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a b s t r a c t

Sentiment analysis from data streams is aimed at detecting authors’ attitude, emotions and

opinions from texts in real-time. To reduce the labeling effort needed in the data collection

phase, active learning is often applied in streaming scenarios, where a learning algorithm is

allowed to select new examples to be manually labeled in order to improve the learner’s

performance. Even though there are many on-line platforms which perform sentiment

analysis, there is no publicly available interactive on-line platform for dynamic adaptive

sentiment analysis, which would be able to handle changes in data streams and adapt

its behavior over time. This paper describes ClowdFlows, a cloud-based scientific workflow

platform, and its extensions enabling the analysis of data streams and active learning.

Moreover, by utilizing the data and workflow sharing in ClowdFlows, the labeling of

examples can be distributed through crowdsourcing. The advanced features of ClowdFlows

are demonstrated on a sentiment analysis use case, using active learning with a linear

Support Vector Machine for learning sentiment classification models to be applied to

microblogging data streams.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses a data mining scenario at the intersection of active learning, sentiment analysis, stream mining and

service-oriented knowledge discovery architectures effectively solved by on-line workflow implementation of the developed

active learning methodology for sentiment analysis from streams of Twitter data.

Active learning is a well-studied research area (Sculley, 2007; Settles, 2011; Settles & Craven, 2008), addressing data

mining scenarios where a learning algorithm can periodically select new examples to be labeled by a human annotator

and add them to the training dataset to improve the learner’s performance on new data. Its aim is to maximize the

performance of the algorithm and minimize the human labeling effort. Sentiment analysis (Liu, 2012; Pang & Lee, 2008;

Turney, 2002) is concerned with the detection of the author’s attitude, emotion or opinion about a given topic expressed
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in the text. The task of sentiment analysis is especially challenging in the context of analyzing user generated content from

the Internet (Petz et al., 2012, 2013). Stream mining (Gama, Rodrigues, Spinosa, & de Carvalho, 2010) is an online learning

paradigm, aiming to incorporate the information from the evolving data stream into the model, without having to re-learn

the model from scratch; while batch learning is a finite process that starts with a data collection phase and ends with a sta-

tionary model, the online learning process starts with the arrival of some training instances and lasts as long as there is new

data available for learning. As such, it is a dynamic process that has to encapsulate the collection of data, the learning and the

validation phase in a single continuous cycle.

This paper introduces a cloud-based scientific workflow platform, which is able to perform on-line dynamic adaptive sen-

timent analysis of microblogging posts. Even though there are many on-line platforms which apply sentiment analysis on

microblogging texts, there is still no such pltaform that could be used for on-line dynamic adaptive sentiment analysis

and would thus be able to handle changes in data streams and adapt its components over time. In order to provide contin-

uous updating of the sentiment classifier with time we used an active learning approach. In this paper, we address this issue

by presenting an approach to interactive stream-based sentiment analysis of microblogging messages in a cloud-based sci-

entific workflow platform ClowdFlows.1 With the aim to minimize the effort required to apply labels to tweets, this browser-

based platform provides an easy way to share the results and a Web interface for labeling tweets.

ClowdFlows is a new open-sourced data mining platform designed as a cloud-based Web application in order to over-

come several deficiencies of similar data mining platforms, providing a handful of novel features that benefit the data mining

community. ClowdFlows was first developed as a data mining tool for processing static data (Kranjc, Podpecian, & Lavraci,

2012a, 2012b), which successfully bridges different operating systems and platforms, and is able to fully utilize available

server resources in order to relieve the client from heavy-duty processing and data transfer as the platform is entirely

Web based and can be accessed from any modern browser. ClowdFlows also benefits from a service-oriented architecture

which allows users to utilize arbitrary Web services as workflow components. In this paper we present the adaptation of

the ClowdFlows platform, enabling it to work on real time data streams. As a result, workflows in ClowdFlows are no longer

limited to static data on the server but can connect to multiple data sources and can process the data continuously. One such

data source is the Twitter API which provides a potentionally infinite stream of tweets which are the subject of sentiment

analysis in this paper.

The paper is structured as follows. Section 2 presents the related work. Comparable data mining and stream mining plat-

forms are presented and their differences and similarities with ClowdFlows are discussed. Related work concerning active

learning in data streams is also presented. Section 3 presents the technical background and implementation details of the

ClowdFlows platform. The architecture of the system is presented along with specific methods that allow stream mining

in a workflow environment. The proposed sentiment analysis and active learning methods are presented in Section 4. The

implementation details and the workflow enabling active learning for sentiment analysis are presented in Section 5. In Sec-

tion 6 we conclude the paper by presenting the directions for further work.

2. Related work

This section presents an overview of data mining platforms and their key features: visual programming and execution of

scientific workflows, diversity of workflow components, service-oriented architectures, remote workflow execution, big data

processing, stream mining, and data sharing. The overview is followed presenting current research in the field of active

learning on data streams.

2.1. Data mining platforms

Visual construction and execution of scientific workflows is one of the key features of the majority of current data mining

software platforms. It enables the users to construct complex data analysis scenarios without programming and allows to

easily compare different options. All major data mining platforms, such as Weka (Witten, Frank, & Hall, 2011), RapidMiner

(Mierswa, Wurst, Klinkenberg, Scholz, & Euler, 2006), KNIME (Berthold et al., 2007) and Orange (Demšar, Zupan, Leban, &

Curk, 2004) support workflow construction. The most important common feature is the implementation of aworkflow canvas

where complex workflows can be constructed using simple drag, drop and connect operations on the available components.

The range of available components typically includes database connectivity, data loading from files and preprocessing, data

and pattern mining algorithms, algorithm performance evaluation, and interactive and non-interactive visualizations.

Even though such data mining software solutions are reasonably user-friendly and offer a wide range of components,

some of their deficiencies severely limit their utility. Firstly, all available workflow components provided by any of these

platforms are specific and can be used only in the given platform. Secondly, the described platforms are implemented as

standalone applications and have specific hardware and software dependencies. Thirdly, in order to extend the range of

available workflow components in any of these platforms, knowledge of a specific programming language is required. This

also means that they are not capable of using existing software components, implemented as Web services, freely available

on the Web.

1 http://clowdflows.org.
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As a benefit of service-oriented architecture concepts, software tools have emerged, which are able to make use of Web

services, and can access large public databases (some supporting grid deployment and P2P computing). Environments such

as Weka4WS (Talia, Trunfio, & Verta, 2005), Orange4WS (Podpečan, Zemenova, & Lavrač, 2012), Web Extension for Rapid-

Miner, Triana (Taylor, Shields, Wang, & Harrison, 2007), Taverna (Hull et al., 2006) and Kepler (Altintas et al., 2004) allow

for the integration of Web services as workflow components. However, with the exception of Orange4WS andWeb Extension

for RapidMiner, these environments are mostly specialized to domains like systems biology, chemistry, medical imaging,

ecology and geology. Lastly, all mentioned platforms are still based on technologies that do not benefit from modern Web

technologies which enable truly independent software solutions. On the other hand, Web-based workflow construction

environments exist, which are however too general and not coupled to any data mining library. For example, Oryx Editor

(Decker, Overdick, & Weske, 2008) can be used for modeling business processes and workflows while the Galaxy

(Blankenberg et al., 2001, chap. 19) genome analysis tool (implemented as a Web application) is limited exclusively to

the workflow components provided by the project itself.

Remote workflow execution (on different machines than the one used for workflow construction) is employed by KNIME

Cluster execution and RapidMiner using the RapidAnalytics server. This allows the execution of workflows on more powerful

machines and data sharing with other users, with the requirement that the client software is installed on the user’s machine.

The client software is still used for designing workflows which are executed on remote machines, while only the results can

be viewed using a Web interface.

In support of the ever increasing amount of data several truly distributed software platforms have emerged. Such plat-

forms can be categorized into two groups: batch data processing and data stream processing. A well known example of a

distributed batch processing framework is Apache Hadoop,2 an open-source implementation of the MapReduce programming

model (Dean & Ghemawat, 2008) and a distributed file system called Hadoop Distributed Filesystem (HDFS). It is used in many

real life environments and several modifications and extensions exist, also for online (stream) processing (Condie et al., 2010)

(parallelization of a variety of learning algoriths using an adaptation of MapReduce is discussed by Chu et al. (2006)). Apache

Hadoop is also the base framework of Apache Mahout,3 a machine learning library for large data sets, which currently supports

recommendation mining, clustering, classification and frequent itemset mining. Radoop,4 a commercial big data analytics solu-

tion, is based on RapidMiner and Mahout, and uses RapidMiner’s data flow interface.

For data stream processing, two of the most known platforms were released by Yahoo! (the S4 platform5) and Twitter

(Storm6). SAMOA (Morales, 2013) is an example of a new generation platform which is targeted at processing big data streams.

In contrast with distributed data mining tools for batch processing using MapReduce (e.g., Apache Mahout), SAMOA features a

pluggable architecture on top of S4 and Storm for performing the most common tasks such as classification and clustering. How-

ever, the platform is under development, no software has been released yet and it is not known whether the platform will sup-

port visual programming with workflows. MOA (Massive On-line Analysis) is a non-distributed framework for mining data

streams (Bifet, Holmes, Kirkby, & Pfahringer, 2010). It is related to the WEKA project and bi-directional interaction of the

two is possible. MOA itself does not support visual programming of workflows but the ADAMS project (Reutemann &

Vanschoren, 2012) provides a workflow engine for MOA which uses a tree-like structure instead of an interactive canvas.

Sharing data and experiments has been implemented in the OpenML Experiment Database (Vanschoren & Blockeel,

2009), which is a database of standardized machine learning experimentation results. Instead of a workflow engine it fea-

tures a visual query engine for querying the database, and an API for submitting experiments and data.

2.2. Active learning for data streams

There exist three different scenarios for active learning: (i) membership query synthesis, (ii) pool-based sampling, and

(iii) stream-based selective sampling (Settles, 2010). In the membership query synthesis scenario, the learning algorithm

can select examples for labeling from the input space or it can produce new examples itself. In the pool-based scenario,

the learner has access to a collection of previously seen examples and may request labeling for any of them. In this study,

we are interested in the third scenario: the stream-based active learning approach. More specific, we are interested in the

active learning on stream data for sentiment analysis of Twitter posts. In this scenario, examples are constantly arriving from

a data stream and the learning algorithm has to decide in real time whether to select an arriving example for labeling or not.

Therefore, the approach which would handle this scenario has to:

� have constant access to a source of data,

� have the ability to quickly and in real time process each incoming instance and decide whether to request a label for it,

� periodically update the model and apply it to new instances.

2 http://hadoop.apache.org/.
3 http://mahout.apache.org/.
4 http://www.radoop.eu.
5 http://incubator.apache.org/s4/.
6 http://storm-project.net/.
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In the stream-based active learning setting, there exist several approaches to deciding whether or not to request hand

labels for examples which come from a data stream. One of the simplest strategies is to use some informativeness measure

and request labeling for the examples which are the most informative. For instance, the examples for which the learner has

the highest uncertainty can be considered the most informative and be selected for labeling. Zhu, Zhang, Lin, and Shi (2007)

used uncertainty sampling to label examples within a batch of data from the data stream. Žliobaitė, Bifet, Pfahringer, and

Holmes (2011) propose strategies that are based on uncertainty, dynamic allocation of labeling efforts over time and ran-

domization of the search space. Our active learning approach also employs randomization of the search space, but in contrast

to the work of Žliobaitė et al. (2011), we organize the examples from the data stream into batches. The decision which exam-

ples are best for labeling can be made by a single evolving classifier (Žliobaitė et al., 2011) or by a classifier ensemble (Wang,

Zhang, & Guo, 2012; Zhu et al., 2007, Zhu, Zhang, Lin, & Shi, 2010). In our study, we use a single evolving sentiment classifier

for Twitter posts.

Our preliminary work on active learning on stream data for sentiment analysis of tweets is presented in (Saveski & Grčar,

2011). The closely related contribution was made in (Settles, 2011), where the author demonstrated the application of DUAL-

IST, an active learning annotation tool, to Twitter sentiment analysis. The author intended to show the generality of the

annotation tool, since it is not adjusted specifically to tweets. On the other hand, our approach is particularly adjusted to

Twitter data. Regarding the on-line platform which would handle active learning on stream data for sentiment analysis of

Twitter posts, to best of our knowledge, we are the first addressing this issue.

3. The ClowdFlows platform

In this section the ClowdFlows platform is presented. The enabling technologies are presented briefly and displayed in the

architecture of the system. To validate the design of the platform we present a stress test with many simultaneous users

executing their workflows. The graphical user interface and the workflowmodel are presented. Finally the real-time analysis

features of ClowdFlows are described.

3.1. Platform design

As a new generation data mining platform, ClowdFlows (Kranjc et al., 2012a, Kranjc, Podpečan, & Lavrač, 2012b) is

designed and implemented using modern technologies and computing paradigms. It is essentially a cloud-based Web

application that can be accessed and controlled from anywhere while the processing is performed in a cloud of computing

nodes. To achieve the goal of developing a platform that can be accessed and controlled from anywhere and executed on a

cloud, we have designed it as a cloud-based Web application. As such it can be, based on the technologies used, logically

separated on two sides – the client side, and the server side. The architecture of the platform accessed by multiple users

is shown in Fig. 1. A similar architecture figure was previously published in (Kranjc et al., 2012a), with some major

differences. In contrast to the previously published architecture, the platform now features a relational database for

storing workflows, a broker for delegating tasks to worker nodes and a stream mining daemon for processing data

streams.

The client side of the platform consists of operations that involve user interaction. The user interacts with the platform

primarily through the graphical user interface in a contemporary Web browser. We have implemented the graphical user

Fig. 1. An overview of the ClowdFlows platform design.
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interface in HTML and JavaScript, with an extensive use of the jQuery library.7 The jQuery library was designed to simplify

client-side scripting, and is the most popular JavaScript library in use today.8

The server side is written in Python and uses the Django Web framework.9 Django is a high level Python Web framework

that encourages rapid development and provides an object-relational mapper and a powerful template system. The object-rela-

tional mapper provides an API that links objects to a database, which means that the ClowdFlows platform is database agnostic.

PostgreSQL, MySQL, SQLite and Oracle databases are all supported. MySQL is used in the public installation of ClowdFlows.

In order to allow consumption of Web services and importing them as workflow components, the PySimpleSoap library10

is used. PySimpleSoap is a light-weight library written in Python and provides an interface for client and server Web service

communication, which allows importingWSDLWeb services as workflow components, and exposing entire workflows as WSDL

Web services.

ClowdFlowsmay also be installed on multiple computers, which is enabled by using the RabbitMQ11 messaging server and

a Django implementation of Celery,12 a distributed task queue, which allows passing asynchronous tasks between servers. With

this tools it is possible to install ClowdFlows on worker nodes which execute workflows. To demonstrate the scalability of the

platform with these tools we have performed a stress test which we describe in Section 3.2.

ClowdFlows is publically available for use at http://clowdflows.org. The source code is open sourced under the General

Public Licence and can be downloaded at http://github.com/janezkranjc/clowdflows. Detailed installation instructions are

provided with the source code.

3.2. Scalability of the platform

In order to test the scalability of the ClowdFlows platform and validate the design decisions described in Section 3.1

enabling big data analytics for data streams we have performed a stress test in which we simulated several users executing

their workflows simultaneously and measured the average execution time.

The test was conducted on a simplified workflow that performs 10-fold cross validation with the Naive Bayes algorithm.

The workflow is shown in Fig. 2. In order to simulate concurrent users we have implemented a simulation of a user that

Fig. 2. A screenshot of the ClowdFlows graphical user interface loaded in the Google Chrome Web browser.

7 http://jquery.com.
8 http://w3techs.com/technologies/overview/javascript_library/all.
9 https://www.djangoproject.com.

10 https://code.google.com/p/pysimplesoap/.
11 http://www.rabbitmq.com/.
12 http://celeryproject.org/.
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executes her workflow continuously for 60 s without a pause. This settings is also equivalent to executing a streaming pro-

cess for 1 min. After 60 s have passed the user waits until the final workflow execution results are returned. We tested the

platform against different sets of concurrent users: 1 user, 10 users, 20 users, 50 users, and 100 users for different setups of

the worker nodes.

A worker node is a headless installation of the ClowdFlows platform that executes workflows. We tested the platform

with a single worker node, two worker nodes, and three worker nodes. Each of these worker nodes was installed on equiv-

alent computers with 8 cores. The workers were setup to work on 8 concurrent threads. For the final test we have setup an

additional worker on a computer with 16 cores to run 16 threads. We have measured the execution times for each workflow

and calculated the average execution time from the beginning of the request until the result was received. The results are

shown in Table 1.

The results show that a single user continuously executing her cross validation workflow will be able to execute it 18 or

19 times on any setup if she is the only user executing workflows. In order for ten concurrent users to execute their work-

flows at a comparable speed at least two worker nodes are needed. The most efficient current setup is three workers with 8

threads each and one worker with 16 threads which still allows a hundred users to issue workflow execution requests to the

platform at a reasonable response time.

The platform has succesfully passed the stress test. The results show that the ClowdFlows platform can serve many con-

current users that continuously execute workflows. The average execution times can be controlled by adding or removing

worker nodes. The worker nodes can be added and removed during runtime, which means that heavy loads can be resolved

simply by adding more computing power to the ClowdFlows worker cluster. As adding worker nodes at times with lower

loads does not improve the average processing time, we would like to implement a mechanism for automatically spawning

and removing worker nodes on services such as the Amazon Elastic Compute Cloud in future work.

3.3. The workflow model

The integral part of the ClowdFlows platform is the workflowmodel which consists of an abstract representation of work-

flows and workflow components. Workflows are executable graphical representations of complex procedures. A workflow in

ClowdFlows is a set of processing components and connections. A processing component is a single workflow processing unit

with inputs, outputs and parameters. Each component performs a task considering its inputs and parameters, and then

stores the results of the task on its outputs. Connections are used to transfer data between two components and may exist

only between an output of a widget and an input of another widget. Data is transffered between connections, so each input

can only receive data from a connected output. Parameters are similar to inputs, but need to be entered manually by users.

Inputs can be transformed into parameters and vice versa, depending on the users’ needs.

3.4. The graphical user interface

The graphical user interface used for constructing workflows follows a visual programming paradigm which simplifies

the representation of complex procedures into a spatial arrangement of building blocks. The building blocks (workflow com-

ponents) in ClowdFlows are referred to as widgets. The graphical user interface implements an easy to use way to arrange

widgets on a canvas to form a graphical representation of a procedure. The ClowdFlows graphical user interface rendered in a

Web browser is shown in Fig. 2.

The graphical user interface of the ClowdFlows system consists of a workflow canvas and a widget repository. The widget

repository is a set of widgets ordered in a hierarchy of categories. Upon clicking on a widget in the repository, that widget

appears on the canvas. The workflow canvas implements moving, connecting, issuing commands to execute and delete wid-

gets. Widgets can be arbitrarily arranged on the canvas by dragging and dropping. Connections between widgets can be

added by selecting an output of a widget and an input of another widget.

Information on each operation the user performs on the workflow canvas is sent to the server using an asynchronous

HTTP POST request. The operation is validated on the server and a success or error message with additional information

is passed to the user interface (the client’s browser) formatted in JavaScript Object Notation (JSON) or HTML.

Table 1

Average response time for the execution of the workflow based on different numbers of concurrent users and different setups of worker nodes. The cells display

the average execution time in seconds (plus the standard deviation) and the number of workflow executions done by all the worker nodes in the time of the test

in parantheses.

Users Worker nodes

1� 8 2� 8 3� 8 3� 8þ 1� 16

1 3.466 ± 0.603 (18) 3.252 ± 0.010 (19) 3.255 ± 0.011 (19) 3.248 ± 0.011 (19)

10 5.665 ± 2.927 (109) 3.913 ± 1.436 (157) 4.012 ± 1.399 (154) 3.476 ± 0.779 (179)

20 9.369 ± 5.449 (130) 5.530 ± 2.786 (222) 5.090 ± 4.189 (236) 4.268 ± 1.742 (290)

50 17.176 ± 8.105 (182) 9.856 ± 6.615 (303) 7.433 ± 4.207 (407) 6.154 ± 3.799 (495)

100 27.534 ± 13.071 (238) 18.088 ± 9.132 (351) 12.745 ± 6.732 (499) 9.882 ± 5.990 (617)
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On the top of the graphical user interface is a toolbar where entire workflows can be saved, deleted, and executed.

3.5. The widget repository

Widgets in ClowdFlows are separated into four groups based on their purpose: regular widgets, visualization widgets,

interactive widgets and workflow control widgets.

Regular widgets perform specific tasks that transform the data from the inputs and the parameters to data on the outputs,

and provide success or error messages to the system. The task of a widget is written as a Python function that takes a Python

dictionary of inputs and parameters as its arguments and returns a dictionary of outputs. The function is called each time the

widget is executed. Widgets that implement complex procedures can also implement a progress bar, that displays progress

to the user in real time.

Visualization widgets are extended versions of regular widgets as they also provide the ability to render an HTML tem-

plate with JavaScript to the client’s browser. These are useful for data visualizations and presentation of more detailed feed-

back to the user. Visualization widgets are regular widgets with the addition of a second Python function which controls the

rendering of the template. This function is only invoked when the workflow is executed from the user interface.

An interactive widget is a widget that requires data before execution in order to prompt the user for the correct param-

eters. These widgets are extensions of regular widgets as they perform three functions. The data preparation function exe-

cutes first and takes the inputs and parameters as the arguments. The second function is a rendering function where a modal

window is prepared by using an HTML template which prompts the user to manipulate the data. The final function’s argu-

ments are the user’s input and the inputs and parameters of the widget. A widget can also be a combination of an interactive

and a visualization widget, where it executes a fourth rendering function to display the results.

Three special widgets provide additional workflow controls. These are the Sub-workflow, Input, and Outputwidget. When-

ever a Sub-workflow widget is added to a workflow, an empty workflow is created that will be executed when the sub-work-

flow widget is executed. The Sub-workflow widget has no inputs and outputs by default, so they have to be added to the

workflow by the user using the Input and the Output widget. Whenever an Input or Output widget is put on a workflow that

is a sub-workflow of another workflow, an actual input or output is added to the widget representing the sub-workflow.

Workflows can be indefinitely nested this way.

Two variations of the input and output widget provide ways to loop through sub-workflows. The input and output wid-

gets can be replaced by the For Input and For Output widgets. Whenever a workflow contains these two widgets, the work-

flow execution engine will attempt to break down the object on the input and execute the workflow once for each piece of

data that is on the input. With these controls a workflow can be executed on a list or array of data.

3.6. The workflow execution engine

The job of the workflow execution engine is to execute all executable widgets in the workflow in the correct order. The

engine is implemented twice, both in Python and JavaScript due to performance issues when the user wishes to see the order

of the executed widgets in real time.

The two implementations of the workflow execution engine are similar with two differences. The JavaScript engine is

enabled by default due to the requests for executing separate widgets being asynchronous HTTP requests. Each request is

handled by the server separately and executes a single widget, saves the changed and returns the results to the client where

the execution continues. The server side Python implementation only receives one HTTP request for the entire workflow and

multiprocessing had to be implemented manually. For performance issues, sub-workflows and loops are executed by the

Python implementation, while top-level workflows executed from the user interface are processed by the JavaScript imple-

mentation. The JavaScript implementation shows the results of the execution of each widget in real time, while the user can

only see the results of the Python implemented workflow execution after it has finished in full.

When a workflow is running, the execution engine perpetually checks for widgets that are executable and executes them.

Executable widgets are widgets which either have no predecessors, or their predecessors have already been successfully exe-

cuted. Whenever two or more widgets are executable at the same time they are asynchronously executed in parallel, since

they are independent. The implemented widget state mechanism ensures that no two widgets where the inputs of a widget

are dependent on an output of another widget will be executable at the same time. The execution of a workflow is complete

when there are no executable or running widgets.

3.7. Public workflows

Since workflows in ClowdFlows are processed and stored on remote servers they can be accessed from anywhere with an

internet connection. By default, each workflow can only be accessed by its author. We have implemented an option that

allows users to create public versions of their workflows.

The ClowdFlows platform generates a specific URL for each workflow that has been saved as public. Users can then simply

share their workflows by publishing the URL. Whenever a public workflow is accessed by a user, a copy of the workflow is

created on the fly and added to the user’s private workflow repository. The workflow is copied with all the data to ensure the
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repeatability of experiments. Each such copied public workflow can also be edited, augmented or used as a template to cre-

ate a new workflow, which can be made public as well.

3.8. Real-time data analysis in ClowdFlows

In comparison with the early implementations of the ClowdFlows platform described in (Kranjc et al., 2012a, 2012b)

the novelty of this work is the ability of ClowdFlows to process real-time data streams. Its workflow engine has been

augmented with continuous parallel execution and the halting mechanism and several specialized widgets for stream data

processing were developed. In the following we describe the new data stream processing capabilities of the ClowdFlows

platform.

3.8.1. Continuous workflow execution with the halting mechanism

Regular workflows and stream mining workflows are primarily distinguished by their execution times. A widget in a sta-

tic workflow is executed a finite amount of times and the workflow has a finite execution time. Widgets in a stream mining

workflow are executed a potentially infinite amount of times and the workflows are executed until manually terminated by

users. Another major difference between regular workflows and stream mining workflows is the data on the input. The data

that is processed by regular workflows is available in whole during the entire processing time, while data entering the

stream mining workflows is potentially infinite and is only exposed as a small instance at any given time.

In order to handle potentially infinite data streams we have modified the workflow execution engine to execute the work-

flow multiple times at arbitrarily small temporal intervals in parallel. The amount of parallelism and the frequency of the

execution are parameters that can be (providing the hardware availability) modified for each stream to maximize the

throughput.

The execution of the workflows is delegated by a special stream mining daemon that issues tasks to the messaging queue.

The streammining daemon’s task is to issue commands to execute streaming workflows. The daemon can also prioritize exe-

cution of some streams over others based on the users’ preferences. Tasks are picked up from the messaging queue by work-

ers that execute the workflow. To ensure that each execution of a workflow processes a different instance of the data, special

widgets and mechanisms were developed, which can halt the execution of streaming workflows. This haltingmechanism can

be activated by widgets in a streaming workflow to halt the current execution.

Workflows that are executed as a stream mining process need to be saved as streaming workflows and executed sepa-

rately. The user cannot inspect the execution of the workflow in real time, as many processes are running in parallel. The

user can, however, see the results from special stream visualization widgets.

3.8.2. Specialized workflow widgets for real-time processing

Widgets in streammining workflows have, in contrast to widgets in regular workflows, the internal memory and the abil-

ity to halt the execution of the current workflow. The internal memory is used to store information about the data stream,

such as the timestamp of the last processed data instance, or an instance of the data itself. These two mechanisms were used

to develop several specialized stream mining widgets.

In order to process data streams, streaming data inputs had to be implemented. Each type of stream requires its own wid-

get to consume the stream. In principle, a streaming input widget connects to an external data stream source, collects

instances of the data that it had not yet seen, and uses its internal memory to remember the current data instances. This

can be done by saving small hashes of the data, to preserve space or just the timestamp of the latest instance if they are avail-

able in the stream itself. If the input widget encounters no new data instances at the stream source it halts the execution of

the stream. No other widgets that are directly connected to it via its outputs will be executed until the workflow is executed

again.

Several other popular stream mining approaches (Ikonomovska, Loskovska, & Gjorgjevik, 2007) were also imple-

mented as workflow components. The aggregation widget was implemented to collect a fixed number of data instances

before passing the data to the next widget. The internal memory of the widget is used to save the data instances

until the threshold is reached. While the number of instances is below the threshold, the widget halts the execution.

The internal memory is emptied and the data instances are passed to the next widget once the threshold has been

reached.

The sliding window widget is similar to the aggregation widget, except that it does not empty its entire internal memory

upon reaching the threshold. Only the oldest few instances are forgotten and the instances inside the sliding window are

released to other widgets in the workflow for processing. By using the sliding window, each data instance can be processed

more than once.

Sampling widgets are fairly simple. They either pass the instance to the next widget or halt the execution, based on an

arbitrary condition. This condition can be dependent on the data or not (e.g. drop every second instance). The internal mem-

ory can be used to store counters, which are used to decide which data is left in the sample.

Special stream visualization widgets were also developed for the purpose of examining results of real-time analyses. Each

instance of a stream visualization widget creates a special Web page with a unique URL that displays the results in various

formats. This is useful because the results can be shared without having to share the actual workflows.
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4. Active learning for sentiment analysis

In this section we first describe the dataset we use for the default tweet sentiment classifier, preprocessing techniques

and the algorithm for sentiment analysis. The approach to tweet preprocessing and classifier training is implemented using

the LATINO13 software library of text processing and data mining algorithms. The section continues with a description of the

active learning algorithm and the strategy used to select data instances for labeling.

4.1. The data used for the default sentiment classifier

The default tweet sentiment classifier is trained on a collection of 1,600,000 (800,000 positive and 800,000 negative)

tweets collected and prepared by Stanford University (Go, Bhayani, & Huang, 2009), where the tweets were labeled based

on positive and negative emoticons in them. Therefore, the emoticons approximate the actual positive and negative senti-

ment labels. This approach was introduced by Read (Read, 2005). If a tweet contains ‘‘:)’’, ‘‘:-)’’, ‘‘: )’’, ‘‘:D’’ or ‘‘=)’’ emoticon it

was labeled as positive, and if it contains ‘‘:(’’, ‘‘:-(’’ or ‘‘: (’’ emoticon it was labeled as negative. In the training data, the

tweets containing both positive and negative emoticons, retweets and duplicate tweets were removed (Go et al., 2009).

The emoticons, which approximate sentiment labels, were also already removed from the tweets in order not to put too

much weight on them in the training phase, and therefore the classifier learns from the other features of tweets. The tweets

in this collection do not belong to any particular domain.

4.2. Data preprocessing

Preprocessing of data is an important step when using supervised machine learning techniques. On the Twitter data, we

apply both standard and Twitter-specific text preprocessing to better define the feature space. The specific text preprocess-

ing is especially important for Twitter messages, since user generated content on the Internet often contains slang (Petz

et al., 2012) and messages from social media are considered noisy, containing many grammatical and spelling mistakes

(Petz et al., 2013). Therefore, with our Twitter-preprocessing, we try to overcome these problems and improve the quality

of features.

As a part of the Twitter preprocessing step (Agarwal, Xie, Vovsha, Rambow, & Passonneau, 2011; Go et al., 2009;

Smailović, Grčar, Lavrač, & Žnidaršič, 2013; Smailović, Grčar, & Žnidaršič, 2012) we replace mentioning of other Twitter users

in a tweet of the form @TwitterUser by a single token named USERNAME and writing different Web links by a single token

named URL. Moreover, letters which repeat for more than two times are replaced by one occurrence of such letter; for exam-

ple, the word loooooooove is transformed to love. We replace negation words (not, isn’t, aren’t, wasn’t, weren’t, hasn’t, haven’t,

hadn’t, doesn’t, don’t, didn’t) with a single token named NEGATION. Finally, exclamation marks are replaced by a single token

EXCLAMATION and question marks by a single token QUESTION.

Besides the Twitter-specific text preprocessing, we also apply standard preprocessing techniques (Feldman & Sanger,

2007) in order to better define and reduce the feature space. These involve text tokenization (text splitting into individual

words/terms), stopwords removal (removing words which do not contain relevant information, e.g., a, an, the, and, but, if, or,

etc.), stemming (converting words into their base or root form) and N-gram construction (concatenating 1 to N stemmed

words appearing consecutively in a tweet). The resulting terms are used as features in the construction of feature vectors

representing the tweets, where the feature vector construction is based on term frequency feature weighting scheme. We

do not apply a part of speech (POS) tagger, since it was indicated by Go et al. (2009) and Pang and Lee (2002) that POS tags

are not useful when using SVMs for sentiment analysis. Also, Kouloumpis, Wilson, and Moore (2011) showed that POS fea-

tures may not be useful for sentiment analysis in the microblogging domain.

4.3. The algorithm used for sentiment classification

Sentiment analysis methods (Liu, 2012; Pang & Lee, 2008; Turney, 2002) aim at detecting the authors attitude, emotions

or opinion about a given topic expressed in text. There are three generally known approaches to sentiment analysis (Pang &

Lee, 2008; Thelwall, Buckley, & Paltoglou, 2011): (i) machine learning, (ii) lexicon-based methods and (iii) linguistic analysis.

We use a machine learning approach, applying the linear Support Vector Machine (SVM) (Cortes & Vapnik, 1995; Vapnik,

1995, 1998), which is a typical algorithm used in document classification. The SVM training algorithm represents the labeled

training examples as points in the space and separates themwith a hyperplane. A hyperplane is placed in such a way that the

examples of the separate classes are divided from each other as much as possible. New examples are then mapped into

the same space and classified based on the side of the hyperplane they are. For training the tweet sentiment classifier,

we use the SVMperf (Joachims, 2005, 2006; Joachims & Yu, 2009) implementation of the SVM algorithm. In order to test

its classification accuracy, we trained the SVM classiffier on the collection of 1,600,000 smiley labeled tweets (Go et al.,

2009) and tested it on 177 negative and 182 positive manually labeled tweets, prepared and labeled by Stanford University

13 LATINO (Link Analysis and Text Mining Toolbox) is open-source—mostly under the LGPL license—and is available at http://latino.sourceforge.net/.
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(Go et al., 2009). We applied both standard and Twitter specific preprocessing. In this experiment we achieved the accuracy

of 83.01% (which is a comparable result with (Go et al., 2009)).

The reason for using a machine learning approach and not lexicon-based or linguistic methods is the following. In the

context of active learning for sentiment analysis on data streams, the linguistic methods pose several challenges, as they

tend to be too computationally demanding for the use in a streaming near real time setting. Also, there is the lack of readily

available tools for parsing tweets. On the other hand, lexicon-based methods are faster, but they usually rely on explicit

notion of sentiment and dismiss the terminology that bears sentiment more implicitly. For example, the word ‘Greece’ bears

negative sentiment in the light of the financial crisis, but in general it is neutrally or even positively connoted word.

Nevertheless, in order to compare lexicon and machine learning methods, we have tested a lexicon method classification

accuracy on the same collection of 177 negative and 182 positive manually labeled tweets (Go et al., 2009), as for the

machine learning approach. In the lexicon-based method, we used an opinion lexicon containing 2006 positive and 4783

negative words14 (Hu & Liu, 2004; Liu, Hu, & Cheng, 2005). The lexicon is adjusted to social media content, as it also contains

many misspelled words which are frequently used in social media language. We applied Twitter specific preprocessing on the

test tweets and calculated positive and negative score for each tweet, based on the occurrences of positive and negative lexicon

words in them. For example, if a tweet contains a word ‘love’ from the positive lexicon list, the positive score will increase by

one. The score will not increase if the currently observed lexicon word contains or it is contained in some of the previously seen

lexicon words for that specific class in the observed tweet. For example, a tweet could contain a word ‘nicely’. On the other

hand, the positive word lexicon list contains both ‘nice’ and ‘nicely’ words. The algorithm will detect that the word ‘nice’ is pre-

sented in the tweet and it will increase the positive score by one. Next, it will check the presence of the word ‘nicely’ and it will

find out that the tweet contains this word, but this word contains a word (‘nice’), which already increased the positive score for

this tweet, and therefore it will not increase the positive score. If the resulting positive score for a tweet is the same or higher

than the negative score, the tweet is labeled as positive. If it is lower, it is labeled as negative. The tweets with equal positive and

negative score are labeled as positive, since the positive lexicon list contains less words. In this experiment we achieved the

accuracy of 76.04% on the test set.

Since the accuracy on the test set obtained with the machine learning approach was higher than the accuracy obtained

with the lexicon-based approach, we decided to focus on the machine learning approach in our study.

4.4. Active learning

In active learning, the learning algorithm periodically asks an oracle (e.g., a human annotator) to manually label the

examples which he finds most suitable for labeling. Using this approach and an appropriate query strategy, the number

of examples that need to be manually labeled is largely decreased. Typically, the active learning algorithm first learns from

an initially labeled collection of examples. Based on the initial model and the characteristics of the newly observed unlabeled

examples, the algorithm selects new examples for manual labeling. After the labeling is finished, the model is updated and

the process is repeated for the new incoming examples. This procedure is repeated until some threshold (for example, time

limit, labeling quota or target performance) is reached or, in the case of data streams, it continues as long as the application is

active and new examples are arriving.

In our software, the active learning algorithm first learns from the Stanford smiley labeled data set as an initial labeled

data set. According to this initial model, the algorithm classifies new incoming tweets from the data stream as positive or

negative. Tweets, which come from the data stream, are split into batches. The algorithm selects most suitable tweets from

a first batch for hand-labeling and puts them in a pool of query tweets. The process is repeated for every following batch and

every time the pool of query tweets is updated and the tweets in the pool are reordered according to how suitable they are

for hand-labeling. When the user decides to conduct manual labeling, she is given a selected number of top tweets from the

pool of query tweets for hand-labeling. The user can label a tweet as positive, negative or neutral. After the labeling, labeled

tweets are placed in the pool of labeled tweets and removed from the pool of query tweets. Periodically, using the initial and

Table 2

Average accuracy, precision and recall in the setting without active learning and with active learning while experimenting with different proportions of random

tweets (#rnd) and tweets which are closest to the SVM hyperplane (#hyp) from every batch, containing 1000 tweets, for hand labeling.

Setting #rnd #hyp Accuracy Precision positive class Recall positive class Precision negative class Recall negative class

No active learning 0 0 0.349 0.463 0.569 0.223 0.643

Active learning 0 100 0.406 0.456 0.829 0.272 0.351

Active learning 25 75 0.413 0.454 0.858 0.275 0.296

Active learning 50 50 0.410 0.459 0.837 0.256 0.335

Active learning 75 25 0.418 0.451 0.881 0.279 0.265

Active learning 100 0 0.416 0.448 0.886 0.288 0.251

14 The opinion lexicon was obtained from http://www.cs.uic.edu/liub/FBS/sentiment-analysis.html.
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manually positively and negatively labeled tweets from the pool of labeled tweets, the model is retrained. This process is

repeated until it is terminated by the user.

The selection of tweets, which are suitable for manual labeling is based on uncertainty strategy and randomization of the

search space. The randomization of the search space was also used by Žliobaitė et al. (2011). We experimented with different

proportions of random tweets and tweets which are closest to the SVM hyperplane in order to find the best combination of

them. Additionally, we performed one experiment in which we did not apply the active learning strategy, i.e., the sentiment

classifier was static and did not update over time. In order to automatically conduct these experiments, we hand-labeled a

data set of 11,389 financial tweets (4861 positive, 1856 negative and 4672 neutral tweets) discussing the Web search engine

provider Baidu,15 which were collected for a period fromMarch 11 to December 9, 2011. The evaluation method was based on a

holdout evaluation approach (Bifet & Kirkby, 2009; Ikonomovska, 2012; Ikonomovska, Gama, & Džeroski, 2011) for data streams

where concept drift is assumed. The classifier‘s performance is tested on a new batch of tweets which come from the data

stream. After the testing is finished, the algorithm selects a predefined number of tweets from the same batch and asks an oracle

to label them. The newly labeled tweets are added to the training set and used for updating the sentiment model. This procedure

is repeated for every new batch of tweets from the data stream. We calculate the accuracy, precision and recall for every batch

and at the end of the simulation we report the overall average measures for all the batches. In our off-line evaluation experi-

ments, we select 100 tweets from every batch, which contains 1000 tweets, and then update the model. The results are pre-

sented in Table 2. As can be seen from the table, the accuracy of the sentiment classification is higher when the active

learning approach is applied. Among the querying strategies, the highest accuracy is obtained by selecting 75 random tweets

and 25 tweets which are closest to the SVM hyperplane.

In contrast to the experimental setting described above, the workflow developed for practical use (shown in Fig. 3) by

default splits tweets from the data stream into batches which contain 100 tweets, and selects 10 for hand labeling. Following

the best strategy from Table 2, the algorithm selects 3 tweets that are closest to the SVM hyperplane and puts them into the

pool of query tweets, so that the top most are the ones which are closest to the hyperplane, i.e., the most uncertain ones for

the classifier. The other 7 tweets are chosen randomly from the batch and put into a separate pool of random tweets. With

time, as new tweets arrive, the pools are updated. Whenever the user decides to label some tweets, she is presented with a

set of tweets to label, which contains 3 most uncertain ones from the pool of query tweets and 7 random ones from the pool

of random tweets. The hand-labeled tweets are placed in the pool of labeled tweets. Periodically, using the initial and man-

ually labeled tweets from the pool of labeled tweets, the model is retrained.

5. Active learning sentiment analysis workflow implementation in ClowdFlows

In this section we present the implementation of an active learning sentiment analysis use case on Twitter data in the

form of an executable workflow. The use case description is written as a step-by-step report on how the workflow was con-

structed. Following the description in this section, it is possible for the reader to construct a fully functioning streaming

active learning sentiment analysis process and observe its results.

Fig. 3. The Twitter sentiment analysis workflow.

15 http://www.baidu.com/.
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The aim of the use case is to monitor the Twitter sentiment on a given subject with the possibility to manually label

tweets to improve the classification model. For the purpose of this use case we have selected to monitor tweets containing

the keyword Snowden, as it is one of the trending keywords during the time of writing this article. We wish to measure the

Twitter sentiment over time regarding Edward Snowden, who leaked details of several top-secret documents to the press.

5.1. Rationale

We have decided to implement this stream-mining workflow in the ClowdFlows platform for several reasons.

The execution of the stream-mining workflow is bottlenecked by the rate of incoming Tweets, which is imposed by the

Twitter API. Therefore any streammining platform capable of processing tweets at a higher rate than the API’s incoming rate

would be as efficient as ClowdFlows for this use case. However, the benefit of using ClowdFlows for this task is its extensible

user interface which allows for human–computer interaction during the course of the streammining process. In this use case

the user interface is used during runtime for labeling Tweets. The user interface can also be used to modify the workflow by

using the intuitive visual programming paradigm interface. Moreover, the ability to share workflows allows us to publish

this workflow on the Web and allow single click deployment of it to the users. The users can also augment, extend or modify

the workflow to suit their needs without any coding knowledge just by rearranging the workflow components on the canvas.

5.2. Development of necessary components

To construct the workflow we required a stream input widget that can collect tweets based on a query, a sampling widget

that should discard any non-English tweets, a widget to perform sentiment analysis on tweets, a stream splitter to split the

stream of tweets into a stream of positive and a stream of negative tweets, and three types of visualization widgets to display

the line chart of the sentiment over time, a word cloud of positive or negative tweets, and the latest tweets.

5.2.1. Streaming input, filtering, and visualizations

To consume the incoming stream we implemented a widget that connects to Twitter via the Twitter API.16 The widget

accepts several parameters: the search query, by which it filters the incoming tweets, the geographical location (optional),

which filters tweets based on location, and the credentials for the Twitter API. The widget works both in a streaming and

non-streaming environment. Whenever the widget is executed it will fetch the latest results of the search query. For streaming

workflows, the internal memory of the widget holds the ID of the latest tweet, which is passed to the Twitter API, so that only

the tweets that have not yet been seen are fetched.

Since tweets returned by the Twitter API are annotated with their language, we constructed a widget for filtering tweets

based on their language. This widget discards all tweets that are not in English.

A simple widget was implemented that splits the stream of tweets into two streams, based on their sentiment. This was

done so that positive and negative tweets could be separately inspected.

To visualize the sentiment we implemented a line chart that displays the volume of all tweets, the volume of positive

tweets, the volume of negative tweets, and the difference of positive and negative tweets. The visualization was imple-

mented with the HighCharts JavaScript visualization library.17

To inspect separate tweets a simple table was implemented where each tweet is colored red or green based on its sen-

timent (red for negative and green for positive).

The word cloud visualization was implemented to show most popular words in recent tweets. This visualization is

dynamic and changes with the stream. Looking at the word cloud and seeing popular words appearing and unpopular words

disappearing is a novel way to inspect data streams in real-time. The visualization was developed with the D3.js JavaScript

library (Bostock, Ogievetsky, & Heer, 2011).

5.2.2. Sentiment classification and active learning

To implement sentiment classification and active learning discussed in Section 4, which was developed in the.NET frame-

work, we exposed it as a Web service that provided several operations:

� classify a set of tweets for a specific workflow,

� return a set of tweets for manual labeling for a specific workflow,

� update a model for a specific workflow.

The service keeps track of multiple workflows and builds a model for workflows separately (in order to better conform the

models for specific topics and to avoid malicious labeling affecting the models for legitimate users). Whenever the service is

queried a unique identifier of the processing component is also passed along to determine which model to use.

16 https://dev.twitter.com/.
17 http://www.highcharts.com/.
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The Classify a set of tweets operation accepts a set of tweets and an identifier of the processing component at the input.

Upon execution it loads the appropriate model and applies it to the tweets. The loading times of the models were reduced to

become shorter than the waiting time required to conform to the rate limit of the Twitter API in order to guarantee the pro-

cessing of all the tweets. The operation returns a set of labels for the tweets.

Return a set of tweets for manual labeling is an operation that accepts the unique identifier of the processing component

and returns ten tweets for manual labeling for that specific model. The tweets are then deleted from its pool of query tweets.

The Update model operation accepts a set of labeled tweets and a unique identifier of the processing component to update

the model. The updating of a model takes several minutes so special care was taken in order to only update models when

really necessary.

The functions were implemented into a workflow processing component in the following way: we have developed a

streaming workflow component that receives a list of tweets at the input. These tweets are provided by the Twitter API usu-

ally in a batch of a hundred or less tweets. The tweets are sent to the Classify a set of tweets operation of the Web service. The

sentiment labels that are returned from the Web service are appended to the tweets which are sent to the visualization wid-

gets in the workflow. The active learning workflow component also has a special view that functions as an interactive visu-

alization. This view is accessible the same way as other visualizations of the workflow (by special URLs). Whenever this view

is accessed the Web service is polled for tweets that require manual labeling. If there are no query tweets in the pool, a

friendly message is displayed to the user, prompting her to come back later. If there are query tweets in the pool they

are displayed to the user along with a simple form that can be used to manually label the tweets either as positive, negative,

or neutral. When the user labels the tweets and clicks the Submit labels button, the labeled tweets are saved into the internal

memory of the active learning sentiment analysis component. The Update model operation is invoked once a day for every

streaming workflow that has an active learning widget with new labeled tweets.

5.3. Constructing the workflow

The workflow was constructed using the ClowdFlows graphical user interface. Widgets were selected from the widget

repository and added to the canvas and connected as shown in Fig. 3.

Parameters were set after the workflow was constructed. Parameters of a widget are set by double clicking the widget.

Twitter API credentials and the search query were entered as parameters for the Twitter widget. The language code en was

entered as a parameter of the Filter tweets by languagewidget. We have also added three sliding windowwidgets with the size

500 (entered as parameter) to the workflow. This is done because the visualization widgets that display tweets and word

clouds only display the last data that was received as an input for these widgets. By setting the size of the window to

500 the word cloud will always consist of the words of most recent 500 tweets.

The workflow was saved by clicking the save button in the toolbar. We have also marked the workflow as public so that

the workflow can be viewed and copied by other people. The URL of the workflow is http://clowdflows.org/workflow/1041/.

We have then navigated to the workflows page (http://clowdflows.org/your-workflows/) and clicked the button ‘‘Start

stream mining’’ next to our saved workflow. By doing this we have instructed the platform to start executing the workflow

with the stream mining daemon. A special Web page was created where detailed information about the stream mining pro-

cess is displayed. This page also contains links to visualization pages that were generated by the widgets. The stream mining

process was left running from the 14th of June until the 10th of July 2013.

5.4. Monitoring the results

We have put several stream visualization widgets in the workflow which allowed us to inspect the results during the pro-

cess of stream mining. ClowdFlows has generated a Web page for each stream visualization widget, which can be viewed by

anybody since the workflow is public.

Fig. 4. A line chart of sentiment, volume, and sentiment difference over time.
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Fig. 5. A word cloud constructed from tweets with a negative sentiment.

Fig. 6. The tweet labeling user interface.
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The Sentiment graph visualization displaying the line chart of volumes of tweets, volumes of positive tweets, negative vol-

ume of negative tweets and the difference of positive and negative sentiment is available at http://clowdflows.org/streams/

data/4/9056/ and is shown in Fig. 4. By looking at this visualization we can see that the sentiment in the tweets mentioning

Snowden is generally more positive than negative. We can observe several spikes in the volume which correspond to the

times when news articles regarding this subject were published. On June 23rd, news of Edward Snowden’s departure from

Hong Kong and arrival in Moscowwas published. On the first of July Edward Snowden released a statement on the Wikileaks

website and lots of news reports focused on possible countries that could offer asylum to Edward Snowden.

The word cloud visualization of negative tweets is available at http://clowdflows.org/streams/data/4/9065/ and is shown

in Fig. 5. This visualization helps put the stream into another perspective and can display changing trends in real-time. When

the word cloud is opened in the browser and the stream mining process is active the words change positions and sizes cor-

responding to their occurrences in the tweets. Links to the visualizations of other stream visualization widgets are also pres-

ent on the two provided visualization pages.

The workflow presented in this use case is general and reusable. The query chosen for monitoring was arbitrary and can

be trivially changed. This type of workflow could also be used for monitoring sentiment on other subjects, such as monitor-

ing the Twitter sentiment of political candidates during an election, or monitoring the sentiment of financial tweets with

stock symbols as queries.

5.5. Labeling the tweets

Similar to stream visualization widgets the Active learning sentiment analysis widget provides a special URL that can be

accessed by human annotators. Propagating this link is an easy way to crowdsource labeling of tweets.

The labeling interface for this use case is available at http://clowdflows.org/streams/data/16/12326/ and is shown in

Fig. 6. The tweets that require labeling are displayed and users can label them as positive, negative, or neutral. Upon clicking

the button Submit annotations the labeled tweets are saved into the widget’s internal memory. These tweets are accessed and

sent to the sentiment analysis Web service once a day, if there are any new labeled tweets on that particular day.

6. Conclusion and further work

We have implemented an active learning scenario for sentiment analysis on Twitter data in a cloud-based data mining

platform. In order to do so we adapted the platform to work with data streams by use of two mechanisms: widget memory

and the halting mechanism.

We have developed a Web service that utilizes the Support Vector Machine algorithm to build and update sentiment

analysis models. The service also applies the models on unlabeled tweets and determines which tweets require manual

labeling by the user. We have developed workflow components that utilize this Web service in order to provide an intuitive

interface for labeling tweets and setting up new active learning sentiment analysis scenarios from scratch without the need

of programming or installing complex software. For each active learning workflow a special Web page is created where

tweets can be labeled. By propagating the address of this Web page, crowdsourcing and collaborative knowledge discovery

can be utilized to label vast amounts of tweets.

In future work we wish to implement several different strategies for selecting the tweets suitable for labeling and to allow

the user to select the most appropriate one. We also wish to allow more control over the generation of the initial models and

a richer selection of initially labeled datasets. In the current version of our software, we assume sentiment analysis to be a

two class classification problem and classify tweets only as positive or negative, in order to enable simple and efficient cal-

culations in real time. But, tweets can also be neutral, and our current implementation of the software does not allow 3 class

classification. In our previous study (Smailović et al., 2013) we introduced a method to classify tweets also as neutral. In

future work we plan to adapt and implement this method for inclusion in ClowdFlows.

The source code of the platform is released under an open source licence (GPL) and can be obtained at http://github.com/

janezkranjc/clowdflows.
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