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Abstract—Activity recognition in smart environment has been
investigated rigorously in recent years. Researchers are enhancing
the underlying activity discovery and recognition process by
adding various dimensions and functionalities. But one signifi-
cant barrier still persists which is collecting the ground truth
information. Ground truth is very important to initialize a
supervised learning of activities. Due to a large variety in number
of Activities of Daily Living (ADLs), acknowledging them in a
supervised way is a non-trivial research problem. Most of the
previous researches have referenced a subset of ADLs and to
initialize their model, they acquire a vast amount of informative
labeled training data. On the other hand to collect ground truth
and differentiate ADLs, human intervention is indispensable. As
a result it takes an immense effort and raises privacy concerns
to collect a reasonable amount of labeled data. In this paper, we
propose to use active learning to alleviate the labeling effort and
ground truth data collection in activity recognition pipeline. We
investigate and analyze different active learning strategies to scale
activity recognition and propose a dynamic k-means clustering
based active learning approach. Experimental results on real data
traces from a retirement community-(IRB #HP-00064387) help
validate the early promise of our approach.

I. INTRODUCTION

Recently we have been experiencing the rapid development
in using ambient technologies and smart devices which has
been triggered by the adaptable sensor technologies. These
advancements in technologies have broadened the functional
domain of mobile and sensor computing. As a result Internet
of Things (IoTs) where multimodal sensor setup is combined
to perform context aware actions, is becoming an integral
component. Wide variety of context aware applications like
occupancy detection [1], HVAC control [2], localization, health
monitoring [3] etc. , have been introduced. Combining with
human activity recognition model, an IoT inspired domain
“Smart Home Technologies” have been gaining more attention
for health monitoring, independent living for senior citizens
and making our life comfortable. Smartthings, Vera, Microsoft
Lab of Things, openHAB, Ninjablocks, Twine, CASAS:Smart
Home in a Box [4] and other automation systems are already
in the market for the users. Researchers are extending the
capabilities of these automation systems by augmenting dif-
ferent functionalities. One major driving component for these
context-aware smart home technologies is to reliably learn the
human activities using the observable states of ambient and
wearable sensor data. For learning and recognizing activities of
daily living (ADLs) machine learning or rule based algorithms
are being exploited extensively. These trained models are then
employed to make decisions according to the domain of the
application even in unknown situations. Traditional passive
learning approaches are only consistent with the existing class
labels. The training for passive learning is carried out in
specific experimental setup which is not ideal for real life

applications due to a large variety of human activities and
underpinning uncertainty with the data capturing. In order to
build a robust and stable model, we have to provide vast
amount of labeled data- ground truth information which is
cumbersome and not always feasible. Building adaptive and
personalized model for individual users has become a crucial
obligation because of the diversity of a same activity across
different individuals. For example, the differences in speed
of walking, gestures, sleep habits etc., are ambiguous to a
general passive learning model. Active learning [5] helps us
to determine the most informative data points which is a
semi-supervised approach. We can actively query the users for
labeling informative data points and mitigate the necessity for
acquiring a large amount of labeled data points by applying
active learning. In activity recognition tasks using ambient or
wearable sensors, we have abundant unlabeled data instances
which makes active learning as an ideal solution for build-
ing an efficient classification model. Although crowdsourcing
provides the platform for labeling large amount of data, the
fundamental question is how much of these labeled data will
be statistically significant, reliable, noise free and just-in-time.
Also from a requester perspective increase demand in data
labeling in turn increases the cost of crowdsourcing. Therefore,
a cost-effective crowdsourcing model needs to be designed. In
this case, active learning can potentially help us to identify
potential important data instances that can balance out the
trade-off between cost and model performance.

In general, a subset of ADLs are dealt with and most of the
proposed activity recognition models are trained with a handful
number of activities. On the other hand, it is quite impossible
to train the classifier with as many activities as possible. Thus
we need an activity recognition system which can dynami-
cally discover unseen activities. Recognition model which can
discover unseen activities has been investigated in some of
the previous works. [6] proposed a semantic attribute based
activity recognition model by creating an activity-attribute
matrix for learning unseen activities while [7] proposed a
metric learning based approach to reject unseen activities.
An activity recognition model using finite state machines
which can differentiate unimportant instances of activities for
learning a generalized model has been presented in [8]. The
use of active learning for activity recognition systems has
been investigated by very few researchers. The authors of
[9] have proposed a bayesian active learning approach for
labeling data in smart homes. Uncertainty based active learning
for activity recognition has been employed in [10] [11]. The
authors of [12] used entropy based measure to calculate the
informativeness of activity data instances. An activity recogni-
tion framework called Legion:AR [13] uses active learning and
seeks for labels from crowd on demand. AALO [14], a single
habitant activity recognition model for smart homes uses active



learning for labeling overlapped activities. In this paper, we
propose a model for active learning which can help identify
latent informative and as well as unseen data instances and
validate the annotators in the labeling process.

One of the other major challenges in crowdsourcing or
collaborative systems is managing the expertise of the crowd.
The crowd have different backgrounds and intellectual ability
which make the feedbacks noise prone. One way to tackle
this problem is to rank the annotators based on their reliability
and distribute the labeling process appropriately. One other
way is to train the crowd with appropriate domain specific
examples and increase their competence. This requires a proper
representation of the crowdsourcing scenario. Crowdsourcing
raw sensor data is challenging as it is very difficult to analyze
and find meaningful patterns in the data to associate with a
class for a general worker. We have to provide some sort of
semantic information to the worker to help them understand the
scope of the problem domain. In this work, we discuss about
data representation ways for active learning and crowdsourcing
sensor data to scale and deploy practical activity recognition
applications among a community of individuals.

A. Our Contributions

Most of the proposed active learning model focused on
finding the most informative point using uncertainty mea-
surement or maximizing error reduction. For some classifiers
a basic intuition is followed - any data instance closest
to the decision boundary is considered important and thus
queried. Some approaches are strictly for SVM classifiers
where the intention is to identify the instances from feature
space which will maximize the hyperplane margin. These
approaches can yield good results and improve the overall
performance, however they tend to ignore the prior distribution
of the feature space. Prior distribution can be useful for active
learning and ignoring them can create sampling bias in the
overall system. In this paper we propose a cluster based active
learning model for activity recognition. Combining clustering
with active learning has been proposed in [15] [16] [17]. But
postulating them for practical human-in-the-loop applications
are still in its infancy.

In our proposed model, we first create hard clusters with-
out explicitly differentiating the number of clusters, rather
focusing the minimum number of clusters in association with
the existing number of labels in the label space. We posit
the most informative instances in a cluster and, subsequently
acquire label for them using our novel objective function and
finally reinstate the cluster label through empirical validation.
In summary our proposed active learning enabled activity
recognition model contains following salient contributions:

• We propose a dynamic k-means clustering algorithm
for creating clusters of unlabeled data.

• We propose an objective function to find the most
informative data instance in the cluster.

• We validate our model using real life data traces and
compare our model with other viable active learning
approaches such as disagreement based approach.

• We present a data representation technique for crowd-
sourcing smart home data and discuss its implication

on active learning assisted activity recognition.

The paper is organized as follows. Section II presents the
active learning methodologies. The design architecture of
our proposed model is presented in Section III. K-means
clustering and optimizing heuristic are illustrated Sections IV
and V.The objective function for filtering informative instances
is discussed in Section VI. In Section VII, we propose a
worker selection model for effective active learning. Exper-
imental results and comparison of our proposed model with
existing strategies are presented in Section VIII. In Section IX,
we discuss data representation techniques for making active
learning and crowdsourcing applicable in large scale activity
recognition domain. We articulate the challenges in Section X
and conclude with future research directions in Section XI.

II. RELATED WORKS

Active learning algorithms aim to ease the learning com-
plexity and cost by sequentially selecting optimal number of
informative unlabeled data instances to query for their label
in order to minimize the prediction error of the classification
model. Studies have shown that active learning can help reduce
the labeling effort in different domains [18] [15]. The most im-
portant step for active learning is to define the informativeness
measurement for data instances. In a smart home setting a
wearable sensor reading may belong to watching television, a
high level activity class and sitting micro activity class. In such
cases the learner can consolidate both feature and label space
(feature-label pair) instead of relying on the distinct features
for evaluating uncertainty. Evaluating instance uncertainty is
a common approach for measuring the informativeness of a
data instance. The uncertainty is measured with respect to the
feature space. In this approach the learner can focus more on
the data instances which are confusing based on the uncertainty
score. Least Confident, Margin Sampling and Entropy learning
are the most popular informativeness measures [19]. Another
uncertainty resolving approach is searching through hypothesis
space where the associated classifier maintains a set of can-
didate hypothesis space known as version space. The goal of
the active learning algorithm is to minimize the cardinality of
the version space which depicts maximal change to the current
classification model. One popular and significant contribution
in this approach is disagreement based active learning [20].
Another approach Variance Reduction chooses the instances
that minimize the square loss of a learner [21].

Some active learning works have proposed to augment
instance correlations where an utility metric from a sample or
sample-label space has been defined as a combination of an un-
certainty function and a correlation function. In feature based
correlation, a similarity measurement [22] or a correlation
matrix [23] on features has been utilized to compare pairwise
similarities of instances, so the informativeness of an instance
is weighted by average similarity on its neighbors. Label cor-
relation is widely used for multi label learning. Conventional
active learning algorithms considers an oracle to provide the
correct label for each query always which is not ideal. Many
of the existing active learning strategies are prone to introduce
noise on learning models, as the process of finding an optimal
boundary between two classes involves label queries that have
lower proximity to the decision boundary and usually these
labels induce large noise. The authors of [24] have proposed



an algorithm A2 Learning which works in presence of arbitrary
forms of noise. [25] uses a randomized query mechanism and
includes importance weights in the calculation of empirical
error rates, to compensate for the bias in the sample so that it is
possible to obtain rough estimates of the excess empirical error
rates. we define the label complexity of A2 learning [24] by
using the disagreement coefficient has been described in [20].
The authors of [26] proposed a bayesian based active learning
algorithm where queries are selected sequentially to reduce
uncertainty. The authors demonstrate that instead of focusing
on minimizing uncertainty, the aim is to drive uncertainty into
a single decision region as quickly as possible. Next we discuss
the usage of active learning for practical applications such
as smart home activity recognition. In [16] the author used
a hierarchical clustering for unlabeled instances and then a
data instance is picked randomly from the cluster. [15] tries
to reduce the classification variance by employing Query By
Committee (QBC) method.

III. OVERALL DESIGN & CHALLENGES

Our proposed model is comprised of two significant steps.
First formulate clusters for the unlabeled data instance pool
(U ) using K-Means clustering. The fundamental motivation
behind using clustering over other active learning strategies is
computational complexity. Though uncertainty sampling based
strategies are computationally inexpensive, they tend to be
biased and become over confident. Other popular disagreement
based strategies like Query By Committee (QBC) uses the
hypothesis space to form the committee, and maintaining
a hypothesis space demands a lot of computation. For a
practical and real life system, we need an efficient strategy
with low computational complexity. Clustering based strategies
reduces the overall complexity of the active learning algorithm.
Dasgupta et al. [16] used hierarchical clustering which be-
comes computationally expensive for large data sets. K-Means
clustering is a widely used partition clustering method and if
employed with proper heuristic, K-means can achieve linear
time complexity. The clustering process follows a simple and
easy way to classify a given data set through a certain number
of clusters (let us assume k clusters) fixed beforehand. The idea
is to identify the center of the clusters - centroids, and then as-
sociate the data instances to the closest centroid and formulate
clusters. However the computational complexity becomes NP
Hard. One other challenge for applying K-Means clustering
is that we have to postulate the number of clusters explicitly.
For building an adaptive and spontaneous activity recognition
model to discover unseen activities, it is not practical to posit
the number of clusters beforehand. We iteratively run the
clustering until we find a stable set of clusters with minimum
clustering error. We decrease and control the computational
complexity of K-Means clustering by using Elkan’s heuristic
[27]. We apply a pool based sampling strategy for constructing
instance pool (U ) as it has been used in practice [28] [29]
[30]. We delve into the practical application of active learning
and particularity for smart home activity recognition where a
multitude of ambient and wearable sensor data streams are
abundant. Thus we design a sampling approach based on a
pool of unlabeled data instances and then pass it to our active
learner.

After compiling the clusters out of unlabeled data instances
pool, we find out the most informative data instances and
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Fig. 1. Overall framework for active learning inspired activity recognition.

query them accordingly. We also incorporate the clusters with
unseen activities in this underlying process. In order to find
the most informative data instances, we formulate an objective
function which is constructed using entropy measurement and
a similarity coefficient. The similarity coefficient for any data
instance is calculated by the distance measurement between the
points in its cluster and other surrounding cluster centers. Fig.
1 depicts this entire active learning enabled activity recognition
model.

IV. BACKGROUND

Given n points {x1, x2....., xn} ∈ Rd the goal of K-
means is to find K cluster centers {c1, c2...., cm} ∈ Rd and
assignment {q1, . . . , qn} of the points to the centers. K-Means
clustering tries to find the position of the cluster centers and
minimize the distance of the data instances in Eqn 1. K-means
is obtained for the case p=2 ( l2 norm), because in this case
the optimal centers are the means of the input vectors assigned
to them.

E(c1, . . . , ck, q1, . . . , qn) =

n∑

i=1

‖xi − cqi‖ (1)

Minimizing the objective E is in general a difficult combina-
torial problem, so locally optimal or approximated solutions
are sought instead. E is also the average reconstruction error,
if the original points are approximated with the cluster centers.
Thus K-means is used not only to group the input points
into cluster, but also to quantize their values. The basic K-
means algorithm alternate between re-estimating the centers
and the assignments. Combined with a good initialization
strategy and potentially, by re-running the optimization from
a number of randomized starting states, this algorithm helps
reduce the complexity of handling exponential state-space of
active learning and increase efficiency in practice. However,
despite its simplicity, simple K-means is often too slow. Thus
we consider Elkan’s algorithm [27], which uses the triangular
inequality to cut down significantly the cost of basic K-means.

V. CLUSTER HEURISTICS

Elkan’s algorithm [27] is different than Lloyd alternate
optimization algorithm (Lloyd’s algorithm) which calculates



the triangular inequality to mitigate many distance calculations
when assigning data instances to clusters. Although this heuris-
tic is much faster than Lloyd, but it needs storage proportional
to the number of clusters. which makes it difficult to operate in
case of large number of clusters. The base of this algorithm is
that, if a centroid update does not move data instances much,
then most of the instance to center distance computations
can be avoided when the assignments are recomputed. To
distinguish which distances need evaluation, the algorithm
bounds the distances by lower and upper bound using triangu-
lar inequality after a center update. Elkan algorithms uses two
key observations. First, one has

‖xi − cqi‖ ≤ ‖c− cqi‖/2 ⇒ ‖xi − cqi‖ ≤ ‖xi − c‖ (2)

Thus if the distance between xi and its current center cqi is
less than half the distance of the center cqi to another center
c, then c can be skipped when the new assignment for xi is
searched. Checking this requires keeping track of all the inter-
center distances, but centers are typically a small fraction of
the training data, so overall this can be a significant saving.
In particular, if this condition is satisfied for all the centers
c 6= cqi , the point xi can be skipped completely. Furthermore,
the condition can be tested also based on an upper bound U(x)
of ‖xi − cqi‖. Second, if a center c is updated to ĉ, then the
new distance from x to ĉ is bounded from below and above
by

‖x− c‖ − ‖c− ĉ‖ ≤ ‖x− ĉ‖ ≤ ‖x− ĉ‖+ ‖c+ ĉ‖. (3)

This allows to maintain an upper bound on the distance of xi

to its current center cqi and a lower bound to any other center
c.

U(x)← U(x) + ‖cqi − ĉqi‖ (4)

L(x, c)← L(x, c)− ‖c− ĉ‖. (5)

Traditional K-means clustering needs prior definition of num-
ber of clusters. But if data instances of unseen classes are
present in the data pool, they will be considered as outliers
in the clustering process. Having outliers in the feature space
can significantly decrease the performance of the clustering
algorithm if the number of clusters are not properly defined.
From these motivations we choose to apply an incremental
K-means clustering where at each iteration we increase K
and record the overall error for our clustering using the error
function in Eqn. 6. The minimum error depicts the best
clustering for the data set and the corresponding number of
k cluster.

J =
k∑

j=1

n∑

i=1

‖x(j) − cj‖
2 (6)

VI. MEASURING INFORMATIVENESS

After clustering the unlabeled data instances, our task is
to figure out the most informative data instance in different
clusters. [16] proposed random sampling for labeling the
data. Instead of using random sampling we propose to use
uncertainty sampling to choose the most informative instance.
One challenge is to differentiate between outliers and most
informative data instances as outliers will have much higher
uncertainty like the most informative instances. To represent
whether a data instance with high uncertainty is an outlier

or not, we calculate the silhouette coefficient [31], S
(xi)
c for

each data instances. For each data instance xi, let a(i) be the
average dissimilarity of xi with all other data within the same
cluster. a(i) interprets how well a data instance xi is assigned
to its own cluster. Where smaller value of a(i) indicates better
assignment of xi. The average dissimilarity of point xi to a
cluster c is defined as the average of the distance from xi to
points in c. Let b(i) be the lowest average dissimilarity of xi to
any other cluster, of which xi is not a member. The cluster with
this lowest average dissimilarity is said to be the “neighbouring
cluster” of xi because it is the next best fit cluster for point
xi. We now define a silhouette:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(7)

s(i) =











1− a(i)
b(i)

, if a(i) < b(i)

0, if a(i) = b(i)
b(i)
a(i)

− 1, if a(i) > b(i)

(8)

From Eqn. 8 it is evident that −1 < s(i) < 1. For s(i) to be
close to 1, we require a(i) ≪ b(i). As a(i) is a measure of
how dissimilar xi is to its own cluster, a small value means
it is well matched. Furthermore, a large b(i) implies that xi

is poorly matched to its neighbouring cluster. Thus an s(i)
close to 1 means that the instance is appropriately clustered.
If s(i) is close to negative one, then by the same logic we
note that xi would be more appropriate if it was clustered in its
neighbouring cluster. An s(i) near zero means that the instance
is on the border of two natural clusters. The informativeness
is measured by the entropy of the instances. The entropy of
an instance is defined by the following equation:

eθ(x) = argmax
x

Hθ(y|x)

= argmax
x

(−
∑

y

Pθ(y|x) logPθ(y|x)) (9)

We combine this entropy measurement with the S
(xi)
c to filter

out the most informative points. So the final objective function
fc for finding the most informative point becomes

fc(x) = argmax
x
{eθ(x) . S

(xi)
c } (10)

By using Eqn. 10, the points which are properly clustered
and has higher entropy values are chosen. The points which

has S
(xi)
c = 0 or negative values might also be important. So

instead of discarding those data instances, we randomly pick

instances and query them. An instance with S
(xi)
c closer to zero

is close to the boundary of two different clusters. If we have
the same label as other data instances in that cluster, we do
not have to change the cluster, but if different label is received
we have to rearrange our cluster with respect to the received
label. In Algorithm 1 we demonstrate the full active learner
with K-means clustering.

VII. SELECTING ANNOTATOR

We filtered out the most informative data instances in the
previous step, but it is quite impractical to presume in a
real life environment that the annotators are going to provide
true and correct labels all the time. As the search for most
informative data instances is important so is getting the true
label for them, otherwise unnecessary noise draws on our
model. In order to build practical active learning enabled



Algorithm 1 Active Learner with K-Means Clustering

1: Input: U = A pool of unlabeled instances {(x)u}Uu=1,
mink = Minimum number of clusters,
θ = An error threshold.

2: Output: Clustered classification of U and most informa-
tive data instances in each cluster.

3: for K = mink do
4: Initialization: Compute L(xi, c)− ‖c− ĉ‖
5: Find the current assignment qi and bounds U(xi) by

finding the closest centers to each point
6: Estimate Center and Quantize the data instances in U

to associate them with a cluster c.
7: Compute the Error Jcurrent using Eqn. 6.
8: if K = mink then
9: Continue

10: else
11: if Jcurrent > θ then
12: K = K + 1
13: else
14: break
15: end if
16: end if
17: end for
18: for every xi ∈ U do

19: Calculate S
(xi)
c using eqn 8.

20: Calculate the objective function fc(x) using Eqn. 10.
21: Choose the instance with highest fc(x) and query for

label.
22: end for

activity recognition model, choosing the right annotator is
crucial and it becomes more challenging when the environment
is cohabited by multiple inhabitants. As all annotators are
not expert in annotating a specific activity class, we assign
a sensitivity score to each annotator for each activity class.
The sensitivity is defined by the number of labels correctly
labeled by an individual annotator.

µc
sen =

correctly labeled instances of class c

number of points queried of class c
(11)

Initially when an annotator has not labeled any examples from
class ci, we assign a sensitivity score of µci

sen = 0.5. Using
the sensitivity score, we pinpoint the most efficient annotator.
To further strengthen the querying process, we choose the
annotator who has annotated a similar data instance with high
sensitivity which is annotator’s specificity δspec. For this we
first monitor j neighboring data instances who are closer to x.
For our experimental purpose we chose j = 4.

δspeci =
1
k
×
∑j

i=1 µ
ak

xi

1 + 1
k
×
∑j

i=1 |x− xi|
(12)

In Eqn. 12, µak

xi
is our sensitivity of annotator, ak. |x− xi| is

the euclidean distance between the neighboring data instances.
Our active learner is set to select the annotator by the following
Equation 13.

i = argmax(δspec1 , δspec2 . . . , δspeck) (13)

After selecting a subset of annotators we ranked accordingly
based on their specificity score and query the data instance to

top 4 annotators. If the confidence of the data instance is less
than 80% then we keep on querying until it reaches confidence
level of 80%. Here the confidence level for a data instance
means the ratio of number of labels and total number of query.
If xi receives 6 labels of class cj out of total 10 queries, then
the confidence score is 100× 6

10 = 60%.

VIII. EXPERIMENTAL RESULTS

In this section we validate our active learning algorithm
for activity recognition and compare the outcome with other
popular strategies. We set up a smart home environment with
PIR motion sensors and object sensors on different household
appliances. The PIR motion sensors were mounted on three
different locations of a single bedroom apartment (bedroom,
living room and kitchen). The object sensors were mounted on
the broom, trashcan, laundry basket, dustpan and phone. The
object sensors have built in compass and accelerometer which
provided the usage and orientation of the objects. Two door
sensors were placed on the apartment door and on the closet
door. In our experiment we considered only single inhabitant
environments. We had the following activities in our dataset -
1) brooming, 2) cooking, 3) doing laundry (washing), 4) taking
out the trash (cleaning), 5) eating, 6) sleeping and 7) using land
line telephone (talking). We trained our passive learner with the
first four activities and left the last three activities for our active
learner to discover. We have used Decision Tree classifier (J48)
as our passive learner. We extracted features from the ambient
motion sensors which include the start and end of the sensor
events, time span of the event within a k-event window, and
count of events in the window. We collected data from 10
participants who reside in a retirement community [32] - IRB
(#HP-00064387). Each participant provided around 24 hours
of continuous sensor data. Average age of the participants was
85. We evaluated our cluster performance using normalized
mutual information (NMI) using ground truth. Both the activity
class label and clustering assignment are considered as random
variables in NMI. It measures the mutual information between
the two data instances, and normalizes it to a zero-to-one range.
Let C be the data instance representing the cluster assignments
of instances, and K be the random variable representing the
class labels of the instances, the NMI is computed by the
following equation:

NMI =
2I(C;K)

H(C) +H(K)
(14)

Here I(X;Y ) = H(X)−H(X|Y ) is the mutual information
between random variables X and Y. For our experimental
validation, we focus on the following specificities for our
experiments: 1) Correctly classified instances by our active
learner 2) Instance selection time 3) Mean Absolute Error
4) Number of average queries per data instance for gaining
confidence level of 80% 5) Annotator selection time 6) Impact
for introducing new unseen activities.

A. Smarthome System

We have used CloudEngines PogoPlug [33] as our central
component which interfaces with the motion sensors and object
sensor tags. We built a custom linux kernel for the PogoPlug
and developed tools to communicate with the sensor tags.
The PogoPlug works as a bridge between the Sensor Tags
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Fig. 2. Correctly classified instances
for our active learner.
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Fig. 3. Correctly classified instances
for maximum entropy sampling.
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Fig. 4. Correctly classified instances
for least confidence sampling.

71.5

72

72.5

73

73.5

74

74.5

75

75.5

1 11 21 31 41 51 61 71 81

Iteration 

Fig. 5. Correctly classified instances
for Query By Committee (QBC).
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Fig. 6. Mean absolute error for our
active learner.
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Fig. 7. Mean absolute error for max-
imum entropy sampling.
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Fig. 8. Mean absolute error for least
confidence sampling.
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Fig. 9. Mean absolute error for Query
By Committee (QBC).

Fig. 10. Smarthome System Setup.

and a standard 802.11N network. Tests have indicated the
device is stable in this capacity, and recovers from power loss
and outages on the external networks without any issue. The
PogoPlug is also successfully doing NAT translation in order
to bridge additional Ethernet devices on to the network. We are
streaming and storing the data in real time in our lab server.
We have used Foscam IP camera for collecting ground truth.
Due to bandwidth limitation it was difficult to stream the video
remotely, so we recorded the video in SD card. Since video
violates the privacy issue, each participant provided only two
hours of video data. In these two hours the participants were
asked to follow a script to perform several tasks related to our
activity list. Rest of the 22 hours were not recorded which is
our test data. Figure 10 demonstrates the components of our
system setup.

B. Supervised Model

In figure 11 the precision, recall and F1 score for each
activity is shown for our decision tree classifier. It is evident
that the cooking activity has lower accuracy than other activi-
ties. As in our experiments, we have placed object sensors on
various appliances and equipments, so it was possible to pin
point an activity by tracking the usage of the object sensors.
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Fig. 11. Precision, Recall and F1
Measurement of each activity for
Passive Leaner.
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Fig. 12. Clustering Performance

For example if we detected any movement for the laundry
basket, we labeled the data instance of the motion sensor as
cleaning. As for cooking activity there was no object sensor,
so it was difficult to track down the activity properly. In
some cases the objects were just moved or handled, not used
for the corresponding activities which imposed noise in the
dataset. For this reason we filtered the dataset by taking an
assumption for the duration of each activity. If the duration
of the performed activity was less than the threshold then
we discard the data instance for training. The thresholds were
defined in an empirical manner. Also some of the participants
had pets in their apartment which introduced more noises in
the dataset as the pets move around the house abruptly.

C. Active Learning Experiments

We have mentioned the criteria for our active learning
experiments beforehand. We applied the active learning algo-
rithm in a 10-fold cross validation and pool based sampling
manner. We initially started with a small labeled data set (5%
of train data), and then made queries by using different active
learning strategies. The results are shown for 100 iterations. We
compare our algorithm with other popular query strategies -
maximum entropy, least confidence and vote entropy or Query
by Committee (QBC). QBC is a very effective alternative
approach to uncertainty sampling which has been applied in
many classification problems. QBC manipulates the version
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Fig. 13. Instance selection time for
our active learner.

0

50

100

150

200

250

300

350

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

T
im

e
 (

m
s
) 

Iteration 

Fig. 14. Instance selection time for
maximum entropy sampling.
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Fig. 15. Instance selection time for
least confidence sampling.
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Fig. 16. Instance selection time for
Query By Committee (QBC).

Algorithm 2 Query By Committee

1: Input: U = A pool of unlabeled instances {(x)u}Uu=1
L = A pool of unlabeled instances {(x)l}Ll=1
k = number of iterations

2: Repeat k times
3: Generate a Committee of Classifiers C∗

4: ∀xi ∈ U , compute disagreement xi
V E using 15 based on

the current committee.
5: Select a subset S of instances from U that maximizes

utility.
6: Query instances of S
7: Remove S from U
8: Update L by adding S
9: Return

space and at each iteration it maintains a committee - an
effective set of hypotheses based on current training set. The
committee evaluates the potential utility of the unlabeled data
instance. This utility measure is also called disagreement mea-
sure. The disagreement measure for QBC was defined by the
following equation where Pc(y|x) is the average probability
that y is the correct activity label to the committee. The steps
of a generalized QBC is show in algorithm 2.

xV E = argmax−
∑

y

Pc(y|x) logPc(y|x) (15)

First we cluster the unlabeled data set using our dynamic
k-means clustering algorithm. In figure 12 we show the intra
and inter cluster distance for our dynamic k-means clustering
algorithm comparing to simple k-means algorithm. We discuss
and compare our active learning algorithm based on each
analysis criterion in the following:

1) Correctly Classified Instances: One of the most impor-
tant performance measurement for an active learning algorithm
is how many data instances were correctly classified. In
figure 2 correctly classified instance for our algorithm over
100 iterations is plotted. Most of the query strategies show
similar results and almost 75% of the instances are correctly
classified. However we monitor a lot of changes for least
confident sampling as least confident sampling only considers
the best prediction and eventually throws away other important
information.

2) Instance Selection Time: Instance selection time depicts
the speed of the active learning algorithm. Average instance
selection time for all of the strategies were close to 200 ms
(figure 13, 14, 15, 16).

TABLE I. AVERAGE NUMBER OF QUERIES FOR EACH ACTIVITY FOR

GAINING CONFIDENCE LEVEL 80%

Activity Avg. Number of Queries

Brooming 2

Cooking 9

Washing 3

Cleaning 5

Eating 12

Sleeping 16

Talking 3

3) Mean Absolute Error: Mean absolute error expresses the
difference between the predicted value and the actual value.
In figure 6, 7, 8 and 9 the trend of mean absolute error at
each iteration for the query strategies are plotted. For our
active learner (figure 6), the algorithm converges to lower
mean absolute error than other approaches. Mean absolute
error for maximum entropy sampling was much higher. After
investigating we found that maximum entropy sampling tends
to be biased and over generalized. As a result first the mean
absolute error started to decrease and in the end it started to
increase.
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Fig. 17. Accuracy of unseen activ-
ities.
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Fig. 18. NMI for 100 queries.

4) Average Number of Queries: In our experiments we
did not train our supervised model with the acquired label
using active learning till the label confidence is 80%. Average
number of queries for 100 data instances was ≈ 7. Average
number of queries for each activity is shown in table I. From
the table it is visible that for Cooking, Eating and Sleeping
activity the average number of queries were higher. As for
these activities there was no object sensors involved, it was
difficult for the annotators to take the decision. For sleeping
activity, it was the highest as the movements detected while
sleeping are mislabeled frequently by the annotators. Also
mostly the eating activity was performed in the living room
area, where the participants were frequently sitting and doing
their chores. This created confusion among the annotators.
Cooking was another difficult high level activity to properly
label as just being in the kitchen does not indicate that the
participant was cooking. In figure 18 we show the change in



NMI for our clustering algorithm for different active learning
strategies. NMI close to 1 means better correlation. Our active
learner converges to 1 faster than other query strategies.

5) Introducing Unseen Activities: We left out three activi-
ties (eating, sleeping and talking) while training our supervised
learning model S. Using active learning, we acquired labels
of these unseen activities. After querying them, we trained
our supervised model with the received new activity labels. In
figure 17 we show the accuracy of S for these new activities.
Talking achieved the highest accuracy because of the object
sensor attached to the phone. Whenever a movement of the
phone is involved, the supervised learner predicts the motion
sensor event as talking. For other two activities it was difficult
as living room and bedroom involved so many movements.
The accuracy of recognizing sleeping is better than eating
because the participants performed more variety of activities
in the living room than in the bedroom. And also sleeping
during night was properly classified by our supervised learner
than sleeping at daylight. After including the collected activity
labels using our active learner, we retrained our supervised
learning model. Initially we labeled our training data using
a labeled data set L consisting of 21, 014 instances. On the
other hand we had an unlabeled data set U consisting of
126, 874 samples. Initially the average accuracy of S was ≈
81. If we consider only the four activities, after applying our
active learning strategy the 87% accuracy was observed. If new
unseen activities are introduced, 77% accuracy is achieved.The
actual accuracy decreased, because initially the recognition
capability of new unseen activities are low. The mentioned
accuracy is reported after 100 iterations, so we increased our
iteration to 300 and we achieved 79.5% accuracy. So if we
query more data instances using our active learner we can
achieve better accuracy.

IX. DATA REPRESENTATION FOR CROWDSOURCING AND

ACTIVE LEARNING

Sensor data representation in a user friendly way is a huge
challenge in crowdsourcing domain. Even just applying active
learning for querying the label from the same user demands
an effective and eloquent representation. One straight forward
approach for querying the user can be to ask what the user
was doing at a certain timestamp. But all human do not have
the ability to precisely recall an event at a certain timestamp.
Previous works have proposed to annotate image or video
recordings by the crowd [34] [35]. Although using image
or video based surveillance provides proper idea about the
performed activities to the crowd but it violates the privacy
of the users.

It is certainly difficult to disjointly represent all the human
activities, as there are activities which are similar in functional
sense. For example, watching television and studying both
involves sitting. It is possible that they are performed at differ-
ent locations in the apartment, so we can pair activities with
different indoor locations. [36] used a visual representation of
the motion sensor firing sequence and provided the apartment
layout to assist the crowd. But motion sensor activation not
always provides a straight forward indication of an activity.
For example, a person might be in the bathroom just to look
at the mirror and the motion sensor will still be activated. In
a multi-inhabitant environment this becomes more complex.

Object sensors can help us greatly in these cases. With proper
usage data of an object paired with motion sensor and location
information can ideally pinpoint the activity. Human activities
are performed in a pattern. While being at home, people are
used to eat, cook, vacuum or perform other household activities
in a certain pattern. For example, a person may eat his lunch
at a certain time in most of the days. Knowing these activity
patterns can also help a crowd to understand the functional
and behavioral patterns of the user. So while crowdsourcing,
it is important to provide a semantic representation of the user
activity pattern so that we can collect noise free labels.

X. DISCUSSION AND FUTURE DIRECTIONS

The theoretical foundation of active learning is very rich
and resourceful. Researchers have proposed many effective ap-
proaches for active learning. But the problem is these solutions
are theoretically sound but computationally expensive. Simpler
models like entropy based uncertainty calculation are effective
but they imposes bias and runs the risk of becoming over
confident on incorrect predictions. It is difficult to make com-
putationally expensive approaches applicable. Also not all the
approaches perform the same in a specific domain. Choosing
the right approach with respect to the scope of the domain
is very important for active learning to be effective. In smart
home settings, multiple heterogeneous sensors impose various
types of uncertainties like biased readings, failed sensors etc.
In multi inhabitant environment the situation is much more
complex. On the other hand in multi inhabitant settings, we can
take advantage of the inhabitants by asking them to label each
others data. But still it is extremely difficult to differentiate
overlapped sensor reading and individual’s activity.

Due to the dynamic nature and a huge variety of human
activities it is difficult to collect the ground truth information
for an activity learning model. We can record and annotate data
sets for training the system from scratch for individual house
and individual person but this will be extremely costly. So
leveraging active learning can boost the ground truth collection
process. As the basic movements and locations of two or more
activities can be same, the probability that they will belong to
a same cluster is higher. But automatic discovery of similar
activities is not handled in our proposed solution. In such cases
we have to consider overlapped clusters to properly separate
two distinct activity classes. [14] demonstrated an approach for
overlapped activities, but the informativeness measurement has
not been discussed in their work.

One of the major challenges for making active learning
and crowdsourcing practical is the expertise of the crowd. The
crowd will not always provide the labels correctly. Also the
crowd may not be able to provide labels for some instances
at all. In some cases getting label for a data instance from
only one annotator will not be enough. Relabeling the data
instances by other crowd will further validate the consistency
of the acquired label. For handling noisy input from crowd this
clear approach may be helpful, but still there is a chance that
noise will be introduced. As an example, we have to assume
that the crowd is not expert and so it will be challenging
for them to differentiate between similar activities. Also if
an unseen activity which is very much alike with an existing
one is queried, the crowd may not provide new class label
and annotate it with existing label. This impose both bias and



noise in the classification model. So the crowdsourcing model
should be able persist an agnostic environment. Researchers
have proposed to incorporate reliability of the annotators as an
important factor while querying the data. But opportunistically
selecting reliable user compulsively is not a good approach
as it may annoy the annotator. For this reason, cost-sensitive
crowdsourcing has been gaining attention recently.

XI. CONCLUSIONS

In this paper we have proposed and validated an active
learning inspired adaptive activity recognition model to deal
with the difficulties of collecting large amount of ground truth
information. Our proposed model can discover unseen new
activities and include the new activity class in the supervised
learning model reliably. Prior works only considered a set
of pre-defined activities, whereas our model is dynamic and
can discover unseen new activities spontaneously. We have
also validated our model in a real life dynamic environment
and the experimental results show that our model outperforms
traditional active learning approaches. Our results also show
that active learning with pre-clustering can accelerate the
informativeness measurement and supports faster convergence
to optimal accuracy in presence of our proposed model. In
the current version of our work, we ran our experiments in
a single inhabitant environment and chose to monitor the
activities which are disjoint. In future we want to investigate
active learning in a multi-inhabitant environment and clustering
of similar activities in nature using overlapped clustering in
agnostic settings. We have also discussed about the data rep-
resentation technique for active learning and crowdsourcing as
data representation is very important for making active learning
applicable. In future we also want look into more transparent
data representation technique for building an effective activity
recognition framework.
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