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Abstract—We consider the active learning problem, which aims to select the most representative points. Out of many existing active

learning techniques, optimum experimental design (OED) has received considerable attention recently. The typical OED criteria

minimize the variance of the parameter estimates or predicted value. However, these methods see only global euclidean structure,

while the local manifold structure is ignored. For example, I-optimal design selects those data points such that other data points can be

best approximated by linear combinations of all the selected points. In this paper, we propose a novel active learning algorithm which

takes into account the local structure of the data space. That is, each data point should be approximated by the linear combination of

only its neighbors. Given the local reconstruction coefficients for every data point and the coordinates of the selected points, a

transductive learning algorithm called Locally Linear Reconstruction (LLR) is proposed to reconstruct every other point. The most

representative points are thus defined as those whose coordinates can be used to best reconstruct the whole data set. The sequential

and convex optimization schemes are also introduced to solve the optimization problem. The experimental results have demonstrated

the effectiveness of our proposed method.

Index Terms—Active learning, experimental design, local structure, reconstruction.
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1 INTRODUCTION

IN many real-word applications, there are huge volumes of
unlabeleddata, but the labels areusuallydifficult to get and

expensive. Semi-supervised learning [1], [2], [3] addresses
this problem by exploring additional information contained
in the unlabeled data. Active learning reduces the labeling
cost in a complementary way by querying the labels of the
most informative points. Thus, instead of being a passive
recipient of data to be processed, the active learner has
the ability to controlwhat data are added to its training set [4].
In thisway,we expect that the active learner can achieve high
accuracy using as few labeled points as possible [5].

The main challenge in active learning is how to evaluate
the informativeness of the unlabeled points. One of the
most widely used principles is uncertainty sampling. That is,
the active learner queries those points whose predicted
labels are most uncertain using the current trained model.
This principle has been applied to logistic regression [6],
support vector machines [7], nearest neighbor classifiers [8],
[9], etc. Other popular active learning principles include

query by committee [10], [11], estimated error reduction [12],
[13], and variance reduction [4], [14].

The principle of variance reduction is derived from
Optimum Experimental Design (OED) [14]. In statistics, the
problem of selecting samples to label is typically referred to
as experimental design. The sample x is referred to as
experiment and its label y is referred to as measurement. The
study of OED is concerned with the design of experiments
that are expected to minimize variances of a parameterized
model [14], [15], [16], [17]. There are two types of selection
criteria for OED. One type is to choose data points to
minimize the variance of the model’s parameters, which
results in D, A, and E-optimal Design. The other is to
minimize the variance of the prediction value, which results
in I and G-optimal Design.

Recently, Yu et al. have proposed Transductive Experi-
mental Design (TED) [16], which has yielded impressive
results. TED is fundamentally based on I-optimal design
but evaluates the average predictive variance over one test
set that is given beforehand. It has been shown that finding
those points which minimize the average predictive
variance of the estimated function is equivalent to finding
those points such that other points can be best approxi-
mated by linear combinations of the selected points. TED is
a global method in the sense that each data point is linearly
reconstructed by using all of the selected data points, no
matter how far away the selected data points are from the
point to be reconstructed.

In reality, the high-dimensional data may not be
uniformly distributed in the whole ambient space. Instead,
recent studies [18], [19], [20], [21] have shown that naturally
occurring data may reside on a lower dimensional sub-
manifold which is embedded in the high-dimensional
ambient space. However, previous approaches such as
TED fail to take into account this manifold structure. Given
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a data point, it is more reasonable to reconstruct it by using
only its nearest neighbors [18].

In this paper, we propose a novel active learning
algorithm which selects the most representative points with
respect to the intrinsic geometrical structure of the data.
Inspired by Locally Linear Embedding (LLE) [18], we
assume that each data point and its neighbors lie on or close
to a locally linear patch of the manifold. Then, the manifold
structure is characterized by the linear coefficients that
reconstruct each data point from its neighbors. A transduc-
tive learning algorithm called Locally Linear Reconstruction
(LLR) is proposed to reconstruct the whole data set by using
the given local reconstruction coefficients for every data
point and the coordinates of the selected points. The most
representative points are therefore defined as those whose
coordinates can be used to best reconstruct the whole data
set. A sequential optimization scheme and a convex
relaxation are proposed to solve the optimization problem.

The outline of the paper is as follows: In Section 2, we
review the related work in experimental design. Our
proposed active learning algorithm (LLRActive) is introduced
in Section 3. In Section 4, we propose two computational
schemes to solve the optimization problem. Experiments are
presented in Section 5. Finally, we provide some concluding
remarks and suggestions for future work in Section 6.

Notation. Capital letters (e.g., M) are used to denote
matrices. For a given matrix M, we denote its ith column by
M�i and its ith row by Mi�. Script capital letters (e.g., X ) are
used to denote ordinary sets. Blackboard bold capital letters
(e.g., IR) are used to denote number sets. Small letters (e.g.,
�) are used to denote scalars. Bold small letters (e.g., ��������) are
used to denote vectors. We use xi to denote both the
ith point and its coordinate (a column vector).

2 RELATED WORK

As described, the work most related to our proposed
approach is optimum experimental design. In this section,
we will briefly describe the generic active learning problem
and then provide a review of the conventional experimental
design criteria and the recently proposed Transductive
Experimental Design algorithm.

2.1 The Active Learning Problem

The generic problem of active learning is the following.
Given a set of points X ¼ fx1; . . . ;xmg in IRd, find a subset
Z ¼ fxs1 ; . . . ;xskg � X which contains the most informative
points. That is, if the points xsi ði ¼ 1; . . . ; kÞ are labeled and
used as training points, we can predict the labels of the
unlabeled points most precisely. Active learning is usually
referred to as experimental design in statistics. Since our
approach is motivated by recent progress in experimental
design [14], [16], [17], we begin with a brief description of it.

2.2 Optimum Experimental Design

We consider a linear regression model

y ¼ wTxþ �; ð1Þ

where w 2 IRd is the parameter vector, y is the real-valued
output, and � is the measurement noise with zero mean and
constant variance �2. Optimum experimental design at-
tempts to select the most informative experiments (or data
points) to learn a prediction function fðxÞ ¼ wTx so that the

expected prediction error can be minimized. Given a set of
measured data points ðxs1 ; y1Þ; . . . ; ðxsk ; ykÞ, the most pop-
ular estimation method is least squares, in which we
minimize the residual sum of squares (RSS):

RSSðwÞ ¼
Xk

i¼1

ðyi � fðxsiÞÞ
2
: ð2Þ

Let Z ¼ ½xs1 ; . . . ;xsk �
T and y ¼ ½y1; . . . ; yk�

T . The optimal
solution is

bw ¼ ðZTZÞ�1ZTy: ð3Þ

It can be proved [22] that bw is an unbiased estimation of w
and its covariance can be expressed as

CovðbwÞ ¼ �2ðZTZÞ�1: ð4Þ

The criteria of OED [14] can be classified into two
categories. The first category is to select the points xsi in
order tominimize the size of theparameter covariancematrix
[23]. The typical methods in this category include D, A, and
E-optimal design. D-optimal design minimizes the determi-
nant of CovðbwÞ, and thus minimizes the volume of the
confidence region. A-optimal design minimizes the trace of
CovðbwÞ, and thus minimizes the dimensions of the enclosing
box around the confidence region. E-optimal design mini-
mizes the largest eigenvalue of CovðbwÞ, and thus minimizes
the size of the major axis of the confidence region.

The other category of experimental design criteria is to
select the points xsi in order to minimize the variance of
predicted value over some region of interest O [24], [25].
Given a test point v 2 O, the predicted value is bwTv

with variance vTCovðbwÞv. The two most common criteria
in this category are I and G-optimal design. I-optimal
design minimizes the average predictive varianceR
v2O v

TCovðbwÞv d�ðvÞ, where � is a probability distribution
on O. G-optimal design minimizes the maximum predictive
variance, i.e., maxv2Ofv

TCovðbwÞvg.

2.3 Transductive Experimental Design

Recently, Yu et al. [16] proposed the TED approach, which
can be seen as the discrete version of I-optimal design. TED
considers the Regularized Least Squares formulation (ridge
regression) as follows:

bwridge ¼ argmin
w

Xk

i¼1

ðyi � fðxsiÞÞ
2 þ �kwk2; ð5Þ

where � � 0 is the regularization parameter. It is easy to
check that the optimal solution has the following expression:

bwridge ¼ ðZ
TZ þ �IÞ�1ZTy; ð6Þ

where I is the identity matrix. The covariance matrix of
bwridge is

CovðbwridgeÞ

¼ ðZTZ þ �IÞ�1ZTCovðyÞZðZTZ þ �IÞ�1

¼ �2ðZTZ þ �IÞ�1ZTZðZTZ þ �IÞ�1

¼ �2ðZTZ þ �IÞ�1ðZTZ þ �I � �IÞðZTZ þ �IÞ�1

¼ �2ðZTZ þ �IÞ�1 � ��2ðZTZ þ �IÞ�2:

ð7Þ
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Since the regularization parameter � is usually set to be very
small, we have

CovðbwridgeÞ � �2ðZTZ þ �IÞ�1: ð8Þ

Similarly to I-optimal design, TED selects those points
which can minimize the average predictive variance over
one pregiven test set. For simplicity, we assume the test set
is just X . Let X ¼ ½x1; . . . ;xm�

T . The average predictive
variance is

1

m

Xm

i¼1

xT
i CovðbwridgeÞxi

�
�2

m

Xm

i¼1

xT
i ðZ

TZ þ �IÞ�1xi

¼
�2

m
TrðXðZTZ þ �IÞ�1XT Þ:

ð9Þ

Thus, TED is formulated as the following optimization
problem:

min Tr X ZTZ þ �I
� ��1

XT
� �

ð10Þ

with variable Z ¼ ½xs1 ; . . . ;xsk �
T . After some mathematical

derivation, the above problem can be formulated as

min
Xm

i¼1

kxi � ZT����ik
2 þ �k����ik

2
; ð11Þ

where the variables are Z ¼ ½xs1 ; . . . ;xsk �
T and ����i 2 IRk, i ¼

1; . . . ;m [16]. The first term in the objective function shows
that the data points selected by TED are the most
representative ones. That is, the selected points can be used
to reconstruct the whole data set most precisely. The second
term indicates that TED penalizes the norm of the
reconstruction coefficients. So, it tends to select points with
large norm. Notice that TED is closely related to the
problem of Column-Based Matrix Decomposition [26].

3 ACTIVE LEARNING BASED ON LOCALLY LINEAR

RECONSTRUCTION

In this section, we introduce a novel active learning
algorithm based on the principle of locally linear
reconstruction.

3.1 Locally Linear Reconstruction

Recent studies [18], [19], [20], [21], [27] have shown that
naturally occurring data may reside on a lower dimensional
submanifold which is embedded in the high-dimensional
ambient space. However, previous experimental design
approaches only take into account the global euclidean
structure of the data space, whereas the local manifold
structure is not well respected.

Inspired by LLE [18], we assume that the data lie on a
low-dimensional manifold which can be approximated
linearly in a local area of the high-dimensional space.
Therefore, we require that a data point can only be linearly
reconstructed from its neighbors. The optimal reconstruction
coefficients can be obtained by solving the following
problem [18]:

min
Xm

i¼1

kxi �
Xm

j¼1

Wijxjk
2

s:t:
Xm

j¼1

Wij ¼ 1; i ¼ 1; . . . ;m

Wij ¼ 0 if xj 62 NpðxiÞ;

ð12Þ

where the variable is the matrix W 2 IRm�m. Here, Wij

summarizes the contribution of the jth data point to the
ith reconstruction, and NpðxiÞ is the neighborhood of xi

defined by its p nearest neighbors.
To measure the representativeness of the selected data

points, we need to design a data reconstruction mechanism
by using the reconstruction coefficients. Given a set of
selected data points fxs1 ; . . . ;xskg � X , we propose a
transductive learning algorithm, called LLR, to reconstruct
the data points. Let fq1; . . . ;qmg denote the reconstructed
points. Their coordinates are determined by minimizing the
following cost function:

�ðq1; . . . ;qmÞ ¼
Xk

i¼1

kqsi
� xsik

2 þ �
Xm

i¼1

kqi �
Xm

j¼1

Wijqjk
2
;

ð13Þ

where � is a suitable constant. The role of the first term of
the right-hand side in the cost function is to fix the
coordinates of the selected data points. The second term
requires the reconstructed points to share the same local
geometrical structure with the original points.

Let X ¼ ½x1; . . . ;xm�
T , Q ¼ ½q1; . . . ;qm�

T , and � be an
m�m diagonal matrix whose diagonal entry �ii is 1 if i 2
fs1; . . . ; skg and 0 otherwise. Then, the above cost function
(13) can be rewritten in the following matrix form:

�ðQÞ ¼ TrððQ�XÞT�ðQ�XÞÞ þ �TrðQTMQÞ; ð14Þ

where M ¼ ðI �W ÞT ðI �WÞ. Requiring that the gradient
of �ðQÞ vanish gives the following equation:

�ðQ�XÞ þ �MQ ¼ 0: ð15Þ

Finally, the reconstructed points are given by

Q ¼ ð�M þ �Þ�1�X: ð16Þ

The LLR algorithm presented here shares many common
properties with LLE [18]. For example, we use the same
objective function (12) to find the reconstruction coeffi-
cients. However, the goals of LLE and LLR are different.
LLE uses the reconstruction coefficients to obtain lower
dimensional representations of the original data points.
Suppose yi is the lð	dÞ-dimensional embedding of xi,
i ¼ 1; . . . ;m. LLE solves the following optimization problem
to obtain yis:

�ðyÞ ¼
Xm

i¼1

�
yi �

Xm

j¼1

Wijyj

�2
: ð17Þ

For our LLR algorithm, the goal is to reconstruct the data
set. Therefore, the reconstructed data point qi has the same
dimension as the original data point xi. Moreover, for
the selected data points xsi , i ¼ 1; . . . ; k, their coordinates
are given. Therefore, their reconstructions (i.e., qsi

) should
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be as close to their original coordinates (i.e., xsi ) as possible.
Our ultimate goal is to select the most representative data
points, so that the reconstruction error can be minimized.

There are also some works in semi-supervised learning
which have a similar principle of LLR, such as [2], [28], [29].
However, all of these approaches aim to predict the labels
for the unlabeled points by using both labeled and
unlabeled points. In LLR, there is no label prediction task.
The task of LLR is to reconstruct the data set, given some
selected points and the reconstruction coefficients.

3.2 Selecting the Most Representative Points

Given the original data points x1; . . . ;xm, and the recon-
structed data points q1; . . . ;qm, the reconstruction error can
be measured as follows:

eðxs1 ; . . . ;xskÞ

¼ kX �Qk2F

¼ kX � ð�M þ �Þ�1�Xk2F

¼ kX � ð�M þ �Þ�1ð�þ �M � �MÞXk2F

¼ kð�M þ �Þ�1�MXk2F ;

ð18Þ

where k 
 k2F is the matrix Frobenius norm, which is defined
as kAk2F ¼ TrðAAT Þ ¼ TrðATAÞ. Clearly, the reconstruction
error is only dependent on the selected data points
xs1 ; . . . ;xsk .

Thus, the most representative points are naturally
defined as those which minimize the reconstruction error
(18). That is, given their coordinates, we can reconstruct the
whole data set most precisely by using the LLR algorithm.
Suppose we are going to select k points, the active learning
problem is, thus, formally defined below:

Definition 1. Active Learning based on LLR:

min kð�M þ �Þ�1�MXk2F
s:t: � is diagonal;

�ii 2 f0; 1g; i ¼ 1; . . . ;m

Xm

i¼1

�ii ¼ k;

ð19Þ

where the variable is the diagonal matrix � 2 IRm�m.

Given the optimal solution b� of (19), we select those data
points whose corresponding entries in the diagonal matrix �
are 1. After we obtain the labels of the selected points, we
can use any supervised or semi-supervised algorithms [1],
[2], [3], [22], [30] to predict the labels of the other points.

4 OPTIMIZATION SCHEME

The optimization problem of LLRActive (19) is difficult due
to its combinatorial nature. In this section, we develop two
optimization schemes to solve (19). The first one is a
sequential greedy approach, and the second one is a convex
relaxation. The solution of sequential approach is subopti-
mal, but its sequential property makes it much more
efficient than convex optimization and it thus can be
applied to large-scale data sets. Moreover, our experimental
results show that there is only a slight difference between

sequential and convex optimization performance. On the

other hand, the convex relaxation approach can guarantee

to find the globally optimal solution of the relaxed problem,

but it is computationally expensive.

4.1 The Sequential Approach

Suppose a set of n points Zn ¼ fxs1 ; . . . ;xsng � X have been

selected as the n most representative ones. Let �n denote

the corresponding m�m diagonal matrix whose diagonal

entry ð�nÞii is 1 if xi 2 Zn and 0 otherwise. Let �i be an

m�m matrix whose ði; iÞth entry is 1 and all the other

entries are 0. The ðnþ 1Þth point xsnþ1 can be found by

solving the following problem:

snþ1 ¼ argmin
i62fs1;...;sng

kð�M þ �n þ �iÞ
�1
�MXk2F : ð20Þ

As can be seen, the most expensive calculation in (20) is the

matrix inverse ð�M þ �n þ �iÞ
�1. Since the matrix M is

sparse, the sparse Cholesky factorization [31] can be applied

to accelerate the calculation of ð�M þ �n þ �iÞ
�1
�MX. But

the sequential solver based on the sparse Cholesky

factorization still needs to perform m� n factorizations in

order to solve (20), and thus doesn’t scale well.
A much faster method is to use the Sherman-Morrison-

Woodbury formula [32] to avoid directly inverting a matrix.

Given an invertible matrix A, two column vectors u and v,

the Sherman-Morrison-Woodbury formula states:

ðAþ uvT Þ�1 ¼ A�1 �
A�1uvTA�1

1þ vTA�1u
: ð21Þ

Denote the ith unit vector as ei. It is easy to check that

�i ¼ eie
T
i . Define

H ¼ ð�M þ �nÞ
�1
:

Let H�i denotes the ith column of H, and Hi� denotes the

ith row of H. Following (21), we get

ð�M þ �n þ �iÞ
�1 ¼ H �

H�iHi�

1þHii

: ð22Þ

With (22), the objective function of (20) can be rewritten as

kð�M þ �n þ �iÞ
�1
�MXk2F

¼ �2TrðHMXXTMHÞ �
2�2Hi�MXXTMHH�i

1þHii

þ
�2Hi�H�iHi�MXXTMH�i

ð1þHiiÞ
2

:

ð23Þ

For brevity, the derivations of (22) and (23) are given in

Appendices A and B, respectively, which can be found on

the Computer Society Digital Library at http://doi.ieee

computersociety.org/10.1109/TPAMI.2011.20.
Denote A ¼MXXTM. Notice that TrðHAHÞ is a con-

stant when selecting the ðnþ 1Þth data point. Therefore, the

optimization problem (20) becomes

snþ1 ¼ argmin
i62fs1;...;sng

1

1þHii

Hi�H�iHi�AH�i

1þHii

� 2Hi�AHH�i

� �
:

ð24Þ

ZHANG ET AL.: ACTIVE LEARNING BASED ON LOCALLY LINEAR RECONSTRUCTION 2029



Since Hi�H�i ¼ kHi�k
2, the optimization problem (24) can be

further simplified as

snþ1 ¼ argmin
i62fs1;...;sng

1

1þHii

Hi� A
kHi�k

2

2ð1þHiiÞ
I �H

 ! !

H�i:

ð25Þ

After we have selected the ðnþ 1Þth point xsnþ1 , the
H matrix can be updated as

H  ð�M þ �nþ1Þ
�1 ¼ ð�M þ �n þ �iÞ

�1
:

The matrix inverse can be computed according to (22). This
process is repeated until we have selected k points. In the
beginning, there are no data points selected. Therefore, we
set H ¼ ð�MÞ�1. Since M is singular, a small ridge term is
added to it. The sequential approach is summarized in
Table 1.

4.2 The Convex Relaxation

In this section, we discuss how to perform convex
relaxation to solve the optimization problem (19).

First, we rewrite the objective function of (19) as follows:

kð�M þ �Þ�1�MXk2F

¼ �2TrðXTMð�M þ �Þ�1ð�M þ �Þ�1MXÞ

¼ �2TrðXTMð�2M2 þ �M�þ ��M þ �Þ�1MXÞ;

ð26Þ

where, in line 3, we use the property �2 ¼ �.
Since � is diagonal, we introduce a vector ���� ¼ ½�1; . . . ;

�m�
T such that � ¼ diagð����Þ. Here, the value of �i indicates

whether or not the data point xi is selected. Define an affine
function

hð����Þ ¼ �2M2 þ
Xm

i¼1

�i

�
�M�ie

T
i þ �eiMi� þ eie

T
i

�
:

Thus, the original optimization problem (19) is equivalent to

min TrðXTMhð����Þ�1MXÞ

s:t: ���� 2 f0; 1gm; 1T���� ¼ k;
ð27Þ

where the variable is ���� 2 IRm and 1 is a column vector of all
ones. Notice that the variable vector ���� is sparse and has
only k nonzero entries.

In order to solve the above optimization problem
efficiently, we relax the integer constraints on �is and allow
�is to take real nonnegative values. Then, the value of �i

indicates how significantly xi contributes to the minimiza-
tion in problem (27). The sparseness of ���� can be controlled
by minimizing the ‘1-norm of ���� (k����k1), which has
conventionally been applied to lasso regression [22], [33].

Following the convention in the field of optimization, we
use � to denote componentwise inequality between two
vectors with the same dimension. For example, ���� � ����

means that �i � �i, for all i. Because all the elements of ����
are nonnegative, k����k1 is equal to 1T����. Finally, the
optimization problem becomes

min TrðXTMhð����Þ�1MXÞ þ �1T����

s:t: ���� � 0;
ð28Þ

where the variable is ���� 2 IRm and 0 is the column vectors of
all zeros. It can be shown that the problem (28) is a convex
optimization problem with variable ���� [33].

The objective function of problem (28) is continuously
differentiable twice, so it can be solved directly by standard
optimization techniques [33]. In particular, we show that it
can be cast as a Semi-Definite Programming (SDP) problem,
which can be solved using a standard SDP package. By
introducing an auxiliary variable P 2 IRd�d, the problem
(28) can be equivalently rewritten as

min TrðP Þ þ �1T����

s:t: P �SSþ
d
XTMhð����Þ�1MX

���� � 0

ð29Þ

with variables P 2 IRd�d and ���� 2 IRm. Here, SSþd denotes the

set of symmetric positive semi-definite d� d matrices,

which is called positive semi-definite cone in the field of

optimization. The associated generalized inequality �SSþ
d

is

the usual matrix inequality: A �SSþ
d
B means A�B is a

positive semi-definite d� d matrix [33].
The problem (29) can be cast as an SDP by using the Schur

complement theorem [33]. Given a symmetric matrix X

partitioned as

X ¼
A B

BT C

� 	
:

If A is invertible, the matrix S ¼ C �BTA�1B is called the
Schur complement of A in X. The Schur complement
theorem states that, if A is positive definite, then X is
positive semi-definite if and only if S is positive semi-
definite. According to this theorem, problem (29) is
equivalent to the following SDP problem:
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The Sequential Approach for LLRActive



min TrðP Þ þ �1T����

s:t:
hð����Þ MX

XTM P

� 	
�SSþ

dþm
0

���� � 0

ð30Þ

with variables P 2 IRd�d and ���� 2 IRm. As explained pre-
viously, A �SSþ

dþm
0 means that A is a positive semidefinite

ðdþmÞ � ðdþmÞ matrix. Once the optimal solution ����� is
obtained, the most representative points are defined as
those with the largest ��i s. We summarize the method of
convex relaxation in Table 2.

Note that in problem (30), the number of variables is
d2 þm. Thus, the computational cost of the convex
relaxation is high and very sensitive to the dimensionality
of the data. In real-world applications where high-
dimensional data are common, the sequential approach
discussed in Section 4.1 is preferred.

5 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our proposed algorithm,
we evaluate and compare five active learning methods:

. Random Sampling method, which randomly selects
points from the data set.

. A-Optimal Design (AOD) [14] as described in
Section 2.2. Similarly to the sequential approach of
LLRActive, we implement a sequential algorithm to
solve it.

. Transductive Experimental Design1 [16] as de-
scribed in Section 2.3.

. Support Vector Machine active learning (SVMActive)
[7] which selects the points closest to the current
decision boundary of the SVM classifier as the most
informative ones. We implement SVMActive based on
the LIBSVM package [34].

. Active Learning Based on Locally Linear Recon-
struction proposed in this paper. The convex
relaxation of LLRActive is solved by the CVX package
[35], [36].

5.1 Toy Examples

In this section, we apply the active learning algorithms on
two synthetic data sets to give some intuition about how
each algorithm works. The data sets are

. Two-circle data set (Fig. 1): There are 32 points on
the big circle and 16 points on the small circle.

. Two-moon data set (Fig. 2): There are 100 points for
each moon.

We apply AOD, TED, sequential LLRActive, and convex
LLRActive to select the most informative points on the two
data sets. Here, SVMActive cannot be applied due to the lack
of labeled points. The results are shown in Figs. 1 and 2. The
points selected by each active learning algorithm are
marked as solid dots. The numbers beside the selected
points denote the orders in which they were selected.
Compared with AOD and TED, the points selected by our
LLRActive algorithm can better represent the original data
set. Particularly for the two-circle data set, both AOD and
TED select data points from the large circle. Therefore, even
though these selected points are labeled, we are still unable
to perform classification since all of the labeled points are
from the same class. Moreover, we see that the difference
between AOD and TED is small.

As can be seen from these two examples, the points
selected by LLRActive can indeed reflect the manifold
structure of the data set. On the other hand, both AOD
and TED tend to select those points with large norms [16].
The points with large norms might be hard to predict [16].
However, they may not be able to best represent the whole
data set, especially when there is manifold structure
present. Therefore, even though these points are labeled,
they may not be able to improve the classification
performance the most.

5.2 Real-World Data Sets

In this section, we carry out classification experiments on
three real-world data sets to compare different active
learning algorithms quantitatively.

5.2.1 Experimental Setting

In our experiments, we use the points selected by each active
learning algorithm as the training data to train a classifier,
and the unselected points are used as the testing data. The
classification accuracy of the associated classifier is used to
measure the performance of each active learning algorithm.

To handle multiclass classification problem, we adopt
the one-versus-all (OVA) scheme. If the training data contain
c classes, OVA trains c binary classifiers and each binary
classifier separates one class (positive) from all the other
classes (negative). To classify each unselected point, these
c classifiers are applied to the test point, and its class label is
determined according to the largest output value from the
classifiers. Two classifiers, Support Vector Machine (SVM)
[30] and Laplacian Regularized Least Squares (LapRLS) [3],
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TABLE 2
The Convex Relaxation for LLRActive

1. A sequential solver can be downloaded from http://www.dbs.ifi.
lmu.de/~yu_k/.



are used. SVM is a supervised learning algorithm, while

LapRLS is a semi-supervised learning algorithm.
It would be important to note that the algorithms

Random Sampling, AOD, TED, and LLRActive are all label-
independent. The SVMActive algorithm selects the most
informative points based on the current SVM classifier,
which is trained on some pregiven labeled data. In our
experiments, the initial SVM classifier of SVMActive is
trained on the points selected by Random Sampling. To

obtain stable results, Random Sampling and SVMActive are
repeated 10 times for each experimental test. Since the
original SVMActive algorithm is designed for two-class
problems, we need to extend it to handle multiclass cases.
Suppose there are c classes in the training data. We can train
c one-versus-all SVM classifiers. For any unselected point, its
informativeness is determined by the SVM classifier whose
boundary is closest to this point. The informative distance
of this point is defined as the distance between this point

2032 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 10, OCTOBER 2011

Fig. 2. Data selection by active learning algorithms. The numbers beside the selected points indicate the orders in which they were selected. Clearly,
the points selected by Sequential LLRActive and Convex LLRActive can better represent the original data set.

Fig. 1. Data selection by active learning algorithms. The numbers beside the selected points indicate the orders in which they were selected. Clearly,
the points selected by Sequential LLRActive and Convex LLRActive can better represent the original data set.



and its closest SVM classifier. Then, we select those points
with shortest informative distances.

There are two parameters in our algorithm, namely, the
number of nearest neighbors (p) and the regularization
parameter � in (13). These two parameters are empirically
set to 10 and 0.01, respectively. Since Sequential LLRActive

and Convex LLRActive perform comparably to each other
but Sequential LLRActive is much more computationally
efficient, we apply Sequential LLRActive for data selection in
the following experiments on face recognition, handwritten
digit recognition, and image classification.

5.2.2 Face Recognition

The Yale face database2 is used in this experiment. It
contains 165 gray-scale images of 15 individuals. There are
11 images per subject, one per different facial expression or
configuration: center-light, w/glasses, happy, left-light,
w/no glasses, normal, right-light, sad, sleepy, surprised,

and wink. All the face images are manually aligned and
cropped. The size of each cropped image is 32� 32 pixels,
with 256 gray levels per pixel. Thus, each image is
represented as a 1,024-dimensional vector. Fig. 3 shows
some sample images from the Yale face database.

The evaluations are conducted with 20 randomly
generated subsets of the original data set. The average
classification accuracy is computed over these 20 tests. For
each test, 10 images from each class are randomly chosen to
form the data set. Therefore, there are 150 (15� 10) images
per test, and each active learning algorithm is applied to
select a given number kð¼ 5; 10; . . . ; 50) of training samples.
The unselected samples are used as the testing data.

Fig. 4a shows the average classification accuracy versus
the number of training (selected) samples by using SVM as
the classification algorithm. Fig. 4b shows the average
classification accuracy by using LapRLS as the classification
algorithm. Each curve in the figures represents an active
learning algorithm. As can be seen, our LLRActive algorithm
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TABLE 3
Classification Results on the Yale Face Database (mean � standard deviation (percent))

Fig. 3. Sample images from the Yale face database.

Fig. 4. Classification results on the Yale face database. The face images selected by each active learning algorithm are used as the training data,
and the unselected images are used as the testing data. The evaluations are conducted with 20 randomly generated subsets of the original
database. These figures show the average classification accuracy versus the number of the training samples.

2. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.



significantly outperforms the other active learning algo-
rithms in most cases. The performance difference gets larger
as the number of training samples increases. The TED
algorithm outperforms Random Sampling in most cases.
However, both AOD and SVMActive are even worse than
Random Sampling. When only five samples are selected,
there exist some classes which do not have any labeled
samples. Therefore, in this case, all of the algorithms yield
low recognition rate. As the number of selected samples
increases, the recognition rates of all of the algorithms
increase. However, both AOD and TED tend to converge
when more than 40 samples are selected for training,
whereas the classification algorithms (SVM and LapRLS)
can consistently benefit from the samples selected by our
LLRActive algorithm.

Table 3 shows the detailed classification accuracies, as
well as the standard deviations, for each algorithm. As can

be seen, with only 30-35 selected samples, LLRActive per-
forms comparably to or even better than the other
algorithms with 50 selected samples. This way, the labeling
cost can be significantly reduced by using our algorithm.

5.2.3 Handwritten Digits Recognition

We use the USPS handwritten digits data set3 in this

experiment. This data set contains 8-bit gray-scale images of

“0” through “9.” The size of each image is 16� 16 pixels.

Thus, each digit image is represented as a 256-dimensional

vector. Fig. 6 shows some sample images from the USPS

data set.
On this data set, we also generate 20 tests by randomly

selecting 100 images from each class. So, there are 1,000
(10� 100) images for each test. We then apply each active
learning algorithm to select k ð¼ 5; 10; . . . ; 100Þ training
samples. The average classification accuracy is shown in
Fig. 5. Again, our LLRActive algorithm outperforms the other
algorithms in all of the cases. TED performs the second best.
SVMActive and Random Sampling perform comparably to
each other. AOD performs the worst, especially when there
are more training samples. Table 4 shows the detailed
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TABLE 4
Classification Results on the USPS Handwritten Digits Data Set (mean � standard deviation (percent))

Fig. 5. Classification results on the USPS handwritten digits data set. The digit images selected by each active learning algorithm are used as the
training data and the unselected images are used as the testing data. The evaluations are conducted with 20 randomly generated subsets of the
original data set. These figures show the average classification accuracy versus the number of the training samples.

Fig. 6. Sample images from the USPS handwritten digits data set. 3. http://www.cs.toronto.edu/~roweis/data.html.



classification accuracies, as well as the standard deviations,
for each algorithm. As can be seen, the classification
accuracy obtained by using only 70 samples selected by
our LLRActive algorithm is comparable to or better than
those by using 100 samples selected by other algorithms.

5.2.4 Image Classification

The image data set we used in this experiment consists of
4,000 images of 40 semantic categories, from the Corel
image data set. We combine 64-dimensional color histo-
gram and 64-dimensional Color Texture Moment (CTM) to
represent the images. The color histogram is calculated
using 4� 4� 4 bins in HSV space. The Color Texture
Moment is proposed by Yu et al. [37]. This way, each image
is represented as a 128-dimensional vector. Fig. 7 shows
some sample images from the “Aquarelle,” “Fox,” and
“Beach” categories of the Corel data set.

As before, we generate 20 tests by randomly selecting
90 images from each class. Thus, there are 3,600 (40� 900)

images for each test. We apply each active learning

algorithm to select k ð¼ 10; 20; . . . ; 400Þ training samples.

The classification results are shown in Fig. 8. As can be seen,

our LLRActive algorithm performs the best. TED outper-

forms SVMActive and Random Sampling when there are less

than 100 training samples. As the number of training

samples increases, TED performs slightly worse than

SVMActive and Random Sampling. SVMActive and Random

Sampling perform comparably to each other. AOD per-

forms the worst for all the cases. Table 5 shows the detailed

classification accuracies for each algorithm. Our LLRActive

algorithm yields the highest classification accuracy.

5.2.5 Parameter Selection

Our LLRActive has two essential parameters: the number of

nearest neighbors p and the regularization parameter �.

These two parameters are empirically set to 10 and 0.01 in

the previous experiments. In this section, we examine the
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Fig. 7. Sample images from categories (a) Aquarelle, (b) Fox, and (c) Beach.

Fig. 8. Classification results on the Corel image data set. The images selected by each active learning algorithm are used as the training data, and
the unselected images are used as the testing data. The evaluations are conducted with 20 randomly generated subsets of the original data set.
These figures show the average classification accuracy versus the number of the training samples.

TABLE 5
Classification Results on the Corel Image Data Set (mean � standard deviation (percent))



impacts of the two parameters on the performance of
LLRActive.

The impacts of the two parameters on the three real-
world data sets are very similar. For brevity, we just show
the results on the USPS handwritten digits data set. For
comparison, we let each active learning algorithm select
40 samples as the training data, and use SVM as the
classifier. As before, the evaluations are conducted with
20 randomly generated subsets, where each one contains
1,000 samples. Figs. 9a and 9b show how the performance of
LLRActive varies with the parameters p and �, respectively.
In Fig. 9a, the value of � is fixed at 0.01, and in Fig. 9b, the
value of p is fixed at 10. As can be seen, LLRActive can
achieve significantly better performance over a large range
of p and �. Thus, the parameter selection is not a crucial
problem in our algorithm.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a novel active learning algorithm,
called LLRActive, to select the most representative points.
Given the local geometrical structure of the data space and
the coordinates of the selected points, a transductive
learning algorithm called LLR is proposed to reconstruct
every other point’s coordinate. The most representative
points are naturally defined as those whose coordinates can
be used to best reconstruct the data set. Comparing to
previous active learning approaches such as A-Optimal
Design, Transductive Experimental Design, and SVMActive,
our proposed approach explicitly considers the local
manifold structure. Therefore, the selected points by using
our approach can improve the classifier the most if they are
used as training samples. Experimental results on two
synthetic examples and three real-world applications (face
recognition, handwritten digits recognition, and image
classification) show the effectiveness of our approach.

Central to our algorithm is the locally linear reconstruc-
tion scheme. In this work, we adopt the idea from LLE [18]
to find the reconstruction coefficients. Thus, each data point
can be represented as a linear combination of its neighbors.
The advantage of this strategy is that it can well respect the

local manifold structure. However, the disadvantage is that
the k nearest neighbor search is computationally expensive.
The approximate nearest neighbors methods [38], [39] can
be used to alleviate the situation. Another possible solution
is to adopt the idea of sparse representation for the data
[40], [41]. Specifically, each data point is represented by a
linear combination of a subset of the data set, and this
subset does not necessarily contain the neighboring points.
Thus, it would be interesting to explore the sparse
reconstruction in the context of active learning.

Moreover, the proposed active learning approach is label
independent. Therefore, another possible extension of our
work is to consider the use of the labeled samples. Using the
label information, we can train an classifier and identify the
samples that are most hard to predict. Thus, we may
combine our method which selects the most representative
samples with the method that selects the most uncertain
samples [7]. However, how to find the best trade-off
between these two methods is still an open problem. We
will investigate this in our future work.
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