
Active Learning for Interactive 3D Image Segmentation

Andrew Top1, Ghassan Hamarneh1, and Rafeef Abugharbieh2

1 Medical Image Analysis Lab, Simon Fraser University
2 Biomedical Signal and Image Computing Lab, University of British Columbia

{atop,hamarneh}@sfu.ca, rafeef@ece.ubc.ca

Abstract. We propose a novel method for applying active learning strategies to
interactive 3D image segmentation. Active learning has been recently introduced
to the field of image segmentation. However, so far discussions have focused on
2D images only. Here, we frame interactive 3D image segmentation as a classifi-
cation problem and incorporate active learning in order to alleviate the user from
choosing where to provide interactive input. Specifically, we evaluate a given seg-
mentation by constructing an “uncertainty field” over the image domain based on
boundary, regional, smoothness and entropy terms. We then calculate and high-
light the plane of maximal uncertainty in a batch query step. The user can proceed
to guide the labeling of the data on the query plane, hence actively providing ad-
ditional training data where the classifier has the least confidence. We validate
our method against random plane selection showing an average DSC improve-
ment of 10% in the first five plane suggestions (batch queries). Furthermore, our
user study shows that our method saves the user 64% of their time, on average.

1 Introduction

3D image segmentation is one of, if not the most, important and ubiquitous tasks in
medical image analysis. Fully-manual slice by slice segmentation of images is widely
recognized as infeasible, being too tedious, time consuming, expensive, and suffering
from high inter- and intra-operator variability. Furthermore, manual operators have very
limited ability to integrate the information available in 3D data given that almost all
displays and data entry mechanisms are 2D. On the other side of the spectrum, fully-
automated segmentation techniques have generally struggled to achieve the accuracy
and robustness levels needed for clinical practice. Consequently, highly automated in-
teractive image segmentation approaches [8] have recently become the approach of
choice in most real life medical applications, and thus are garnering the focus of the
medical image analysis community.

Many interaction mechanisms have been previously pursued such as interactive con-
tour delineation [7] or region seeding [3]. Interactive segmentation is often an iterative
process. A user provides input that guides computations which return output back to
the user so that they may provide additional input. Ideally, the interaction process can
occur in real-time so that users receive immediate feedback on their actions. In the case
where user interaction takes the form of specifying which voxels belong to the object
or region of interest (ROI) and which do not, the interactive segmentation process can
be nicely formulated within a supervised machine learning framework. The user input
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can thus be seen as labeled training data, which the interactive segmentation algorithm,
or classifier, uses to label the remaining data (i.e. to segment the ROI).

Active learning (AL) [11] refers to supervised machine learning where, instead of
the user, a component of the algorithm called the ‘query strategy’ is responsible for
choosing the training data to be labeled. The query strategy, having intimate knowledge
of the inner workings of the specific classification algorithm deployed, is in an excellent
position to determine candidate high-quality training data voxels. By labeling voxels
according to AL queries, interactive segmentation algorithms can produce improved
segmentations using less, more efficient user input.

Image segmentation has had a number of treatments in the literature that relate to
AL. Ma et al. [6] explored image segmentation under an AL framework where they
used a support vector machine as the segmentation method and uncertainty sampling as
the query strategy. Pavlopoulou et al. [9] discussed the translation of interactive contour
delineation to an AL formulation. They used the term “active learning” in reference
to the algorithm’s support for interactive correction of the contour should it deviate
from the ground truth, but this definition differs from that of formal AL. Li et al. [5]
explored the segmentation of hyperspectral images by employing AL to query the user
for more seedpoints when confidence is lacking. Queries were made in the form of a set
of 2D image pixels labeled with low confidence, but it is unclear how to present these
queries in a user-friendly fashion. In [12], we presented a new approach to optimize user
interaction using a ‘Spotlight’ feature that was recently implemented into the software
package TurtleSeg1. That work however was not formulated in an AL framework.

None of the previous methods treated AL in the context of 3D segmentation, which
is the focus of our work in this paper. We solve two challenges: 1. The 3D image must
be presented to the user on a 2D display in a way that best reveals the object. Once con-
structed (using some method), a candidate segmentation should be properly overlaid in
context. 2. The user must assess the entire 3D segmentation in order to improve it by
providing additional input. The simple inspection of the entire image and its segmenta-
tion, which is straightforward in 2D, becomes a much more complicated issue in 3D. In
order to deal with the first challenge, we adopt the multi-planar reconstruction (MPR)
technique where orthogonal or oblique slices of the 3D image are presented to the user.
MPR is preferred as it is the most common 3D image display technique in clinical prac-
tice. To address the second challenge, we employ an AL uncertainty sampling query
strategy, which is designed to highlight to the user the regions in 3D where additional
training data will likely improve the segmentation. To the best of our knowledge, we
are the first to formulate 3D interactive image segmentation in an AL framework.

2 Methods

For clarity of exposition, we start by defining our notation. Let Ω ⊂ R
3 represent the

spatial image domain, y : Ω → {0, 1} represent the classifier labeling, I : Ω → R

represent the image intensity function, and U : Ω → R represent the classification
uncertainty field. We formulate our 3D image segmentation as a data classification
problem. Our feature vector consists of pixel locations x ∈ Ω and intensity I(x),

1 http://www.turtleseg.org

http://www.turtleseg.org
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but since the intensity depends on the position, we hereafter refer to the feature vector
as x for simplicity. The solution to the classification problem is to determine a label
y(x) ∈ {0, 1} for each x ∈ Ω. We adopt a supervised learning approach for interac-
tive segmentation. The user provides a set of training data, T , in which each element
has the form (X, Y ) ∈ T , where X ∈ Ω, Y ∈ {0, 1} and each X is unique, that
is ∀(Xa, Ya), (Xb, Yb) ∈ T, Xa = Xb =⇒ a = b. The training data is used to
train a classifier and obtain an image of labels i.e. a segmentation, y. The classifier can
be any probabilistic or energy minimizing 3D image segmentation algorithm, although
probabilistic algorithms (for example [3]) are preferred since they naturally encode un-
certainty in the results. Learning occurs as the training data is augmented, improving
the ability of the classifier to label unlabeled image pixels.

Since the initial set of training data is typically not sufficient for the classifier to
produce accurate labelings, we assess the uncertainty, U , of the classification results.
Should the uncertainty remain above a preset threshold or the user deems the segmen-
tation to be of insufficient quality, an AL batch query is calculated from U in order
to present to the user regions of maximal uncertainty. Specifically, we find the plane
that passes through the most uncertain regions of the classification. The user’s resulting
input augments the current training data, and the learned classifier is re-executed.

2.1 Uncertainty Field of Automatic Segmentation

The uncertainty value at a point x in the image, U(x), reflects the lack of confidence
of the classifier in its classification y(x) at point x. We propose a novel composite
uncertainty field U , comprising a weighted sum of four sub fields.

U(x, y) = λEUE(x, p1(x)) + λBUB(x, y) + λRUR(x, y) + λSUS(x, y), (1)

where UE is an entropy energy that depends on the probability p1 : Ω → [0, 1] of
point x being labeled 1. UB is a boundary energy, UR is a regional energy, and US is a
smoothness energy. Note that we are not interested in finding a classification y(x) that
minimizes the sum in (1) over the image domain, but rather how the value of U at one
position in the image compares to the value of U at another. For example, a classifier
which minimizes the boundary term UB given a set of constraints might still give a
solution with high UB in regions where there are no hard edges to follow. When using
a probabilistic segmentation algorithm as a classifier, a natural choice for assessing
uncertainty is the entropy of the segmentation results, giving the entropy energy as

UE(x, p1(x)) = −p1(x)log2 p1(x) − (1 − p1(x))log2(1 − p1(x)). (2)

For the boundary energy, we adopt from [1] a function of the image intensity gradient,

UB(x, y) = δ(Ds(x, y))
1

1 + |∇I(x)|α , (3)

where Ds(x, y) gives the distance from x to the classification boundary that divides
points where y(x) = 0 and y(x) = 1. δ is the delta function which allows us to consider
the gradient only for points on the segmentation boundary. In this paper, we set α = 2.
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This term will have values near 0 along a segmentation surface that follows a strong
edge in the image data, and values near 1 in homogeneous areas. See Section 3.1 for
details on how δ(Ds(x, y)) is implemented. We define the regional energy term as in [2]
to measure how well each voxel inside and outside the proposed segmentation conforms
to a respective intensity distribution. We derive the intensity distributions for foreground
and background voxels by calculating the maximum likelihood Gaussian distribution
parameters on the training data. For Gaussian foreground and background intensity
distributions given respectively as p(I(x)|Y = 1) = N (μ1, σ1) and p(I(x)|Y = 0) =
N (μ0, σ0), we can write the regional energy using Baye’s theorem as

UR(x, y) = p(Y = y(x)|I(x)) =
p(I(x)|Y =y(x))

p(I(x)|Y =0) + p(I(x)|Y =1)
(4)

where we assume p(Y =0) = p(Y =1) = 0.5. Finally, since smooth surfaces have less
area, we define a smoothness energy term based on the surface area of the segmentation
around a point x. With Nx representing a local 3D neighborhood around x, we have

US(x, y) =
∫∫∫

Nx

δ(Ds(z, y)) dV. (5)

2.2 Batch Query Active Learning Based on Planar Slices

Given an existing classification, heuristically the user should provide labels in the most
uncertain regions in order to best improve the classification. Point by point labeling is
too slow, so we instead use MPR to present the user with a plane of uncertain points
so that they can be labeled simultaneously. Querying the user for multiple labels at the
same time, as we do here, is known as a batch query [11]. Therefore, we seek the plane
with maximal uncertainty, which we define as argmaxP(UP) where UP is given as

UP =
∫∫

P
U(x) dA =

∫

∞

∫

∞
U(fP(u, v))

∣∣∣∣∂fP
∂u

× ∂fP
∂v

∣∣∣∣ dudv. (6)

Here, fP is a function mapping R
2 to P , and

∣∣∣∂fP
∂u × ∂fP

∂v

∣∣∣ is introduced with the change

of variables. We evaluate (6) by calculating the uncertainty at sample points on P . Since
in general the uncertainty field may be an arbitrary scalar image, (6) may have many
local maxima with respect to P . We therefore run multiple iterations of gradient descent
with randomized initial parameters (Section 3.1) in order to determine an approximate
solution to argmaxP UP .

To that end, we first parameterize P by its normal nP , and a point on P , pP . Let
fP(u, v) = pP + ua + vb, where a and b are orthonormal vectors perpendicular to

nP , then
∣∣∣∂fP

∂u × ∂fP
∂v

∣∣∣ = 1. Making use of the chain rule, we calculate ∇nPUP as

∇nPUP =
∫

∞

∫

∞
(uJT

a,nP + vJT
b,nP )∇xU(fP(u, v)) dudv, (7)
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where ∇xU(fP(u, v)) is the gradient of the uncertainty field with respect to the spatial
coordinates x. We use the notation Jt,s to represent the Jacobian of t with respect to s.
Using the chain rule again, ∇pPUP is easily shown to be

∇pPUP =
∫

∞

∫

∞
∇xU(fP(u, v)) dudv (8)

since JfP ,pP = I . The maximal plane is presented to the user who will then classify
it. This 2D segmentation is easy to do and well-studied in computer vision. There are
many methods to choose from: [7,10,3] and others. All these can directly or indirectly
provide a labeling of the plane.

3 Results

We experimentally verify our automatic plane suggestion approach by comparing it to
randomly chosen, as well as user-chosen, slice planes. Since our approach is general
enough to be applicable to a number of classifiers, we first describe our specific imple-
mentation in Section 3.1 before presenting qualitative and quantitative results in Section
3.2 and Section 3.3 respectively.

3.1 Implementation Details

We use the Random Walker (RW) [3] algorithm as our classifier (i.e. assigns a class
label to each pixel), since it is capable of producing a probabilistic segmentation, it ac-
cepts as input a set of pre-labeled feature vectors, and it naturally applies to 3D images.
To allow RW to run in a feasible amount of time on 3D images, we use techniques
presented in [4] to develop a GPU RW implementation using NVIDIA’s CUDA API.
In order to keep the classifier consistent for our tests, we set the RW algorithm’s only
parameter to β = 10, a value that was found to produce good segmentations. The
Ds(x, y) distance values seen in (3) and (5) are implemented using distance maps. The

δ(x) functions are approximated by e−
x2
2σ , with σ = 1, giving a differentiable “soft

delta” function. In our experimental software, users provide training data along slices
using 2D Livewire, which are rasterized to seedpoints in the 3D image and then passed
to RW as input. At any time after a segmentation has been computed the user can click
a button to have a batch query slice presented to them. For the following studies, we set
λE = 0.80, λB = 0.05, λR = 0.15 and λS = 0, which we found empirically to give
good results and were justified because UE exactly captures entropy while others less
so. The plane that maximizes (6) is found by initializing a plane 36 times to a random
orientation and ensuring the plane always passes through the the existing segmentation.
For each plane initialization, gradient descent is iterated 250 times, and the optimal
plane over the 36 runs is returned as the query plane.

3.2 Qualitative Results

We evaluate our method qualitatively by observing that it makes intelligent decisions
for each slice suggestion. We validate by segmenting two different medical images in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Example snapshots during the AL interactive segmentation process. The first row shows
the radius bone in a CT image. (a) A slice of the image, and a single initial contour in orange. (b)
The results of the initial segmentation surface, the next AL suggested plane, and its user-provided
classification (blue). (c) A slice through the uncertainty field. (d) The final 3D segmentation after
3 more active queries were labeled. The second row shows the segmentation of the iliac bones in
a pelvis CT image. (e) A slice through the intensity image as well as the initial contours. (f) The
first AL query slice. (g) The 3rd AL query slice. (h) The final segmentation after 12 slices have
been classified.

Figure 1, demonstrating the active learning queries. In the first row, the radius bone in a
wrist CT image is segmented. Figure 1(b) shows the first active query slice, along with
its segmentation (blue). Note that the slice passes through a large portion of the radius
bone that was, in error, not previously included in the initial segmentation. Looking at
the uncertainty field through the same slice in figure 1(c), we see that high uncertainty is
detected in the radius bone region not included in the initial segmentation. In the second
row, the iliac bones of a pelvis CT image are segmented. We see in figure 1(f) that the
query slice is targeting a large portion of the iliac bones that are contained in the initial
segmentation. Figure 1(g) shows the third AL query slice beginning to focus on the left
iliac bone, in order to better finalize that region of the segmentation.

3.3 Quantitative Validation

We test our method on eight different datasets: radius bone in a CT, femur bone in an
MRI, liver in a CT, two images of a vastus lateralus muscle in an MRI, putamen in
an MRI, tibia bone in an MRI, and vastus intermedius muscle in an MRI. Image sizes
ranged from 1503 to 1903 pixels where suggestions took around 20 to 33 seconds, re-
spectively. We report accuracy increase after each training data augmentation step. We
first compare our proposed active query planes with random plane selection. Random
plane selection involves randomly choosing a plane orientation and offset, constrained
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Fig. 2. A comparison of our AL technique to random plane selection. Each graph shows the DSC
value of a segmentation versus the number of slices classified. The green curves show the results
of using AL for plane selection, while the red curves show the result of randomly choosing planes.
Sample slices of each segmented 3D volume are shown to clarify the image example context.

(a) (b)

Fig. 3. Results of the user study on the “Radius in CT” image. (a) An errorbar plot is given
showing our AL approach improving the segmentation faster than user decisions. (b) The average
difference in DSC percentage versus time.

to pass through the existing segmentation. Since both methods are non-deterministic,
we re-segment each dataset three times and average the results. The accuracy is shown
in terms of the Dice Similarity Coefficient (DSC) between the produced segmentation
and the ground truth segmentation. For all results, in order to maintain consistency,
we automatically derive the user segmentations over slice planes by extracting them
from the ground truth segmentation. Figure 2 shows the comparison results between
AL queries and random plane selection. Notice that the AL queries lead to higher DSC
maxima, the DSC increases faster per user-segmented slice, and the average DSC in-
creases by 10% on the first five plane suggestions (batch queries). Often, the first active
query suggestion results in a better segmentation than multiple random slice planes.

Next we present the results of a 4 person user-study comparing our method of plane
selection to human intuition on “Radius in CT” dataset chosen from above. Figure 3
gives a plot for the dataset showing DSC increase versus user interaction time where
errorbars show the variance of the different users’ output. Results clearly demonstrate
how our AL approach significantly reduces the time needed to achieve any DSC value.
Specifically, a total average reduction of 64% in user interaction time was achieved.
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4 Conclusions

In this paper we formulate interactive 3D image segmentation in an AL framework. Our
contributions include being the first to formulate interactive 3D image segmentation as
a formal AL process. In doing so, we alleviate the user from choosing where to provide
interactive input. In order to facilitate the batch queries, we automate assessment of
uncertainty in the classification as well as the search through the uncertainty for the best
query plane. Finally, we show our method to significantly reduce the required user input
in interactive 3D image segmentation tasks through a user study. Future work includes
incorporating this technique into other interactive segmentation algorithms and learning
the energy functional weights automatically via training data.
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