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Abstract

Machine learning can help personalized decision

support by learning models to predict individual

treatment effects (ITE). This work studies the re-

liability of prediction-based decision-making in

a task of deciding which action a to take for a

target unit after observing its covariates x̃ and

predicted outcomes p̂(ỹ | x̃, a). An example

case is personalized medicine and the decision

of which treatment to give to a patient. A com-

mon problem when learning these models from

observational data is imbalance, that is, difference

in treated/control covariate distributions, which

is known to increase the upper bound of the ex-

pected ITE estimation error. We propose to assess

the decision-making reliability by estimating the

ITE model’s Type S error rate, which is the prob-

ability of the model inferring the sign of the treat-

ment effect wrong. Furthermore, we use the esti-

mated reliability as a criterion for active learning,

in order to collect new (possibly expensive) obser-

vations, instead of making a forced choice based

on unreliable predictions. We demonstrate the ef-

fectiveness of this decision-making aware active

learning in two decision-making tasks: in simu-

lated data with binary outcomes and in a medical

dataset with synthetic and continuous treatment

outcomes.

1. Introduction

A promising application domain of machine learning is

to augment human intelligence in decision-making tasks

by providing predictions of outcomes under alternative ac-

tions (Schulam & Saria, 2017). To fit a model to this task,

we need data recording previous actions a, observed out-

comes y, and any features relevant to the context of the
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decision, x. Then, the goal is to estimate p(Y | X =
x,A = a) and, further, individual treatment effect (ITE),

τ(x) = E[Y [1] − Y [0] | X = x], where Y [a] denotes the

potential outcome of treatment A = a (Rubin, 1978). ITE

provides sufficient information to choose between two ac-

tions. The estimation of ITE is susceptible to many error

sources (Pearl, 2009; Schulam & Saria, 2017; Mitchell et al.,

2018), of which we concentrate on imbalance (Gelman &

Hill, 2007).

Imbalance is defined as the difference in covariate dis-

tributions in the treated and control groups. Imbalance

makes correct model specification essential for avoiding

bias in treatment effect estimates (Gelman & Hill, 2007).

Mis-specification of the model could be avoided by using

non-parametric models, but their variance increases quickly

when extrapolating. Recently, imbalance has been shown

to increase the upper bound of the model error in estima-

tion of ITE (Shalit et al., 2017). Furthermore, imbalance

becomes the more prevalent issue the higher-dimensional

the covariate space is (D’Amour et al., 2018).

There are many existing ways to deal with imbalance when

learning the average treatment effect (ATE). In causal in-

ference, the most common methods are propensity score

matching or weighting (Rosenbaum & Rubin, 1984; Hirano

et al., 2003; Lunceford & Davidian, 2004), and modeling

the potential outcomes (Imbens & Rubin, 2015; Hernán &

Robins, 2018), as well as doubly robust methods which

implement both (Bang & Robins, 2005; Funk et al., 2011).

Even though these methods can decrease bias in treatment

effect estimates, they will increase variance, and therefore

may make the decision-making less reliable. This is es-

pecially the case with ITE; For example, in the areas of

covariate space where there are more control units than

treated, intuition is that the model for the treated outcome ei-

ther has to generalize from less-representative observations

(increasing bias) or extrapolate (increasing variance). Either

way, there is higher uncertainty about the treated outcome,

which makes reliable decision-making difficult. An extreme

case of this is illustrated in Fig. 1. A natural question then

is, could other data sources be exploited instead of making

a forced choice based on insufficient observational data.

This work has three main contributions, which are comple-

mentary to each other and can be used independently. First,
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we describe how imbalance decreases decision-making per-

formance by increasing Type S error rate (Gelman & Tuer-

linckx, 2000), which is the probability of the model inferring

the sign of the treatment effect wrong. Second, we propose

a Bayesian estimate for the Type S error rate, which al-

lows quantifying the reliability of a decision-support model.

Third, we propose to alleviate the consequences of imbal-

ance by actively collecting more data. To this end, we

introduce decision-making aware active learning criteria

that improve decision-making performance by minimizing

the estimated Type S error rate.

Finally, in many cases there are restrictions on what can

be measured. For example, in medicine it is in general not

ethical to do an experiment on a patient in order to get in-

formation to improve the treatment plan of another patient.

Therefore, regular active learning would not be possible and,

instead, any new information has to be acquired indirectly.

For this reason, we introduce the idea of counterfactual elic-

itation which means soliciting indirect observations about

counterfactual outcomes, that is, what would have been

the outcome had x been treated with a′ instead of a. We

demonstrate the effectiveness of the proposed active learn-

ing criteria applied to counterfactual elicitation.

Main claims of this paper: 1. Reliability of decision-making

is hindered by imbalance in data. 2. Bayesian estimate of

the probability of error is a good estimate for the decision-

making performance. 3. If there is a way to acquire more

data (a simulator, new experiment, ask an expert), decision-

making error can be minimized by decision-making aware

active learning.

Technical contributions

1. We state sufficient conditions under which imbalance

will cause decision-making error, measured in Type S

error rate.

2. We introduce the principle of decision-making aware

active learning, and propose a decision-making aware

acquisition function. Our formulation allows both con-

tinuous and discrete outcomes.

3. We propose two types of queries for counterfactual

elicitation. (a) Observation is a scalar-valued point es-

timate of a counterfactual outcome from a noisy oracle.

(b) Observation is a (potentially erroneous) pairwise

comparison between factual and counterfactual out-

comes for one unit in the training data.

4. We show empirically that the proposed estimate of

the Type S error rate has strong correlation with the

observed Type S error rate, and that the active learning

that aims at minimizing the Type S error rate increases

the decision-making performance faster than standard

active learning methods.

x

y

Response observations
from treatments •, and control N

Estimated treatment responses

p0

x̃

x

y
True treatment responses

x̃

Figure 1. An example decision-making task is to choose a treat-

ment for a specific x̃ (red mark). Upper graph shows the posterior

means of the potential outcome models given observations, and

the prior mean p0. The true responses are in the lower graph,

which shows that there are three regions with different response

types (marked in green, blue and magenta). Lower y is better. The

problem is that there are no observations about treatment • in the

green region, which causes it to appear to be the best choice for x̃,

although that is incorrect.

2. Related Work

Active learning is commonly used to acquire class labels

during model training to improve classification performance,

by selecting unlabeled training instances for humans to la-

bel. The selection criteria are usually based on uncertainty

and correlations of the training instances, see e.g. Fu et al.

(2013) for a survey. Some active learning works also con-

sider richer input than just labels, for example about impor-

tance of features (Brooks et al., 2015; Ribeiro et al., 2016).

Active learning proposed by Javdani et al. (2014) aims at

improving automated decision-making by reducing model

uncertainty so that the remaining hypotheses are confined to

the same decision region. The importance of active learning

for decision-making tasks has been noted in other fields,

where e.g. Saar-Tsechansky & Provost (2007) developed a

heuristic method for deciding which consumers to target in

marketing campaigns.

Active learning has also been used to design interventions

that improve identifiability of causal networks (Hauser &

Bühlmann, 2014). In addition, Bottou et al. (2013) stud-

ies carefully how counterfactual inference can be used for

active learning. Closest to our work is the work on active
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learning with logged data (Yan et al., 2018), which proposes

a de-biasing query strategy for a classification task. The

difference to our work is that they assume the propensities

(probability of revealing the label) to be known.

Using data to estimate the effect of interventions has been

extensively studied in the field of causal analysis (see e.g.

Pearl (2009); Morgan & Winship (2014); Imbens & Ru-

bin (2015); Hernán & Robins (2018)). In one school of

thought, analysts construct a “causal directed acyclic graph”

embodying substantive knowledge about the domain, and

predict the effect of interventions using operations on the

graph (Pearl, 2009; Morgan & Winship, 2014). Another

common approach is to model interventions using potential

outcomes, where separate random variables are constructed

to represent the target outcome under each possible action

(Neyman, 1923; Rubin, 1978; Neyman, 1990; Imbens &

Rubin, 2015; Hernán & Robins, 2018). Our work builds

on recent research on using ideas from causal analysis to

learn individual treatment effects. The issue of imbalance is

discussed by Johansson et al. (2016), and they propose an

approach based on empirical risk minimization and domain

shift to improve predictions. Xu et al. (2016) estimate the

individual treatment effects in a longitudinal setting where

individual-specific treatment parameters are refined over

time as more observations are collected. Alaa & van der

Schaar (2017) use Gaussian processes to model individual-

specific outcomes under alternative treatments and prove

minimax rates on the risk that the approach achieves. Our

work builds on these ideas, and is most closely related to

the works by Xu et al. (2016) and Alaa & van der Schaar

(2017). Although we also use Gaussian processes to model

treatment effects, our work is unique in that it leverages

the probabilistic framework to design an active learning

algorithm to improve the decision-making process.

3. Problem Formulation

3.1. Setup

Let p(y[a] | x) be the distribution, and p̂(y[a] | x) our prob-

abilistic model of the the potential outcome Y [a] ∈ R of an

action a ∈ {0, 1}, given covariates x ∈ X , e.g. X = R
d.

The decision-maker has a policy for choosing which action

to take for a unit x, based on its predicted individual po-

tential outcomes p̂(y[a] | x). The outcome model has been

learned in retrospective from observational data, which may

be imbalanced in the observed actions. The observational

data D is a set of n observations {yi, ai,xi}
n
i=1, where yi

is the observed outcome of action ai for unit xi. Imbalance

means that the covariate distributions are different in the

treated (ai = 1) and control groups (ai = 0).

The active learning task is to sequentially improve the

decision-making performance under the decision-maker’s

policy, by making queries about counterfactual outcomes

Y [a] | X = x. In this work, we use the objective to improve

the decisions for a particular target unit x̃, but the proposed

method applies to multiple targets as well.

3.2. Assumptions for Causal Inference

We assume that the unknown policy used to choose actions

in the training data only depends on the observed covariates

x ∈ X . This is equivalent to the no unmeasured confounders

assumption (Hernán & Robins, 2018) and implies that all

confounders are included in x.

We further assume consistency of potential outcomes, which

means that the potential outcomes p(y[a] | x) = p(y | X =
x, A = a) can be directly estimated from the observed

outcomes in the training data. Regardless of this, imbalance

will still cause issues.

4. Methods

Preliminaries. Causal effect of a treatment is the differ-

ence between outcomes when a unit x ∈ X is treated and

not treated, where X is the population. Individualized treat-

ment effect is defined as τ(x) = E[Y [1]− Y [0] | X = x],
where a = 1 means treated and a = 0 not treated, i.e. con-

trol. Fundamental problem in causal inference is that we

cannot observe both potential outcomes for the same unit x.

There exists extensive work on how to learn estimates of the

individualized treatment effects τ̂(x) despite this limitation,

e.g. Hill (2011); Johansson et al. (2016); Shalit et al. (2017);

Alaa & van der Schaar (2017); Wager & Athey (2018).

In this work, the task is to decide which action a to choose

for x̃. Decision-making performance is measured as the

probability of correct decision, or equivalently, the propor-

tion of correct decisions in repeated decision-making tasks.

Definition: Type S error rate γ is the probability of the

model inferring the sign of the treatment effect wrong;

γ: M× PX ,Y → [0, 1] where M is the model space and

PX ,Y is the true treatment effects (distributions over X ×Y).

The expected Type S error rate in X is

γ = EPX ,Y
[I(sign(τ̂) 6= sign(τ))], where I(A) = 1 if

condition A is true, and 0 otherwise.

The expected proportion of correct decisions in population

X is then 1 − γ, which makes Type S error rate a natural

measure of the decision-making performance.

We assume that the decision-maker’s policy is to choose

the action with the highest expected utility of the outcome.

Without loss of generality we will assume that the utility is

directly the outcome y (higher better); more sophisticated

utilities are discussed in Section 6.
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4.1. Effect of Imbalance on Type S Error Rate

In this section we prove that, under certain assumptions,

imbalance increases the error rate in decision-making. We

start by a sketch of the proof and then continue with details.

Sketch of proof: First, we assume a probabilistic model

of potential outcomes, with broad prior distributions. This

implies that when the sample size is small, posteriors will be

wide. Then, we show that imbalance decreases the expected

number of samples locally, therefore increasing the Type

S error rate locally. Finally, we provide conditions under

which local increase in Type S error rate also increases the

expected global Type S error rate.

Assumption 1. (Prior). Assume a broad prior on the ex-

pected potential outcomes µa: p(µa) > D > 0 ∀µa ∈
[−K,K].

Assumption 2. (Likelihood). Likelihood of observation

p(ya | µa) > C > 0 ∀ya ∈ [−K,K].

Comment. Consequence of Assumptions 1 and 2 is that if

sample size is small, the posterior will be wide.

Lemma 1. Given observations on two potential outcomes

D = {y1,i}
n1
i=1 ∪ {y0,j}

n0
j=1, probability of Type S error has

lower bound p(“Type S error”) > 2K2D2Cn1+n0 .

Assumption 3. (Covariate distributions). Let pa(x) :=
p(x | a) be the covariate distribution of group a in covariate

space X . Assume pa(x) are Lipschitz continuous with

constant L.

Definition: (Imbalance). Imbalance can be measured us-

ing Integral Probability Metric as described by Shalit et al.

(2017). Let G be a function family consisting of functions

g : X → R. For a pair of distributions p, q over X the

Integral Probability Metric is defined as

IPMG(p, q) = sup
g∈G

∣

∣

∣

∣

∫

X

g(x)(p(x)− q(x))dx

∣

∣

∣

∣

. (1)

Assumption 4. (Imbalance). Assume there exists non-

empty Ω = {x ∈ X | |p1(x) − p0(x)| ≥ h} where h > 0.

(For small enough h this holds if there is any imbalance).

Lemma 2. Let r be the smallest radius r′ > 0 of a neigh-

borhood Br′(xe) of xe ∈ Ω, such that |p1(x)− p0(x)| = 0
for some x in the border ∂Br(xe). Given assumptions 3

and 4, then r ≥ h
2L for all xe ∈ Ω.

Corollary of Lemma 2. Mark P a
Br(xe)

=
∫

Br(xe)
pa(x)dx.

By Lemma 2 and Assumption 3, P a
Br(xe)

> P 1−a
Br(xe)

. This

means that the expected number of observations from the

group 1− a is lower than from the group a in Br(xe).

The following theorem is our main result:

Theorem 1. Let N be the sample size, and a the treatment

with the higher number of observations in Br(xe), and x ∈
R. Then the expected probability of Type S error in Br(xe)
has lower bound

p(“Type S error”) > 2K2D2CN(Pa
Br(xe)−(1−p(a)) h2

2L ).

Comment. Theorem 1 shows that, with fixed r, N and p(a),
the larger the local imbalance (h) in Br(xe), the higher the

Type S error rate in Br(xe) is. Higher-dimensional cases

are considered in the supplementary.

Now, we have shown that imbalance increases locally the

Type S error rate. Then the question remains whether the

error rate increases globally as well, or do the local effects

cancel out each other. We prove this in one-dimensional

case, but we see no reason why the proof would not extend

to higher dimensions as well. The following assumption and

theorem give conditions under which imbalance increases

the global Type S error rate.

Assumption 5. Assume the following balanced and imbal-

anced settings. In the balanced setting, let p1(x) = p0(x) =
p(x), and x ∈ R. Without loss of generality we assume

that imbalance arises from a shift in p0(x), s.t. in the imbal-

anced setting p0(x) = p1(x)− η(x), where η(x) ∈ R, and
∫

η(x)dx = 0.

Theorem 2. Denote Pη≥h =
∫

X
I(η(x) ≥ h)pt(x)dx,

where pt(x) is the covariate distribution in the test set. Given

Assumption 5, if Pη≥h > CN(1−u)h, then imbalance η(x)
increases the lower bound of the expected global Type S

error rate in X .

Proofs in the supplementary.

4.2. Estimated Type S Error Rate

In the Bayesian sense, the model p̂(y[a] | x, D) captures

our current understanding of the problem, and therefore the

estimated Type S error rate is p̂(y[1] < y[0] | x, D) if the

expected effect is positive, that is, if Ep̂(y[1]|x,D)[y[1]] >
Ep̂(y[0]|x,D)[y[0]]. Respectively, if the expected effect is

negative, then the estimated error rate is p̂(y[1] > y[0] |
x, D).

We analyze the properties of the estimated Type S error

rate in the model family of linear-parameter regression

models, using standard Bayesian linear regression with

basis functions. The observation model is y[a] | x ∼
N(w⊤φ(x, a), σ2

0), where φ(x, a) are the basis functions.

The regression weights have Gaussian prior distribution

w ∼ N(0, αI). Assuming σ0 and α are known, the

posterior predictive distributions of potential outcomes

p̂(ỹ[a] | x̃, D) are Gaussian, with mean and variance

µ̂a(x̃) =
1

σ2
0

φ(x̃, a)⊤SaΦ
⊤
a ya and
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σ̂2
a(x̃) = σ2

0 + φ(x̃, a)⊤Saφ(x̃, a),where

S−1
a = αI +

1

σ2
0

Φ⊤
a Φa,

where Φa is a matrix containing the feature vectors φ(xi, a)
of the xi that were treated with a, and similarly ya is a

vector of observed outcomes of a.

The treatment effect τ̃ | x̃ = ỹ[1] − ỹ[0] | x̃ ∼ N(µ̂1 −
µ̂0, σ̂

2
a=1(x̃) + σ̂2

a=0(x̃)). For simplicity, assume that the

expected treatment effect Ep̂(τ̃ |x̃,D)[τ̃ ] is positive. Then it

can easily be shown that the estimated Type S error rate in a

test unit x̃ is

γ̂(x̃) = probit−1

(

−
|Ep̂(τ̃ |x̃,D)[τ̃ ]|

Var(p̂(τ̃ | x̃, D))
1
2

)

, (2)

where probit−1 is the cumulative distribution function of

normal distribution, and the expectations and variances are

over the posterior predictive distribution of τ̃ | x̃. (The abso-

lute value in (2) makes it to apply also to negative expected

treatment effects.) From (2) we see that the estimated Type

S error rate will increase if the estimated treatment effect

decreases, or if posterior uncertainty (variance) increases.

Intuitively this makes sense.

4.3. Decision-Making Aware Active Learning

Our hypothesis is that active learning criteria that reduce the

estimated Type S error rate will result in higher decision-

making performance. We call active learning criteria that

reduce the estimated Type S error decision-making aware.

A special example of decision-making aware criteria is

targeted expected information gain introduced by Sundin

et al. (2018). It selects the next query by maximizing the

expected information gain of the posterior p̂(ỹ | x̃) us-

ing KL-divergence. This criterion is related to entropy

minimization, because the expected KL-divergence be-

tween the current and updated posteriors can be written

as E [DKL(p̂
∗||p̂)] = E [H(p̂∗, p̂)] − E [H(p̂∗)], where p̂∗

is the updated posterior, and H(p̂∗) its entropy, and H(p̂∗, p̂)
is the cross entropy between the current and updated posteri-

ors. Reducing the entropy in the posterior therefore reduces

variance in eq. (2), which decreases the estimated Type S

error rate.

We propose to directly minimize the estimated Type S error

rate in eq. (2) with active learning. The criterion is to

maximize the estimated reliability of a decision at x̃, that is,

1− γ̂(x̃).

Directly minimizing the error can be interpreted as only ex-

ploiting what we already know, which lacks in exploration.

There is an easy fix, though, which is to add exploration

on the error. The exploration-exploitation trade-off is man-

aged by maximizing the expected information gain on the

predictive distribution of Type S error: Bernoulli(γ̂(x̃))
(technically, its relative entropy). The maximization of the

information gain is equivalent to minimizing the posterior

entropy and consequently the log-loss (Settles, 2012).

4.4. Counterfactual Elicitation

Assuming it is possible to acquire (noisy) observations about

counterfactuals in the training data, we can do more, as dis-

cussed in the introduction. Denote by D the set of training

examples {xi, ai, yi}
n
i=1 for which the factual outcomes yi

have been observed, and denote by U the counterfactual

examples {xi, 1− ai}
n
i=1, for which the outcomes are un-

known. Then we can use active learning to construct a set

L that contains the new observations, and L will be data

which would not normally be available. At each iteration,

the algorithm selects {x∗, a∗} ∈ U to solicit a counterfac-

tual outcome y∗. After this, {x∗, a∗, y∗} is added to L, and

removed from U. So the optimization problem at each query

iteration k becomes

x∗, a∗ = argmin
{x,a}∈U

Ep̂(y|x,a,D,L) [γ̂k+1(x̃)] , where

γ̂k+1(x̃) = p̂ (y[ax̃] < y[1− ax̃] | x̃,D,L, {x, a, y}) ,

and ax̃ is the treatment with the highest expected outcome

for x̃: ax̃ = argmaxa′ Ep̂(y[a′]|x̃,D,L,{x,a,y})[y[a
′]].

Because the new observations are assumed to come from

a different source than the original data, the model has

separate noise parameters for the observation models of D

and L.

4.5. Comparative Observations about Counterfactuals

Another possible way in which noisy observations may

be available is as comparisons of two counterfactual out-

comes. Then, active learning is used to acquire a com-

parative observation c ∈ 0, 1, which is a comparison be-

tween the expected counterfactual outcomes: c = 1 if

E [Y [1] | X = xi] > E [Y [0] | X = xi], else c = 0. At

each iteration, the algorithm selects {x∗} ∈ U to solicit

comparative observation c∗. After this, {x∗, c∗} is added to

L, and removed from U.

5. Experiments

We run three sets of experiments. First, we show that imbal-

ance correlates with both the estimated and observed Type

S error rate in simulated data. Second, we evaluate the per-

formance of the proposed decision-making active learning

criterion in simulated and semi-synthetic medical data. Last,

we compare the performance to other active learning criteria

that are applicable to the decision-making task, assuming a

fixed query budget.
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Figure 2. Imbalance correlates with the observed (γ) and estimated

(γ̂) Type S error rates on wide range of sample sizes n. Each line

shows correlations between imbalance, estimated Type S error rate

and observed Type S error rate in 1200 data sets. Separate lines

show variation in 5 repeated experiments.

5.1. The Observed and Estimated Type S Error Rate in

Imbalanced Data

In this section, we show empirically how imbalance affects

the reliability of decision-making, and see that the estimated

Type S error rate correlates with the observed error rate. The

data are generated such that the outcome model contains

interaction between a and x, and that the treatment effect is

either saturating or increasingly increasing.

The outcome model generation is repeated 200 times, and

for each outcome model we generate 6 training sets. The

training data generation differs in the propensity scores,

resulting in different levels of imbalance in the training

data sets. Details of the data generation process are in the

Supplementary. We measure imbalance using the Maximum

Mean Discrepancy (MDD) (Gretton et al., 2012). We model

the potential outcomes using two independent Gaussian

Processes with squared exponential kernel.

Fig. 2 shows moderate correlation between imbalance and

the Type S error rate, and that the correlation is quite con-

stant across a wide range of sample sizes. This is empirical

evidence of Theorem 1. Furthermore, the estimated Type S

error rate γ̂ and observed Type S error rate γ have strong

correlation, around 0.7. Plotting γ̂ against γ shows that low

estimated error indicates low observed error (figure in the

Supplementary). This suggests that the estimated Type S

error rate is a good indicator of the prospective decision-

making performance.

5.2. Decision-Making Aware Active Learning

We evaluate the performance of decision-making aware ac-

tive learning (D-M Aware) using counterfactual elicitation

in two cases. The first is synthetic data with high local

imbalance and difficult outcome function shapes with in-

teraction between a and x, similar to those in Fig. 1. The

second is a semi-synthetic medical data set IHDP (Hill,

2011), commonly used in causal inference.

5.2.1. SIMULATED DATA WITH BINARY OUTCOMES

In this experiment, we study the proposed active learning

approach in simulated data. Binary outcome y indicates the

occurrence of an adverse effect, and the decision-making

task is therefore to choose the treatment that results in a

lower probability of the adverse effect. The setting is similar

to that in the Fig. 1.

Synthetic data. The outcome y ∈ {0, 1} is Bernoulli

distributed with parameter θx,a, given a one-dimensional

covariate x ∈ R and treatment a ∈ {0, 1}. The data are

generated from a logistic regression model with interac-

tion between a and 3 radial basis functions (RBF) φ(x),
s.t. θx,a = logit−1(w⊤

0 φ(x) + w
⊤
1 φ(x)a). Imbalance is

induced to the training data by making the better treatment

more likely for each x. Training sample size is 30. Details,

such as the weights of the radial basis functions, are in the

Supplementary.

Model and learning. We model the data with a logistic

regression model p(y | x, a) ∼ Bernoulli(θx,a), where

θx,a has the same form as in the data generation process.

The model is fit using a probabilistic programming language

Stan (Stan Development Team, 2017; Carpenter et al., 2017).

We assume that the RBF centers and length-scale are known,

so that only w0 and w1 need to be learned.

5.2.2. MEDICAL SEMI-SYNTHETIC DATA WITH

CONTINUOUS OUTCOMES

We evaluate decision-making aware active learning ap-

proaches in deciding on medical interventions on real medi-

cal data with continuous-valued synthetic outcomes.

The IHDP data set. We use the Infant Health and De-

velopment Program (IHDP) dataset from Hill (2011), also

used e.g. by Shalit et al. (2017) and Alaa & van der Schaar

(2017), including synthetic outcomes, containing 747 obser-

vations of 25 features. Technical details are that we use the

harder of the two cases in the paper, the “non-overlap case,”

and predict the non-linear outcome involving interactions

(“Response Surface C”). These data come from a real ran-

domized experiment, and imbalance has been produced by

removing a part of the treated population. We evaluate the

performance in leave-one-out cross-validation, but in order

to make the problem even more realistically hard, for each

of the 747 target units we choose randomly 100 observations

as training examples.

Model and learning. We fit separate GPs to the out-

comes of each treatment with GPy1 (version 1.9.2), and

use mixed noise likelihood to learn the noise in the obser-

1Toolbox available at: https://sheffieldml.github.io/GPy
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(a)

(b)

Figure 3. Active learning that minimizes the estimated Type S

error (D-M aware) increases the decision-making performance,

measured in proportion of correct decisions. Shaded areas show

the 95% bootstrap confidence interval. (a) Results of the simulated

data with binary outcomes, in 100 repetitions averaged over 3

target units in each response type regions; the columns correspond

to green (leftmost), blue (middle) and magenta (rightmost) regions

in the Fig. 1. (b) Results in IHDP data as a function of the number

of counterfactual queries to a simulated, noisy oracle, averaged

over 747 decision-making tasks.

vations acquired by active learning. We use an exponenti-

ated quadratic kernel with a separate length-scale parameter

for each variable, and optimize the hyperparameters using

marginal likelihood. Details of the priors are in the Supple-

mentary. We use Gauss-Hermite quadrature of order 32 to

approximate the expectations in D-M aware, Targeted-IG,

and EIG.

5.2.3. RESULTS: EVALUATION OF DECISION-MAKING

AWARE ACTIVE LEARNING

First, we evaluate the performance of the proposed active

learning that minimizes the estimated Type S error rate (D-

M aware) on the decision-making performance, as measured

by the proportion of correct decisions. Fig. 3 shows that our

method improves decision-making performance efficiently,

compared to the baseline of uncertainty sampling. The dif-

ference to the baseline is statistically significant in Fig. 3(a)

two out of three cases in the simulated data, and Fig. 3(b)

in the semi-synthetic medical data (IHDP) (based on 95%

bootstrap confidence intervals).

5.2.4. RESULTS: COMPARISON OF ACTIVE LEARNING

CRITERIA IN DECISION-MAKING TASKS

Next, we compare the performance of D-M aware to two

widely-used earlier active learning approaches, uncertainty

sampling and maximum expected information gain (Culotta

& McCallum, 2005; Roy & McCallum, 2001) (EIG), and

also include results for the previously introduced special

case of decision-making aware active learning, targeted-IG

(see Section 4.3). In order to make the methods comparable,

we use the variant of D-M aware that also explores (see Sec-

tion 4.3), as do the EIG and targeted-IG. The performance

of the non-exploring variant of D-M aware is slightly lower

(not shown) in all cases.

Simulated data. Fig. 4(a) shows that the decision-making

aware active learning criteria, D-M aware and Targeted-IG,

are the fastest to improve decision-making performance,

and achieve significant increase in correct decisions after

just one query in two cases out of three. After five so-

licited counterfactuals, Expected Information Gain (EIG)

has reached comparable but still lower performance. Un-

certainty sampling does not perform well in this example

because it concentrates queries to the areas with estimated

probability of adverse effect being close to 0.5, instead of

close to the target units. Active learning reduces both imbal-

ance and the estimated Type S error rate. Interestingly, D-M

aware method achieves good decision-making performance

regardless of having only little effect on imbalance, which

may be due to local querying that reduces the local imbal-

ance. In contrast, EIG reduces imbalance the most, which is

expected as the criterion selects queries that are beneficial

to the whole population.

IHDP data. The results in the IHDP data are similar as

in the simulated data; The decision-making performance

improves fastest with D-M aware and Targeted-IG, com-

pared to EIG and uncertainty sampling (see Fig. 4(b)). D-M

aware and Targeted-IG achieve statistically significant im-

provement in decision-making performance already with

one query (based on 95% bootstrap confidence intervals).

5.2.5. COMPARATIVE FEEDBACK

Last, we demonstrate the use of comparative observations

for counterfactual elicitation. The setting is the same as in

Section 5.2.1, with the difference that the query is about

which treatment has lower Bernoulli parameter. We fit the

outcomes with GPs using Stan (Stan Development Team,

2017; Carpenter et al., 2017), which allows the model to

learn both from direct and comparative observations. The

results in Fig. 5 show that comparative observations increase

decision-making performance efficiently in the simulated

data setting. We note that the results with comparative

feedback are better than those in Fig. 4(a), because here the

queries give information about θx,1 > θx,0, thus providing

more information than the direct observations on outcome

y[a] | x ∼ Bernoulli(θx,a).
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(a) (b)

Figure 4. Comparison of active learning criteria as a function of number of queries. (a) Simulated data (b) IHDP data. The topmost

panel in each shows imbalance, middle panel the estimated Type S error rate, and the lowest panel the proportion of correct decisions.

Information-gain-based approaches are more effective than uncertainty sampling, and the decision making-aware criteria D-M aware and

Targeted-IG are the best. Shaded areas show the 95% bootstrap confidence interval.

Figure 5. Comparative observations on the Bernoulli parameter

in the simulated data is effective in increasing the proportion of

correct decisions. The results are averaged over 3 target units in

each response type regions and 100 repetitions.

6. Discussion and Conclusions

As machine learning systems are being integrated into hu-

man decision-making workflows, it is increasingly impor-

tant that deployed models are correct and reliable. Predict-

ing likely outcomes of various actions for decision support

is especially challenging because the system’s success is

measured by its ability to correctly forecast the effect of

interventions. This is more difficult than the classical sense

of generalization in machine learning, where the goal is to

have low risk under the distribution from which the training

data was sampled, meaning that both distributions of x and

a | x stay the same (Pearl, 2009). In this paper we focused

on the effect that imbalance in the training data can have on

the reliability of comparisons of p̂(y[a] | x). We propose to

improve the reliability by active learning that aims at max-

imizing the estimated reliability. In our experiments, this

decision-making aware active learning outperforms standard

methods in decreasing the error rate in decision-making.

The most computationally expensive step in the proposed

approach is computing the expectation of the information

gain, with complexity at worst N times that of re-training

the model if no analytic solution is available. For example, a

sparse GP model would have O(N2M2) complexity where

M is the number of inducing points. The complexity of

re-training GP models can be reduced using Kalman-filter

based implementation with sequential updates for soliciting

new observations. Furthermore, the full algorithm can be

approximated by only including k nearest neighbours of the

target unit x̃, using the model’s intrinsic distance measure,

when computing the expected utilities. Our preliminary

results indicate, however, that the performance suffers if k

is too low (see additional results in the Supplementary).

In this work, we assumed that the utility of an action a is

directly the outcome y[a]. In case the utility is a function of

the outcome, U(y[a]), our method applies by defining the

Type S error rate as the probability of inferring erroneously

which utility is the highest.

Future work includes soliciting observations from multi-

ple sources, developing fast approximations that will allow

computing the decision-making based utility efficiently for

complex models, and studying human experts as one source

of information.

One interesting application of the method is in personalized

medicine, where counterfactual elicitation could solicit prac-

titioners’ knowledge to the model. For example, a clinician

in a hospital has access to medical records of previous pa-

tients, and may also have personal experience about some of

them. These data are rarely included in training sets of the

models, but active learning and counterfactual elicitation

could allow leveraging this additional source of information

to infer more accurately about the future.
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