perfor-
mance of the global model may be affected due to insuffi-
cient training for local models. In Table 2b, we provide the
experimental results in terms of weighted precision, recall,
and F-measure.

3) Trade-off analysis between accuracy and number of

clients

Figure 6 provides the results of our second experiment, where
we analyze the trade-off between the number of clients and
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TABLE 2: Comparison of the AL methods in Federated Learning (#clients = 5) and Centralized Learning environments under
different sampling and disagreement strategies in terms of weighted precision, recall, and F1-score.

Method
Federated Learning (# clients = 5) Centralized Learning Standard Deviation (FL-CL)

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Least Confidence 0.722 0.706 0.714 0.723 0.704 0.713 0.0007 0.001 0.0007
Margin Sampling 0.728 0.714 0.720 0.735 0.714 0.724 0.004 0 0.002
Entropy Sampling 0.721 0.704 0.713 0.725 0.705 0.715 0 0 0

Vote Entropy 0.720 0.705 0.712 0.735 0.715 0.725 0.007 0.007 0.007
Consensus Entropy 0.714 0.695 0.706 0.741 0.720 0.730 0.021 0.021 0.021
Max Disagreement 0.726 0.713 0.717 0.741 0.720 0.730 0.014 0.007 0.014

(a) Natural Disaster Image Dataset

Method
Federated Learning (# clients = 5) Centralized Learning Standard Deviation (FL-CL)

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Least Confidence 0.821 0.818 0.820 0.837 0.836 0.837 0.011 0.012 0.012
Margin Sampling 0.815 0.811 0.813 0.845 0.844 0.844 0.021 0.023 0.0219
Entropy Sampling 0.823 0.818 0.820 0.836 0.834 0.835 0.009 0.011 0.010

Vote Entropy 0.822 0.823 0.823 0.832 0.830 0.831 0.007 0.004 0.005
Consensus Entropy 0.826 0.823 0.824 0.825 0.825 0.825 0.0007 0.001 0.0007
Max Disagreement 0.826 0.839 0.832 0.835 0.834 0.835 0.006 0.004 0.002

(b) Waste Classification Dataset

(a) Natural Disaster Dataset (b) Waste Classification Dataset

FIGURE 6: Trade-off between the number of clients and accuracy in FL. The accuracy of the global model drops as we reduce

the training samples per client by distributing the available training set among additional clients.

the accuracy of the global model in FL. The main motivation
of the experiment is to analyze how increasing the number
of clients affect the performance of the global model. To this
aim, we experimented with the manually annotated training
set. We started with two clients, where the total available
training samples are distributed between two clients, and
increased the number of clients, iteratively. As depicted in
the figure, a significant reduction has been observed in the
performance on both datasets. At the initial stages with fewer
clients, the accuracy is stable on both datasets, however, it is
reduced more rapidly when the number of clients increases
resulting in a significant reduction in the number of training
samples at each client. Compared to natural disaster analysis
use-case, the reduction in the accuracy of waste classification

is slightly on a higher side due to the fewer training samples
in the dataset. This experiment provides a basis for our third
experiment, where we analyze the impact on the accuracy by
extending the training set at each client via AL.

4) Trade-off analysis between accuracy and number of

training samples

Figure 7 represents the results of our final experiment where
we analyze the impact on the accuracy of the global model by
extending the training set of each client in FL by keeping the
number of clients constant. To this aim, we experimented on
the manually annotated training set from both datasets. We
started with a total of 1000 samples from each dataset, which
were distributed among the five clients ensuring a sufficient
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number of training samples per client. We kept extending
the training set of each client by adding 50 samples per
client manually, making an increase of 250 samples in the
total number of training samples. As can be seen in Figure
7, the performance of the model is improved each time we
increased the number of training samples. The variation is
higher at the initial stages, and the rate of increase in the
performances decreases as the number of training samples
increases per client.

5) Comparison against the baselines

In order to show the effectiveness of the AL methods, we
also compare the results of the AL methods against the
two baselines in both FL and CL environments in terms of
accuracy and F-score in Table 3a and Table 3b. On natural
disaster images, in both FL and CL, comparable results have
been achieved by the model trained on training samples
annotated with the AL methods and manually annotated data.
Moreover, in both cases, all the AL methods obtained better
results compared to the model when trained on a loosely
labeled training set, which shows the effectiveness of the
methods. A similar trend has been observed in the waste
classification where the AL methods provide comparable
results with the baseline 1 (i.e., manually annotated dataset)
while significant improvement could be observed in terms of
both evaluation metrics over baseline 2.

In order to better highlight the changes in the performances
of the models in FL and CL we also provide a standard
deviation of the performances of the methods as well as the
difference in the performance of the individual methods when
deployed in CL and FL environments. The lower values of
the standard deviation of the performances of the individual
methods in CL and FL demonstrate the capabilities of the
FL by achieving comparable results with improved privacy.
On the other hand, slightly higher variation can be observed
in the performance of the baseline and proposed methods.
The main contributor in the variation of the performance is
the baseline 2, where the results are lower compared to the
baseline 1 and AL methods.

V. LESSONS LEARNED

The following lessons can be learned from the experimental
results.

• Comparable results could be obtained with AL using
fewer samples than the traditional passive learning.

• AL is equally beneficial in both federated and central-
ized learning environments.

• Some of the methods (or sampling/disagreement strate-
gies) achieve the highest level of performance with
fewer samples compared to others. Thus, the number of
samples required to achieve the highest accuracy should
be considered in the evaluation of AL methods/query
selection schemes.

• Stopping criteria for AL schemes is an important factor
to be considered in the success of the schemes in an
application as after a certain number of iterations the

algorithm is forced to pick less relevant samples, which
might harm the performance.

• The performance of an algorithm is not affected much
generally in FL; however, a significant amount of train-
ing samples at each client is required to properly train
the local models. Performance could be significantly
affected in the case of the unavailability of sufficient
training samples at each client to train the local model.
AL could be deployed in such cases to obtain relevant
samples without involving human annotators.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented an AL-based FL framework to
utilize unlabelled samples at clients for training local models
in two interesting applications. A detailed evaluation of two
different pool-based AL methods under several sampling and
disagreement strategies have been provided. Moreover, we
show that AL could be equally beneficial in federated and
centralized learning in general and the applications lacking
in large-scale annotated datasets. In addition, we analyze the
impact of fewer training samples at clients on the perfor-
mance of the global model. In the current implementation,
we treated AL as an offline process to automatically annotate
training samples at a client before participating in FL.

In the future, we aim to extend the framework to an online
AL by exploring how unlabelled data can be incorporated in
training local models during different communication rounds
of FL, which seems a more challenging task due to several
reasons. In such a case, there would be two main challenges.
Firstly, if we keep the number of samples to be picked at
each iteration very high, there will be higher variations in
the performance of the global model, and on the other hand,
keeping it low will increase the number of communication
rounds.
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