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Abstract

Many information gathering problems require de-
termining the set of points, for which an un-
known function takes value above or below some
given threshold level. We formalize this task as
a classification problem with sequential measure-
ments, where the unknown function is modeled as
a sample from a Gaussian process (GP). We pro-
pose LSE, an algorithm that guides both sampling
and classification based on GP-derived confidence
bounds, and provide theoretical guarantees about
its sample complexity. Furthermore, we extend
LSE and its theory to two more natural settings: (1)
where the threshold level is implicitly defined as a
percentage of the (unknown) maximum of the tar-
get function and (2) where samples are selected in
batches. We evaluate the effectiveness of our pro-
posed methods on two problems of practical inter-
est, namely autonomous monitoring of algal popu-
lations in a lake environment and geolocating net-
work latency.

1 Introduction

Many information gathering problems require accurately de-
termining the regions where the value of some unknown func-
tion lies above or below a given threshold level. Moreover,
evaluating the function is usually a costly procedure and the
measurements returned are noisy.

As a concrete example of such an application, consider the
task of monitoring a lake environment for algal bloom, a phe-
nomenon that is potentially harmful to other organisms of the
ecosystem. One way to accomplish this, is by determining
the regions of the lake where the levels of algae-produced
chlorophyll are above some threshold value determined by
field experts. These regions can be estimated by sampling at
various locations of the lake using a mobile sensing device.
However, each measurement is costly in terms of time and
sensor battery power, therefore the sampling locations have
to be picked carefully, in order to reduce the total number of
measurements required.

Other example applications in the context of environmental
monitoring [Rahimi et al., 2004] include estimating level sets

of quantities such as solar radiation, humidity, etc., and deter-
mining the extent of hazardous phenomena, e.g. air pollution
or oil spills [Galland et al., 2004]. In a different category are
applications that consist in determining the subset of a param-
eter space that represents “acceptable” hypotheses [Bryan et
al., 2005] or designs [Ramakrishnan et al., 2005].

We consider the problem of estimating some function level
set in a sequential decision setting, where, at each time step,
the next sampling location is to be selected given all previ-
ous measurements. For solving this problem, we propose the
Level Set Estimation (LSE) algorithm, which utilizes Gaus-
sian processes [Rasmussen and Williams, 2006] to model the
target function and exploits its inferred confidence bounds to
drive the selection process. We also provide an information-
theoretic bound on the number of measurements needed to
achieve a certain accuracy, when the underlying function is
sampled from a Gaussian process.

Furthermore, we extend the LSE algorithm to two more set-
tings that naturally arise in practical applications. In the first
setting, we do not a priori have a specific threshold level at our
disposal, but would still like to perform level set estimation
with respect to an implicit level that is expressed as a percent-
age of the function maximum. In the second setting, we want
to select at each step a batch of next samples. A reason for
doing so is that, in problems such as the lake sensing example
outlined above, apart from the cost of actually making each
measurement, we also have to take into account the cost in-
curred by traveling from one sampling location to the next.
Traveling costs can be dramatically reduced, if we plan ahead
by selecting multiple points at a time. Another reason is that
some problems allow for running multiple function evalua-
tions in parallel, in which case selecting batches of points can
lead to a significant increase in sampling throughput.

Related work. Previous work on level set [Dantu and
Sukhatme, 2007; Srinivasan et al., 2008] and bound-
ary [Singh et al., 2006] estimation and tracking in the con-
text of mobile sensor networks has primarily focused on con-
trolling the movement and communication of sensor nodes,
without giving much attention to individual sampling loca-
tions and the choice thereof.

In contrast, we consider the problem of level set estimation
in the setting of pool-based active learning [Settles, 2009],
where we need to make sequential decisions by choosing
sampling locations from a given set. For this problem, Bryan



et al. [2005] have proposed the straddle heuristic, which se-
lects where to sample by trading off uncertainty and proxim-
ity to the desired threshold level, both estimated using GPs.
However, no theoretical justification has been given for the
use of straddle, neither for its extension to composite func-
tions [Bryan and Schneider, 2008]. Garnett et al. [2012] con-
sider the problem of active search, which is also about se-
quential sampling from a domain of two (or more) classes (in
our case the super- and sublevel sets). In contrast to our goal
of detecting the class boundaries, however, their goal is to
sample as many points as possible from one of the classes.

In the setting of multi-armed bandit optimization, which is
similar to ours in terms of sequential sampling, but different
in terms of objectives, GPs have been used both for model-
ing, as well as for sample selection [Brochu et al., 2010]. In
particular, the GP-UCB algorithm makes use of GP-inferred
upper confidence bounds for selecting samples and has been
shown to achieve sublinear regret [Srinivas et al., 2010].
An extension of GP-UCB to the multi-objective optimization
problem has been proposed by Zuluaga et al. [2013], who use
a similar GP-based classification scheme to ours to classify
points as being Pareto-optimal or not.

Existing approaches for performing multiple evaluations in
parallel in the context of GP optimization, include simulation
matching [Azimi et al., 2010], which combines GP modeling
with Monte-Carlo simulations, and the GP-BUCB [Desautels
et al., 2012] algorithm, which obtains similar regret bounds
to GP-UCB, and from which we borrow the main idea for
performing batch sample selection.

To our knowledge, there has been no previous work on ac-
tively estimating level sets with respect to implicitly defined
threshold levels.

Contributions. The main contributions of this paper can be
summarized as follows:

• We introduce the LSE algorithm for sequentially esti-
mating level sets of unknown functions and also extend
it to select samples in batches.

• We consider for the first time the problem of estimating
level sets under implicitly defined threshold levels and
propose an extension of LSE for this problem.

• We prove theoretical convergence bounds for LSE and
its two extensions when the target function is sampled
from a known GP.

• We evaluate LSE and its extensions on two real-world
datasets and show that they are competitive with the
state-of-the-art.

2 Background and Problem Statement

Given a function f : D → R, where D is a finite subset of Rd,
and a threshold level h ∈ R, we define the level set estimation
problem as the problem of classifying every point x ∈ D into
a superlevel set H = {x ∈ D | f(x) > h} and a sublevel set
L = {x ∈ D | f(x) ≤ h}.

In the strictly sequential setting, at each step t ≥ 1, we
select a point xt ∈ D to be evaluated and obtain a noisy
measurement yt = f(xt) + nt. In the batch setting we select

B points at a time and only obtain the resulting measurements
after all of the B points have been selected.

When an explicit level is not available, we can define an im-
plicit threshold level with respect to the function maximum in
either absolute or relative terms. We use the relative definition
in our exposition with h = ωmaxx∈D f(x) and ω ∈ (0, 1).

Gaussian processes. Without any assumptions about
the function f , attempting to estimate level sets from few
samples is a hopeless endeavor. Modeling f as a sample
from a Gaussian process (GP) provides an elegant way for
specifying properties of the function in a nonparametric
fashion. A GP is defined as a collection of random variables,
any finite subset of which is distributed according to a
multivariate Gaussian in a consistent way [Rasmussen and
Williams, 2006], and is denoted as GP(µ(x), k(x,x′)). It
is completely specified by its mean function µ(x), which can
be assumed to be zero w.l.o.g., and its covariance function
or kernel k(x,x′), which encodes smoothness properties of
functions sampled from the GP.

Assuming a GP prior GP(0, k(x,x′)) over f and given t
noisy measurements yt = [y1, . . . , yt]

T for points in At =
{x1, . . . , xt}, where yi = f(xi) + ni and ni ∼ N (0, σ2)
(Gaussian i.i.d. noise) for i = 1, . . . , t, the posterior over f
is also a GP and its mean, covariance, and variance functions
are given by the following analytic formulae:

µt(x) = kt(x)
T
(

Kt + σ2I
)−1

yt (1)

kt(x,x
′) = k(x,x′)− kt(x)

T
(

Kt + σ2I
)−1

kt(x)

σ2
t (x) = kt(x,x), (2)

where kt(x) = [k(x1,x), . . . , k(xt,x)]
T and Kt is

the kernel matrix of already observed points, defined as
Kt = [k(x,x′)]x,x′∈At

.

3 The LSE Algorithm

We now present our proposed Level Set Estimation (LSE) al-
gorithm for the strictly sequential setting with explicit thresh-
olds. LSE is similar in spirit to the GP-UCB [Srinivas et
al., 2010] bandit optimization algorithm in that it uses a GP
to model the underlying function and facilitates the inferred
mean and variance of the GP to guide the selection of points
to be evaluated.

More concretely, the inferred mean and variance of (1) and
(2) can be used to construct a confidence interval

Qt(x) =
[

µt−1(x)± β
1/2
t σt−1(x)

]

for any point x ∈ D, which captures our uncertainty about
f(x) after having already obtained noisy evaluations of f at
points {x1, . . . ,xt}. The parameter βt acts as a scaling fac-
tor and its choice is discussed later. The above-defined con-
fidence intervals serve two purposes in our algorithm: first,
they allow us to judge whether a point can be classified into
the super- or sublevel sets or whether the decision should
be deferred until more information is available; second, they
guide the sampling process towards points that are likely to
be informative with respect to the desired level set.
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Figure 1: (a) Example of the three possible configurations of confidence regions. (b) Ambiguities of two example points. (c)
Chlorophyll concentration in relative fluorescence units (RFU) inferred from 2024 measurements on a vertical transect plane
of Lake Zurich (the level set at h = 1.3 RFU is shown dashed). (d) LSE after t = 50 iterations on a grid of 100 × 100 points:
regions of already classified points in orange (Ht) and blue (Lt), of yet unclassified points (Ut) in black, and observed points
({xi}1≤i≤t) as white marks. Note how the sampling process focuses on the ambiguous regions around the desired level set.

The pseudocode of Algorithm 1 depicts in detail the oper-
ation of LSE. Our algorithm maintains a set of yet unclassi-
fied points Ut, as well as a superlevel set Ht and a sublevel
set Lt, which are updated at each iteration. Furthermore, the
algorithm maintains for each x a monotonically decreasing
confidence region Ct(x), which results from intersecting suc-
cessive confidence intervals, i.e.

Ct(x) =

t
⋂

i=1

Qi(x) = Ct−1(x) ∩Qt(x).

Initially, all points x ∈ D are unclassified and the confidence
regions have infinite range (line 1). At each iteration, the con-
fidence regions of all unclassified points are updated (line 6)
and each of these points is either classified into one of Ht or
Lt, or is left unclassified (lines 7–10). Then, the next point is
selected and evaluated (lines 11–12) and the new GP poste-
rior is computed (line 13). The algorithm terminates when all
points in D have been classified, in which case the estimated

super- and sublevel sets Ĥ and L̂ are returned (line 16).

Classification. The classification of a point x into Ht or
Lt depends on the position of its confidence region with re-
spect to the threshold level h. Intuitively, if all of Ct(x) lies
above h, then with high probability f(x) > h and x should

Algorithm 1 The LSE algorithm

Input: sample set D, GP prior (µ0 = 0, k, σ0),
threshold value h, accuracy parameter ǫ

Output: predicted sets Ĥ , L̂
1: H0 ← ∅, L0 ← ∅, U0 ← D,C0(x)← R, for all x ∈ D
2: t← 1
3: while Ut−1 6= ∅ do
4: Ht ← Ht−1, Lt ← Lt−1, Ut ← Ut−1

5: for all x ∈ Ut−1 do
6: Ct(x)← Ct−1(x) ∩Qt(x)
7: if min(Ct(x)) + ǫ > h then
8: Ut ← Ut \ {x}, Ht ← Ht ∪ {x}
9: else if max(Ct(x))− ǫ ≤ h then

10: Ut ← Ut \ {x}, Lt ← Lt ∪ {x}
11: xt← argmax

x∈Ut
(at(x))

12: yt← f(xt) + nt

13: Compute µt(x) and σt(x) for all x ∈ Ut

14: t← t+ 1
15: Ĥ ← Ht−1, L̂← Lt−1

be moved into Ht. Similarly, if Ct(x) lies below h, then x
should be moved into Lt. Otherwise, we are still uncertain
about the class of x, therefore it should, for the moment, re-
main unclassified. As can be seen in the classification rules
of lines 7 and 9, we relax these conditions by introducing an
accuracy parameter ǫ, which trades off classification accuracy
for sampling cost. The resulting classification scheme is illus-
trated by the example of Figure 1a, in which point x would
be classified into Ht and point x′′ into Lt, while point x′

would remain in Ut as unclassified. Note that LSE uses a
monotonic classification scheme, meaning that once a point
has been classified, it stays so until the algorithm terminates.

Sample selection. For selecting the next point to be evalu-
ated at each iteration, we define the following quantity

at(x) = min{max(Ct(x))− h, h−min(Ct(x))},

which we call ambiguity and, as it names suggests, quantifies
our uncertainty about whether x belongs to Ht or Lt (see
Figure 1b). The intuition of sampling at areas of the sample
space with large classification uncertainty, expecting to gain
more information about the problem at hand when sampling
at those areas, manifests itself in LSE by choosing to evaluate
at each iteration the point with the largest ambiguity amongst
the yet unclassified (see Figures 1c and 1d).

We can make an interesting observation at this point. If we
use the confidence intervals Qt(x) instead of the confidence
regions Ct(x) in the definition of ambiguity, we get

a′t(x) = min{max(Qt(x))− h, h−min(Qt(x))}

= β
1/2
t σt−1(x)− |µt−1(x)− h|.

For β
1/2
t = 1.96, this is identical to the straddle [Bryan et al.,

2005] selection rule, which can thus be intuitively explained
in terms of classification ambiguity.

Theoretical analysis. The convergence analysis of LSE

rests on quantifying the complexity of the GP prior for f
in information-theoretic terms. The information gain [Cover
and Thomas, 2006] about f from observing t noisy measure-
ments yt = (yi)1≤i≤t is

I(yt; f) = H(yt)−H(yt | f).

Srinivas et al. [2010] used the maximum information gain
over all possible sets of t observations

γt = max
yt

I(yt; f)



for bounding the regret of the GP-UCB algorithm. Even
though the problem we consider is different, we can use the
same quantity to bound the number of LSE iterations required
to achieve a certain classification quality.

To quantify the quality of a solution (Ĥ, L̂) with respect to
a single point x ∈ D we use the misclassification loss

ℓh(x) =

{

max{0, f(x)− h} , if x ∈ L̂

max{0, h− f(x)} , if x ∈ Ĥ
.

The overall quality of a solution can then be judged by the
largest misclassification loss among all points in the sample
space, i.e. maxx∈D ℓh(x). Intuitively, having a solution with
maxx∈D ℓh(x) ≤ ǫ means that every point x is correctly
classified with respect to a threshold level that deviates by
at most ǫ from the true level h; we call such a solution ǫ-
accurate. The following theorem establishes a convergence
bound for LSE in terms of γt for any given accuracy ǫ.

Theorem 1. For any h ∈ R, δ ∈ (0, 1), and ǫ > 0, if
βt = 2 log(|D|π2t2/(6δ)), LSE terminates after at most T
iterations, where T is the smallest positive integer satisfying

T

βT γT
≥

C1

4ǫ2
,

where C1 = 8/ log(1 + σ−2).
Furthermore, with probability at least 1− δ, the algorithm

returns an ǫ-accurate solution, that is

Pr

{

max
x∈D

ℓh(x) ≤ ǫ

}

≥ 1− δ.

The proof of Theorem 1 can be outlined as follows. The
choice of βt guarantees the inclusion of f(x) in the confi-
dence regions Ct(x) for all x ∈ D. From the monotonic clas-
sification scheme and the maximum ambiguity selection rule,
it follows that the ambiguities of the selected points, at(xt),
are decreasing with t and, using γt, they can be shown to de-

crease as O((βtγt

t )
1

2 ). Finally, the classification rules of LSE

connect the number of iterations to the accuracy parameter ǫ
and guarantee an ǫ-accurate solution with high probability.

Note that bounds on γT have been established for com-
monly used kernels [Srinivas et al., 2010] and can be plugged
into Theorem 1 to obtain concrete bounds on T . For example,
for a d-dimensional sample space and a squared exponential
GP kernel, γT = O((log T )d+1), and the expression in the
bound of Theorem 1 becomes T/(log T )d+2 ≥ C/ǫ2, where,
for any given sample space and kernel hyperparameters, C
depends only on the choice of δ.

4 Extensions

We now extend LSE to deal with the two problem variants in-
troduced in Section 2. We highlight the key differences in the
extended versions of the algorithm and the resulting implica-
tions about the convergence bound of Theorem 1.

4.1 Implicit Threshold Level

The substitution of the explicit threshold level by an implicit
level h = ωmaxx∈D f(x) requires modifying the classifica-
tion rules as well as the selection rule of LSE, which results
in what we call the LSEimp algorithm.

Algorithm 2 The LSEimp extension

Input: sample set D, GP prior (µ0 = 0, k, σ0),
threshold ratio ω, accuracy parameter ǫ

Output: predicted sets Ĥ , L̂
1: // initialization as in LSE; in addition: Z0 ← D
2: while Ut−1 6= ∅ do
3: // new set definitions as in LSE

4: for all x ∈ Ut−1 do
5: Ct(x)← Ct−1(x) ∩Qt(x)
6: h

opt
t ← ωmaxx∈Zt−1

max(Ct(x))
7: f

pes
t ← maxx∈Zt−1

min(Ct(x)), h
pes
t ← ωfpes

8: if min(Ct(x)) + ǫ ≥ h
opt
t then

9: Ut← Ut \ {x}
10: if max(Ct(x)) < f

pes
t then Ht ← Ht ∪ {x}

11: else MH
t ←MH

t ∪ {x}
12: else if max(Ct(x))− ǫ ≤ h

pes
t then

13: Ut← Ut \ {x}
14: if max(Ct(x)) < f

pes
t then Lt ← Lt ∪ {x}

15: else ML
t ←ML

t ∪ {x}
16: Zt← Ut ∪MH

t ∪ML
t

17: xt← argmax
x∈Zt

(wt(x))
18: // GP inference as in LSE

19: Ĥ ← Ht−1 ∪MH
t−1, L̂← Lt−1 ∪ML

t−1

Since h is now an estimated quantity that depends
on the function maximum, we have to take into ac-
count the uncertainty associated with it when mak-
ing classification decisions. Concretely, we can ob-
tain an optimistic estimate of the function maximum

as fopt
t = maxx∈Ut

max(Ct(x)) and, analogously, a pes-
simistic estimate as fpes

t = maxx∈Ut
min(Ct(x)). The cor-

responding estimates of the implicit level are defined as

hopt
t = ωfopt

t and hpes
t = ωfpes

t , and can be used in a similar
classification scheme to that of LSE. However, for the above
estimates to be correct, we have to ensure that Ut always con-
tains all points that could be maximizers of f , i.e. all points
that satisfy max(Ct(x)) ≥ fpes

t . For that purpose, points that
should be classified, but are still possible function maximiz-
ers according to the above inequality, are kept in two sets MH

t
and ML

t respectively, while a new set Zt = Ut ∪MH
t ∪ML

t
is used in place of Ut to obtain the optimistic and pessimistic

estimates hopt
t and hpes

t . The resulting classification rules are
shown in Algorithm 2, where the conditions are again relaxed
by an accuracy parameter ǫ.

In contrast to LSE, which solely focuses on sampling the
most ambiguous points, in LSEimp it is also of importance to
have a more exploratory sampling policy in order to obtain

more accurate estimates fopt
t and fpes

t . To this end, we select
at each iteration the point with the largest confidence region
width, defined as

wt(x) = max(Ct(x))−min(Ct(x)).

If confidence intervals were not intersected, this would be
equivalent to maximum variance sampling (within Zt).

Theoretical analysis. The main challenge in extending the
results of Theorem 1 to the implicit threshold level setting,
stems from the fact that achieving a certain level of classifica-
tion accuracy, now also depends on having accurate estimates



of h. This translates into appropriately bounding hopt
t −hpes

t ,
while, at the same time, guaranteeing that classification is still

being performed correctly (by showing that hopt
t > h and

hpes
t < h). The following theorem expresses the resulting

convergence bound for LSEimp.

Theorem 2. For any ω ∈ (0, 1), δ ∈ (0, 1), and ǫ > 0, if
βt = 2 log(|D|π2t2/(6δ)), LSEimp terminates after at most T
iterations, where T is the smallest positive integer satisfying

T

βT γT
≥

C1(1 + ω)2

4ǫ2
,

where C1 = 8/ log(1 + σ−2).
Furthermore, with probability at least 1− δ, the algorithm

returns an ǫ-accurate solution with respect to the implicit
level h = ωmaxx∈D f(x), that is

Pr

{

max
x∈D

ℓh(x) ≤ ǫ

}

≥ 1− δ.

Note that the sample complexity bound of Theorem 2 is a
factor (1 + ω)2 ≤ 4 larger than that of Theorem 1, and that
ω = 0 actually reduces to an explicit threshold of 0.

4.2 Batch Sample Selection

In the batch setting, the algorithms are only allowed to use the
observed values of previous batches when selecting samples
for the current batch. A naive way of extending LSE (resp.
LSEimp) to this setting would be to modify the selection rule
so that, instead of picking the point with the largest ambi-
guity (resp. width), it chooses the B highest ranked points.
However, this approach tends to select “clusters” of closely
located samples with high ambiguities (resp. widths), ignor-
ing the decrease in the estimated variance of a point resulting
from sampling another point nearby.

Fortunately, we can handle the above issue by exploiting a
key property of GPs, namely that the predictive variances (2)
depend only on the selected points xt and not on the observed
values yt at those points. Therefore, even if we do not have
available feedback for each selected point up to iteration t,
we can still obtain the following useful confidence intervals

Qb
t(x) =

[

µfb[t](x)± η
1/2
t σt−1(x)

]

,

which combine the most recent available mean estimate (fb[t]
being the index of the last available observation) with the
always up-to-date variance estimate. Confidence regions
Cb

t (x) are defined as before by intersecting successive con-
fidence intervals and are used without any further changes in
the algorithms. However, to guarantee convergence we must
compensate for using outdated mean estimates, by employing
a more conservative (i.e., larger) scaling parameter ηt com-
pared to βt, in order to ensure that the resulting confidence
regions Cb

t (x) still contain f(x) with high probability.

5 Experiments

In this section, we evaluate our proposed algorithms on two
real-world datasets and compare them to the state-of-the-art.
In more detail, the algorithms and their setup are as follows.

LSE/LSEimp: Since the bound of Theorem 1 is fairly con-
servative, in our experiments we used a constant value of

β
1/2
t = 3, which is somewhat smaller than the values sug-

gested by the theorem.

LSEbatch/LSEimp-batch: We used η
1/2
t = 4 and B = 30.

STR: The state-of-the-art straddle heuristic, as pro-
posed by Bryan et al. [2005], with the selection rule
xt = argmaxx∈D (1.96σt−1(x)− |µt−1(x)− h|).

STRimp: For the implicit threshold setting, we have defined
a variant of the straddle heuristic that uses at each step the
implicitly defined threshold level with respect to the maxi-
mum of the inferred mean, i.e. ht = ωmaxx∈D µt−1(x).

STRrank/STRbatch: We have defined two batch versions of
the straddle heuristic: STRrank selects the B = 30 points
with the largest straddle score, while STRbatch follows a
similar approach to LSEbatch by using the selection rule
xt = argmaxx∈D

(

1.96σt−1(x)− |µfb[t](x)− h|
)

.

VAR: The max. variance rule xt = argmaxx∈D σt−1(x).

We assess the classification accuracy for all algorithms us-
ing the F1-score, i.e. the harmonic mean of precision and
recall, by considering points in the super- and sublevel sets
as positives and negatives respectively. Finally, in all evalu-
ations of LSE and its extensions, the accuracy parameter ǫ is
chosen to increase exponentially from 2% up to 20% of the
maximum value of each dataset.

Dataset 1: Network latency. Our first dataset consists of
round-trip time (RTT) measurements obtained by “pinging”
1768 servers spread around the world. The sample space con-
sists of the longitude and latitude coordinates of each server,
as determined by a commercial geolocation database1. Ex-
ample applications for geographic RTT level set estimation,
include monitoring global networks and improving quality of
service for applications such as internet telephony or online
games. Furthermore, selecting samples in batches results in
significant time savings, since sending out and receiving mul-
tiple ICMP packets can be virtually performed in parallel.

We used 200 randomly selected measurements to
fit suitable hyperparameters for an anisotropic Matérn-
5 [Rasmussen and Williams, 2006] kernel by maximum like-
lihood and the remaining 1568 for evaluation. The threshold
level we chose for the experiments was h = 200 ms.

Dataset 2: Environmental monitoring. Our second dataset
comes from the domain of environmental monitoring of in-
land waters and consists of 2024 in situ measurements of
chlorophyll concentration within a vertical transect plane,
collected by an autonomous surface vessel in Lake Zurich
[Hitz et al., 2012]. Since chlorophyll levels can vary through-
out the year, in addition to having a fixed threshold con-
centration, it can also be useful to be able to detect relative
“hotspots” of chlorophyll, i.e. regions of high concentration
with respect to the current maximum. Furthermore, select-
ing batches of points can be used to plan sampling paths and
reduce the required traveling distances.

In our evaluation, we used 10, 000 points sampled in a
100× 100 grid from the GP posterior that was derived using
the 2024 original measurements (see Figure 1c). Again, an

1
http://www.maxmind.com
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Figure 2: Results for the network latency [N] and environmental monitoring [E] datasets. (a), (b) LSE is competitive with STR,
while both clearly outperform VAR. (c), (d) LSEbatch and STRbatch are only slightly worse than STR, while the naive STRrank

is far inferior. (e) LSEimp and LSEimp-batch achieve high accuracy at a slower rate than the explicit threshold algorithms, while
STRimp fails to do so. (f) Using larger batch sizes for planning dramatically reduces the traveled path lengths.

anisotropic Matérn-5 kernel was used and suitable hyperpa-
rameters were fitted by maximizing the likelihood of a second
available chlorophyll dataset from Lake Zurich. We used an
explicit threshold level of h = 1.3 RFU and chose ω = 0.74
for the implicit threshold case, so that the resulting implicit
level is identical to the explicit one, which enables us to com-
pare the two settings on equal ground. We evaluated the effect
of batch sampling on the required traveling distance using an
approximate Euclidean TSP solver to create paths connecting
each batch of samples selected by LSEbatch.

Results and discussion. Figures 2a and 2b compare the per-
formance of the strictly sequential algorithms on the two
datasets. In both cases, LSE and STR are comparable in
performance, which is expected given the similarity of their
selection rules (see Section 3). Although VAR is commonly
used for estimating functions over their entire domain, it is
clearly outperformed by both algorithms and, thus, deemed
unsuitable for the task of level set estimation.

In Figures 2c and 2d we show the performance of the batch
algorithms on the two datasets. The LSEbatch and STRbatch al-
gorithms, which use the always up-to-date variance estimates
for selecting batches, achieve similar performance. Further-
more, there is only a slight performance penalty when com-
pared to the strictly sequential STR, which can easily be out-
weighed by the benefits of batch point selection (e.g. in
the network latency example, the batch algorithms would
have about B = 30 times higher throughput). As expected,
the STRrank algorithm, performs significantly worse than the
other two batch algorithms, since it selects a lot of redundant
samples in areas of high straddle score (cf. Section 4.2).

Figure 2e shows the results of the implicit threshold exper-
iments on the environmental monitoring dataset. The diffi-
culty of estimating the function maximum at the same time as
performing classification with respect to the implicit thresh-
old level is manifested in the notably larger sampling cost
of LSEimp required to achieve high accuracy compared to the

explicit threshold experiments. As before, the batch version
of LSEimp is only slightly worse that its sequential counter-
part. More importantly, the naive STRimp algorithm com-
pletely fails to achieve high accuracy, as it gets stuck with
a wrong estimate of the maximum and never recovers, since
the straddle rule is not sufficiently exploratory.

Finally, Figure 2f displays the dramatically lower required
travel length by using batches of samples for path planning:
to achieve an F1-score of 0.95 using sequential sampling re-
quires more than six times larger traveling distance than plan-
ning ahead with B = 30 samples per batch.

6 Conclusion

We presented LSE, an algorithm for estimating level sets,
which operates based on confidence bounds derived by mod-
eling the target function as a GP. We considered for the first
time the challenge of implicitly defined threshold levels and
extended LSE to this more complex setting. We also showed
how both algorithms can be extended to select samples in
batches. In addition, we provided theoretical bounds on the
number of iterations required to obtain an ǫ-accurate solution
when the target function is sampled from a known GP. The
experiments on two real-world applications showed that LSE

is competitive with the state-of-the-art, while its extensions
are successful in handling the corresponding problem variants
and perform significantly better than naive baselines. We be-
lieve our results provide an important step towards addressing
complex real-world information gathering problems.
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