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Abstract—A data-adaptive algorithm is presented for the
selection of the basis functions and training data used in classi-
fier design with application to sensing mine-like targets with a
side-scan sonar. Automatic detection of mine-like targets using
side-scan sonar imagery is complicated by the variability of the
target, clutter, and background signatures. Specifically, the strong
dependence of the data on environmental conditions vitiates the
assumption that one may perform a priori algorithm training using
separate side-scan sonar data collected previously. In this paper,
a novel active-learning algorithm is developed based on kernel
classifiers with the goal of enhancing detection/classification of
mines without requiring an a priori training set. It is assumed that
divers and/or unmanned underwater vehicles (UUVs) may be used
to determine the binary labels (target/clutter) of a small number
of signatures from a given side-scan collection. These sets of signa-
tures and associated labels are then used to train a kernel-based
algorithm with which the remaining side-scan signatures are
classified. Information-theoretic concepts are used to adaptively
construct the form of the kernel classifier and to determine which
signatures and associated labels would be most informative in the
context of algorithm training. Using measured side-looking sonar
data, the authors demonstrate that the number of signatures for
which labels are required (via diver/UUV) is often small relative
to the total number of potential targets in a given image. This
procedure designs the detection/classification algorithm on the
observed data itself without requiring a priori training data and
also allows adaptation as environmental conditions change.

Index Terms—Active learning, classifiaction, detection,
mine-like, side-scan sonar, target, unmanned underwater ve-
hicle (UUV).

I. INTRODUCTION

F
UTURE mine counter measure (MCM) operations

will likely make use of unmanned underwater vehicles

(UUVs) equipped with long- and/or short-range sensors (e.g.,

side-scan sonar and cameras, respectively) and employing

computer-aided detection and classification (CAD/CAC) al-

gorithms. The detection phase is defined as the process of

delineating those signatures that have the possibility of being

a mine. During detection, one must recognize mines with

high probability, accepting a potentially large number of false

alarms. In the subsequent classification stage, algorithms are
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designed to reject as many of the false alarms as possible while

retaining actual mines. Detection algorithms are generally

simple since they must be applied to all observed data while

classification algorithms are typically more sophisticated, being

only applied to the pruned signatures. This paper focuses pri-

marily on the classification phase, with the goal of developing

algorithms that do not require an a priori training set, and

motivated by real-world complexities elucidated below. As

discussed further below, the contribution of this paper is in the

development of a technique for data-adaptive selection of the

feature basis vectors and the set of training data used to design

a kernel-based classifier, with performance demonstrated on

measured side-scan sonar data.

The authors focus here on wide-area coverage via a side-

scan sonar. Side-scan sonar affords the ability to operate at long

ranges (100 to 300 m), permitting sensing over large regions.

The high-frequency character of many of these sensors yields

features that are similar to those found in optical imagery. For

example, a paired highlight and a shadow region (from the front

of the target and from acoustic blockage at the rear, respectively)

are the primary features for the detection of mine-like objects.

However, the detection of mines is complicated by significant

variability in the appearance of the background, mine-like sig-

natures, and clutter. The mine signature variability is caused by

the large number of underwater mine types, by mine deploy-

ment variation, and by mine–background interaction over time

due to water currents.

To address this problem, supervised classification techniques

have been implemented [1]–[5]. With these techniques, one typ-

ically requires an a priori set of training data consisting of a

set of signatures and associated binary labels (target/clutter). To

constitute a training set, known targets (e.g., mines) must be em-

placed in a given environment and side-scan data collected, with

all nonemplaced scatterers assumed to be clutter. The difficulty

of this procedure resides 1) in the very large number of mine

types, mine deployments, and mine histories (how long they

have been deployed); and 2) the significant dependence of the

imagery on the properties of the environment, for example, the

properties of the sea bottom. The variability of 1) and 2) makes

it virtually impossible to constitute a training set that is robust

to all mine deployments and environments to be encountered.

In previous studies on the assessment of CAD/CAC algorithm

performance, researchers have typically divided a given data

set into a portion used for training and the remaining used for

testing [1]. Since in this case the mine and environmental con-

ditions of the training and testing data are often well matched,

the results from such studies are an optimistic view of the per-

formance that may be achieved in the field.
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In this paper, the authors present a new framework applicable

to the “real” MCM problem, accounting for the fact that it is

unlikely that an appropriate a priori training set will be avail-

able for operations in general environments. It is assumed that

a side-scan sonar collects data for wide-area surveillance. The

authors also assume access to small/mobile UUVs and/or divers

that may interrogate signatures of interest at close range (e.g.,

with cameras or other close-range sensors) to ascertain the as-

sociated labels (target/clutter). This yields a set of signatures

and associated labels with which a classification algorithm may

be designed to analyze the remaining side-scan sonar imagery.

This paper addresses the problem of determining the informa-

tion content accrued by a set of signatures and associated labels,

and guiding the selection of those signatures for which knowl-

edge of the associated labels would be most informative (this

information content is computed without a priori knowledge of

the labels themselves).

Stating the problem mathematically, let represent

the known measured side-scan sonar signatures of under-

water objects, with the set of all denoted as . The set

is defined in the initial detection phase. Let represent

the associated unknown binary labels (target/nontarget) of the

signatures to be determined in the classification phase. An ob-

served signature or feature vector may be classified using a

kernel-based function [6]–[8] of the form

(1)

where is the th basis function, are scalar weights, is a

scalar offset or bias, and is a general kernel [6]–[8]

defining the similarity of and . Similar kernel-based ap-

proaches to the form in (1) are utilized by the support vector

machine (SVM) [6], [7], the relevance vector machine (RVM)

[8], as well as many other related algorithms.

For the approach presented in this paper, the set of basis func-

tions is selected from the observed data ,

i.e., . The number of required basis functions is

data dependent and is determined adaptively by the algorithm.

Specifically, by using fundamental information-theoretic con-

siderations (detailed below), the set is defined by selecting

those signatures from that are most representative of the mea-

sured data. The labels (identities) of the underwater objects as-

sociated with are not required. Once the basis set is

defined, the associated model weights (denoted col-

lectively by the vector ) are determined, and for this task la-

beled data are required. The authors thus define a subset of sig-

natures for which knowledge of the associated labels

would be most informative in the context of defining the

model weights. The set of signatures is determined using

information-theoretic metrics, as detailed below. Note that the

sets and may overlap, but they are generally distinct.

After the labels associated with have been identified (via

close-range mobile UUVs and/or divers), the classification algo-

rithm associated with (1) is trained as usual [1] and then applied

to . It is important to emphasize that within the frame-

work developed here, the training set is determined

adaptively on the observed site-dependent data via fundamental

information-theoretic metrics without requiring a priori training

data.

The remainder of the paper is organized as follows. In

Section II, the authors detail the theory employed in this

framework, with example results presented in Section III using

measured side-scan sonar data. Conclusions are addressed in

Section IV.

II. ACTIVE CLASSIFIER DESIGN

A simple detection algorithm is employed on the side-scan

imagery to define a set of signatures associated

with the possible mines (with an anticipated large false-alarm

rate). The subsequent active design of a kernel-based classifier

proceeds in three steps based on these observed unlabeled sig-

natures: 1) selection of basis functions to build the structure of

the kernel classifier using unlabeled signatures from ; 2) se-

lection of the signatures for which knowledge of the associated

labels would be most informative, this followed by the discovery

of the associated labels via a near-range sensor (e.g., a camera

on a mobile UUV); and 3) estimation of the kernel-classifier

weights using the subset of labeled data and the basis functions

determined in steps 1) and 2). Note that all of the signatures

for which labels are desirable (step 2) may be determined at

once, from which one may design an optimal path to guide the

near-range UUV to the objects, such that the associated labels

may be determined in an efficient manner. These three steps are

detailed below.

A. Model Structure

The kernel-based function in (1), using basis functions, may

be expressed concisely as [6]–[8]

(2)

where

(3)

(4)

By construction, in algorithm design, the binary label of a

given signature is set to for one class and for the

other. In a kernel-based algorithm, the objective is for

if is associated with the class, and

otherwise. For the th signature with label , the error in the

kernel algorithm may be expressed

(5)

where is the error term resulting from imperfections in

the model. In algorithm design, one of the aims is to find the

weights that minimize the error observed on training data for

which the data and labels are known. If the training data are

well matched to the subsequent testing data, then the algorithm

is likely to constitute a robust detection procedure. However,

as indicated above, in many sensing problems it is impractical

to have a separate training set, with this issue addressed by the

information-theoretic techniques discussed below.
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B. Selection of Basis Functions

Assuming that the in (5) is independent and that is mod-

eled as zero mean with variance , then the Fisher information

matrix associated with and is defined as [9], [10]

(6)

where . Note that for the computation of

the labels associated with and are not required (this is a

result of the fact that the model in (2) is linear in the weights

). As discussed in [9], the Fisher information matrix in (6) is

associated with the errors in fitting the model to all measured

using the basis . By adding a new basis function to ,

one obtains

(7)

where and , .

Following (2), the authors may write from the augmented

classifier for which the Fisher information matrix is found

to be

(8)

where . The expression in (8) is again

associated with fitting the model to the measured , but

now using an -member basis set , vis-à-vis the

-member basis in (6). The authors develop a metric that

compares (6) and (8), thereby quantifying the information gain

by adding the new basis .

Of the many ways of comparing the information content re-

flected by and , the so-called D-optimal procedure

[9] is employed here, defined as the determinant of the infor-

mation matrix. Let the logarithm of the determinant of be

denoted as , then using the matrix identity

the authors have

(9)

where

(10)

Since , the matrix is full rank and its inverse exists

(assuming that of the vectors are linearly in-

dependent). Under these conditions, it may be shown that ,

and therefore in (9) is generally valid.

It is known from information theory [10] that the inverse of

gives the Cramer–Rao lower bound (CRLB) of the covari-

ance matrix of the estimate of . A large implies low vari-

ances of the components of . Given the th order decision

function , is fixed, and one relies on the maximization of

to obtain a large value of . This can be achieved

by conducting a “greedy” search for the new in with the

previously selected support data excluded as

(11)

Using the procedure outlined above, basis elements are ap-

pended until the information gain reflected in is no

longer deemed significant. Note from (9) and (10) that evalua-

tion of (11) does not require knowledge of the target labels ,

and therefore no identification (i.e., navigation of a UUV to spe-

cific locations) is required to determine the basis .

The authors have introduced a variance to model the error

of the regression model with respect to . By using different ,

one may weigh the relative importance the algorithm associates

with . In the paper presented here, the are assumed to be

the same for all data samples, and therefore from (9), (10), and

(11) is simply a constant that does not affect which feature

vectors are selected as basis functions.

Note that there are other procedures one may consider for the

design of the basis set such as vector quantization (VQ) [11],

learning vector quantization (LVQ) [12], and principal compo-

nent analysis (PCA) [13]. In each of these, the final sets of basis

vectors are not, in general, members of (e.g., they are

eigenvectors or centroids for PCA and VQ, respectively). Any of

these approaches may be used for the design of ; the authors

have chosen the approach elucidated above because all mem-

bers of are members of , allowing a direct comparison to

other machine-learning algorithms such as the SVM [6], [7] and

the RVM [8]. In the SVM and RVM algorithms, the basis

comes from a labeled training data set, where in the procedure

outlined above the basis vectors are members of the unlabeled

measured data .

It is interesting to note that if is the same for all , as as-

sumed below, (6) reduces to the matrix employed in PCA [13],

where in this case the eigenvectors are associated with the set of

vectors

for . In PCA, the authors use and

compute the associated eigenvectors, retaining those with large

eigenvalues. By maximizing the determinant of (6) with each

new data as in (11), the authors are essentially defining as

those members of that add new information to the associated

eigenbases of [utilizing the connection between

the determinant and eigenvalues of (6)]. Once additional mem-

bers of no longer increase (11) substantially, implicitly the

additional eigenvalues associated with (6) are small, no longer

yielding significant (“principal”) eigenvectors. It is therefore to

be noted that the procedure outlined above for the design of

is closely related to PCA, the distinction being that PCA

yields an eigenbasis of , while in the procedure

discussed here the elements of are members of , consistent

as noted with the SVM, RVM, Kernel Matching Pursuit (KMP),

and related kernel machines.
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C. Selection of Labeled Data, for Model Training

Assume that the procedure discussed above selects bases,

defining . The authors now require labeled data to op-

timize the associated model weights . In a manner analogous

to the previous discussion, the authors select those for

which knowledge of the associated labels would be most in-

formative in the context of defining . Those that are so

selected define a subset of signatures , and the iden-

tity of these objects is identified (e.g., by a near-range UUV)

to learn the respective set of labels . The sets of signatures

and labels are then used to define the weights in a

least squares sense, and the resulting model is then used

to specify which of the remaining signatures are likely

targets of interest.

Assume that there are signatures in , denoted . The

authors quantify the information content in in the context

of estimating the model weights and further ask which

would be most informative if it and its label were added

for the determination of . Analogous to (6), the authors have

(12)

The expressions in (6) and (12) both employ an -member basis

set . The distinction is that in (6) the authors are in-

terested in defining and sum over all observed signatures

. By contrast, in (12), the basis set is known and

fixed, and the authors are only summing over those signatures

for which knowledge of the associated labels is most in-

formative in defining the model weights .

After adding a new signature , , the authors

now have and is updated as

(13)

where represents the index of the new signature selected

for . Using the matrix identity

, where det denotes determinant, one obtains

from (13)

(14)

with

(15)

Care is needed in evaluating the inverse of since if

the matrix is rank deficient. The authors have considered ad-

dressing this in either of two ways. A standard approach for in-

version of such matrices is to add a small diagonal term to

such that its inverse exists. Alternatively, by construction, one

may assume that the items associated with the basis are all

associated with (and therefore ), assuring that the

matrix is full rank. The authors have examined both procedures

and yield comparable results. They use the second approach in

all examples presented in Section III.

Having addressed the inverse of , one iteratively maxi-

mizes to obtain

(16)

Note that to define the authors again do not require the

signature labels. The elements of are selected iteratively in a

“greedy” fashion, as indicated in (16), until the information gain

is below a prescribed threshold. After iterations, the authors

have defined those signatures for which knowledge of the

labels will best approximate the weights . These items are

identified (the mobile UUV navigates to specific locations to

“discover” the label), yielding the labels . Since the labels

may be determined after all members of are defined, one

may design an optimal (efficient) path for the UUV to visit the

associated objects.

It is important to emphasize that the procedure used to select

the model basis functions (Section II-B) is myopic, in the sense

that the authors select one basis function at a time from all of

the unlabeled data, via the D-optimal procedure in (11). Simi-

larly, in this section, the authors choose to label a subset of unla-

beled signatures one at a time. One should note that, while prac-

tical computationally, such a procedure is not globally optimal.

Specifically, an optimal algorithm would perform a combinato-

rial search for the set of potential basis functions that globally

maximize the information content (Section II-B), with the same

true for the feature vectors selected for labeling (this section).

The suboptimal myopic procedure employed here is motivated

by the goal of realizing a computationally tractable algorithm.

D. Estimation of the Weights

For the assumptions underlying the linear model in (5) and

assuming that is independent identically distributed (i.i.d.)

over the set of , with knowledge of and the

optimal estimate for the weights is expressed as [9]

(17)

where represents the set of labels determined as discussed in

the previous section as

(18)

and the matrix is defined as

...
(19)

where, for example, corresponds to .

In the classification stage, are considered and

is computed. For a prescribed threshold , is deemed asso-

ciated with the 1 class if and with the 1 class

if , and by varying the threshold one yields the re-

ceiver operating characteristic (ROC). The key component of

the model is that it is linear in the weights , which yields

a closed-form procedure for the selection of and , as

indicated in the previous sections.

III. APPLICATION TO UNDERWATER MINE DETECTION

A. Overview

The active-training methodology addressed in this paper may

be applied to any classification problem for which the data labels

are expensive to acquire and for which there is no appropriate

training data. The authors consider the detection of underwater

mines based on side-scan sonar images (see Fig. 1). The results
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Fig. 1. Typical side-scan sonar image used in this study. Example mine signatures are identified in red, with the size of the regions used to characterize the strong
(bright) response from the front of the target, as well as the longer shadow region from behind.

Fig. 2. Example mine signature extracted from Fig. 1. This is a good example for which the initial bright response and subsequent dark shadow are clearly present.

reported in this paper are from side-scan sonar data collected by

the Naval Surface Warfare Center (NSWC) Coastal System Sta-

tion (Panama City, FL). The sonar used is characterized in [1].

A total of 219 images were used for testing the performance

of the algorithms. After the detection process (discussed below),

potential targets were detected, of which 119 were

mines. This set of signatures constitutes the data set de-

scribed in Section II. The purpose of the algorithm presented

here is to determine which members of should be used to

define the basis set and which should be used to constitute

the labeled subset . After these entities are determined,

the classifier is designed as discussed in Section II-D, and clas-

sification is performed on the remaining signatures satisfying

, .

B. Detection/Prescreening Phase

In the first stage of the algorithm, the image is precondi-

tioned so subsequent detection and classification steps are ro-

bust to variations of background level. Simple range normaliza-

tion is applied, as discussed in [1]. After this step, highlights

and shadows are consistent as a function of range and stand out

more clearly.

The authors next define regions of interest (ROIs) in the im-

agery; in this stage, the normalized image is scanned by a non-
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Fig. 3. Information gain as a function of the number of basis functions n selected adaptively. (a) ln r(b ) in (9). (b) ln r(b )� ln r(b ).

linear matched filter [1] to identify the mine-like candidates to

be analyzed during the classification stage. The matched filter

contains four distinct regions: pretarget, highlight, dead zone,

and shadow (see Fig. 2) [1]. The filter was designed not only

to match an expected mine signature and but also to suppress

clutter areas simultaneously. Details on the detection algorithm

are detailed in [1].

C. Feature Extraction

For each ROI, features are extracted from the associated side-

scan imagery. The th object has the respective feature vector

, and for ROIs this yields . The authors

briefly describe below the 106 features used to constitute the

employed in this study. Most of the features employed here

are described in [1]. Additional features considered here include

shape features, gray-level features, and cluster features.

Shape features are normally considered to characterize the

appearance and specific geometry of an object. For our problem,

the highlight and shadow cast by mine-like objects (Fig. 2), as

opposed to nonmine-like objects, are characterized by regular

shapes of anticipated dimensions. Hence, the following shapes

features were extracted from the shadow and highlight: area;

elongation; solidity; eccentricity; number of zero crossing of

the curvature of the contour at small, medium, and large scales;
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Fig. 4. Information gain as a function of the number of adaptively selected labeled signatures J . (a) ln �(x ). (b) ln �(x )� ln �(x ).

number of zero crossing of the radial distance of the contour;

entropy of the radial distance; ratio of highlight to shadow area;

ratio of highlight to shadow height; minimum distance between

highlight and shadow; and horizontal alignment of shadow and

highlight. In [14] and [15], one may find a detailed definition

and description of these features.

When the quality and the resolution of the image are low,

the side-scan sonar images may not be well characterized by

the profile (shape characteristics) of the shadow and highlight.

Hence, gray-level features calculated from the shadow and

highlight are also used to aid in discriminating targets from

clutter. The following additional features were computed: stan-

dard deviation of the highlight strength (magnitude), standard

deviation of the highlight amplitude, contrast between shadow

and highlight (the absolute difference of the average high-

light strength and average shadow strength), contrast between

shadow and background (the absolute difference of the average

shadow strength and average background strength), and contrast

between highlight and background (the absolute difference of

average highlight strength and average background strength).

D. Active Classifier Design

The detection results are presented in the form of the ROC,

quantifying the probability of detection (Pd) as a function of
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Fig. 5. ROC curves for the adaptive classifier with J = 400 labeled signatures and n = 42 basis functions. For comparison, results are shown for which an RVM
[8] was employed using 50% of the data for training and 50% for testing. Results are shown for 40 random draws of the training/testing data. For the randomly
generated results, the average results are presented (curve) as well as the range of variability (error bars). For the active-learning algorithm, the ROC is shown for
testing on all data not selected for labeling, while for the RVM results testing is shown on 50% of the data not used for training.

the probability of false alarm (Pf), defined on and

. The authors present ROC curves using the adaptive-training

approach discussed in Section II, with performance compared

to a conventional training algorithm. The RVM [8] is used as

the comparative algorithm, it based on a form identical to (1).

The distinction is that the RVM, like all conventional machine-

learning algorithms, requires a distinct set of labeled training

data. For the results presented here, the simplest kernel pos-

sible is considered; specifically, is simply the inner

product between and .

For the experiments reported in this section and detailed in

Section II-B, the authors must first select the basis functions to

build the structure of the classifier. The basis functions set

are selected adaptively using the original unlabeled signatures.

Specifically, the authors start with one basis element and new

basis elements are adaptively selected until the information

gain is no longer significant [see (9)

and (10), which are used for this computation]. The expression

is plotted in Fig. 3 as a function of . As shown in

Fig. 3, the number of basis functions is set to .

Once the basis functions have been defined, the procedure

in Section III-C is employed to adaptively determine the size

of the desired training set based on the information gain

as is increased. Specifically, the authors track de-

fined in (14) for increasing and terminated the algorithm when

the information gain is minimal. At this point, adding a new

datum to the training data set did not provide significant addi-

tional information to the classifier design. The information gain

is plotted in Fig. 4 as a function of .

Based on the results in Fig. 4, the size of the training set is set to

(of which 13 are mines). Note that labels are required

for of the side-scan signatures, this representing 1.7%

of the detected signatures.

E. Comparison to Traditional Approaches

As discussed above, using the active classifier design frame-

work, signatures are used as basis functions in (1)

and labels are acquired for 1.7% of the initial de-

tections, defining the set . Using these parameters, the

classifier is designed as described in Section II-D. It is of in-

terest to look at the ability of the classifier to distinguish mines

from nonmines (clutter) and to compare this performance to that

of “conventional” approaches. For comparison, the authors train

an RVM classifier, which is exactly of the form in (1). For the

case of the RVM, half of the detection results are

used for training and the other half are used for testing. The

training/testing data were chosen randomly, and the curve rep-

resenting RVM results in Fig. 5 represents the average perfor-

mance for 40 random selections and the “error bars” associated

with the RVM results represent upper- and lower-bound Pd at

a given Pf. The RVM is trained as discussed in [8], with the al-

gorithm adaptively selecting basis functions and weights from

among the labeled training data.

From Fig. 5, the authors note that at low Pf (less than 0.1)

the traditional RVM approach performs better than the active-

learning approach, with comparable performance achieved on

average for a Pf just larger than 0.1. It is also interesting to note

that the active-learning approach achieves a (all

mines correctly classified) at a Pf of approximately 0.3, with

a much larger number of false alarms required of the RVM to

achieve this same performance.
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Fig. 6. As in Fig. 5, the random results are processed with 400 labeled signatures selected randomly (40 times) using the same set of basis functions as determined
via the adaptive algorithm. In each of the 40 random examples, 13 of the 400 signatures corresponded to mines for direct comparison with the adaptive algorithm.
For both algorithms, the ROC is shown for testing all the data not selected for labeling.

Fig. 7. Adaptive-sensing classification results as presented in Figs. 5 and 6 with n = 42 basis functions and now considering J = 400, 300, 200, and 100.

Given the basis , the authors now consider random se-

lection of the signatures for which the labels are

acquired. However, the authors stipulate that 13 of these must

come from the set of 119 detected mine signatures (the 13

mine signatures chosen randomly) to allow a comparison to

the results of active training. Note that since

and only 119 of the detected signatures are actually mines,

if the labeled signatures are defined absolutely ran-

domly, it is unlikely that many (or any) of the signatures will

correspond to mines, and therefore a classifier could not be

trained. Therefore, the comparison in Fig. 6 is for illustrative

purposes since the random selection of labeled signatures with

is unlikely in practice (due to the small number of

mines relative to total detections). For the results in Fig. 6,

the random selection of labeled signatures was performed 40

times, and average results are presented (curve) as well as the

lower and upper bound for the Pd at a given Pf. It is clear from

Fig. 6 that the active-learning results are at least as good as

the average random-selection results and significantly better

for .
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F. Reducing the Number of Labeled Signatures

As indicated above, requiring labels for of the sig-

natures represents less than 2% of the detected targets. Never-

theless, by reducing the size of , one requires fewer labeled

signatures, thereby improving the potential speed of mine clear-

ance. The authors next examine ROC results as a function of .

In Fig. 7, the authors present classification results for ,

200, 300, and 400. Note in Fig. 7 the degradation in performance

with reduced . The authors also note that performance does not

necessarily improve monotonically with increasing .

IV. CONCLUSION

The authors have introduced a new approach for the detec-

tion of mine targets using side-scan sonar imagery. The ap-

proach differs from most previous papers in this area [1]–[5]

in two ways: i) the authors do not assume access to an a priori

training set of labeled signatures; and ii) the authors assume ac-

cess to unmanned underwater vehicles (UUVs)/divers for the

determination of the binary labels (mine/no-mine) of specified

signatures in the observed side-scan data. In this manner, the

authors essentially build a set of labeled training data based

on the observed side-scan data itself using information-theo-

retic concepts to quantify which signatures and associated la-

bels would be most informative for classifier design. Using mea-

sured side-scan sonar data, the authors have demonstrated that

the percentage of signatures for which labels are required is

often very small ( 2% in these examples), making deployment

of UUVs/divers feasible. The classification performance com-

pared favorably to “conventional” algorithm testing procedures,

for which half the data are used for training and the other half

for testing.

There are several directions of interest for future research.

For example, in the results presented here, the classifier basis

functions and labeled signatures were determined

“from scratch” using the observed side-scan imagery. In prac-

tice, one will likely have an available classifier of the form in (1),

and it is desirable to slowly augment that classifier as new data

are acquired (rather than starting classifier design over again

for each new sonar scene). In this case, as new data are ac-

quired, the authors ask whether inclusion of new basis functions

adds new information and should be appended to the set

of base elements in . Moreover, as new data are acquired,

some members of acquired from previous data collections

should be removed. Similar issues hold with respect to the la-

beled signatures because some previous labeled sig-

natures may not be well matched to new data being observed.

When acquiring labeled data, one must also account for the cost

in energy and time of determining the label (e.g., with a small,

near-range UUV) vis-à-vis the associated information gain to

the classifier. These issues will be considered in future studies.

APPENDIX

THEORETICAL JUSTIFICATION FOR THE

CLASSIFICATION ALGORITHM

The authors have presented procedures for selecting basis

functions for a kernel-based classifier based on a set of unla-

beled data. After designing the basis set, the authors have also

addressed selection of which signatures would be most infor-

mative for classifier training if the associated signature labels

were known. In this Appendix, the authors provide theoretical

justification for these design procedures.

A. Basis-Function Selection

Let the basis functions be evaluated for all initially un-

labeled data points and stacked to form the matrix

. Let the data labels be

denoted , although these labels are not

required when designing the basis functions. The difference be-

tween the true labels and those outputted by the classifier (2) for

all is expressed in vector form as

(A1)

where is an identity matrix ( is defined similarly)

and is a small positive number. The equality 3 in (A1) is due

to the Sherman–Morrison–Woodbury formula. From (A1), the

squared error between the true and estimated labels is

(A2)

The expression in (A2) shows that for the given basis

functions , the authors have approximately expressed

the squared error as a quadratic form of the labels with a

coefficient matrix in the form . The

approximation can be made as accurate as desired by making

sufficiently small. Without knowing , the authors prefer

to have large eigenvalues to make the error small. This

is accomplished by making the determinant of large. The

logarithmic determinant of is

(A3)

where equality 3 is due to the property of matrix determinants

and equality 4 is due to (6). Adding a new basis function to

, the authors get as given in (7). The logarithmic

determinant of is

(A4)
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Following the method of obtaining (9) and (10), the authors can

show that and are related by

(A5)

with

(A6)

where and . Since the au-

thors wish for a with a large determinant, they want to

make or equivalently large as

is a constant.

Comparing (A6) to (10), the authors find that is approxi-

mately equal to when is small. Since can be made as small

as desired, the approximation can be made arbitrarily accurate.

Therefore, the basis function obtained in (11) is the one that

minimizes the determinant of given , which in conse-

quence will minimize the eigenvalues of , minimizing the

squared error .

B. Selection of Examples for Labeling

Assume that the basis functions have been selected in

the manner discussed above. Moreover, assume that the authors

have selected the subset of sig-

natures for which the associated labels will be acquired. The

Fisher information matrix associated with is

. The Fisher information matrix for an aug-

mented set is

(A7)

Suppose the authors have the two classifiers and

that are trained using and , respec-

tively. The authors test and on and ex-

amine how the two results are related. As given in [14, p. 121],

they have

(A8)

By using the Sherman–Morrison–Woodbury formula, they

obtain

that is used in (A8) to give

(A9)

Equation (A9) shows that by including in the training data set,

the squared test error on will drop by a factor

(A10)

If , the authors do not require the label for as it

is not important for inclusion in the training set. On the other

hand, if , inclusion of in the training set is impor-

tant. Therefore, the that maximizes should be selected

to seek the associated label . Comparing (A10) to (15), the au-

thors note that is exactly equivalent to , and thus the

that maximizes is the one that contributes maximally to

make the squared test error small.
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