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Advances in imaging systems have yielded a flood of images into the research field. A semi-

automated facility can reduce the laborious task of classifying this large number of images. 

Here we report the development of a novel framework, CARTA (Clustering-Aided Rapid 

Training Agent), applicable to bioimage classification that facilitates annotation and selection 

of features. CARTA comprises an active learning algorithm combined with a genetic algorithm 

and self-organizing map. The framework provides an easy and interactive annotation method 

and accurate classification. The CARTA framework enables classification of subcellular 

localization, mitotic phases and discrimination of apoptosis in images of plant and human 

cells with an accuracy level greater than or equal to annotators. CARTA can be applied to 

classification of magnetic resonance imaging of cancer cells or multicolour time-course images 

after surgery. Furthermore, CARTA can support development of customized features for 

classification, high-throughput phenotyping and application of various classification schemes 

dependent on the user’s purpose. 
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I
maging has a vital role in various �elds of the life sciences, 
including cell biology, developmental biology, systems biology 
and medical sciences1. �e development of various �uorescent 

proteins and probes has allowed a wide range of imaging modali-
ties to be used to acquire images of biological structures and spe-
ci�c molecules2,3. �e innovation of high-throughput �uorescence 
microscopy has quickly led to the acquisition of vast amounts of 
image data sets by large-scale projects, for example, genome-wide 
RNA interference (RNAi) screening4 and location proteomics5. 
Time-lapse confocal microscopy of living cells or organs can be 
used to monitor the in vivo status of the cells including prolifera-
tion, movement and morphological changes based on multidimen-
sional data4. Several dedicated imaging systems used in medicine 
can also render complex data as high-resolution images, including 
X-ray computed tomography, magnetic resonance (MR) imaging, 
single-photon-emission computed tomography and positron emis-
sion tomography6. �ese advances in imaging have thus resulted in 
a large number of images available to researchers, and this in turn 
has led to a need for the application of semi-automated or fully 
automated image analyses.

Classi�cation is a core technique for image analysis. Sev-
eral methodologies for biological image classi�cation have been 
developed1. �e machine learning method has been adapted to 
image classi�cation and can be broadly divided into two methods, 
supervised learning and unsupervised learning7. As supervised 
learning methods, nearest neighbour8 or support vector machine 
(SVM)9 are o�en used to train an image classi�er, in which users 
are required to categorize a part of the image set (training images) 
into several classes. In this paper, this kind of user involvement is 
referred to as ‘annotation’. As a result of the requirement for user-
based training, the constructed classi�er o�en lacks versatility. To 
classify images for di�erent purposes, the user must re-categorize 
the training images and re-construct the image classi�er, requir-
ing laborious user involvement for bioimage analysis. In contrast, 
unsupervised learning algorithms do not require categorization 
information. Although such methods cannot categorize each image 
into a user-de�ned class, they can provide important cues for image 
classi�cation in the form of a two-dimensional plot or dendrogram. 
�e degree of similarity between images can be demonstrated via 
principal component analysis10 and multidimensional scaling11, 
both of which are unsupervised learning methods. A user can visu-
ally inspect categories of images based on this similarity. However, 
a problem sometimes arises where clustering includes a category 
with unrelated biological features such as imaging noise or di�erent 
intensities in image incorporation.

In addition to supervised learning and unsupervised learning, 
in recent years new kinds of machine learning algorithms have 
emerged such as semi-supervised learning12 and active learning13. 
�ese algorithms were proposed to reduce the cost for annotation 
and classi�er training. In the semi-supervised learning method, 
the classi�er is constructed from unannotated data in addition to 
annotated data. �e type of semi-supervised learning algorithm 
can be divided into several categories depending on how unanno-
tated data is incorporated into the classi�cation model: self-train-
ing14, co-training15, expectation maximization with a generative 
mixture model16 and transductive SVM17. On the other hand, the 
active learning method is an interactive algorithm that picks up part 
of the unannotated data as a query for the user and increases the 
amount of annotated data gradually18. �e active learning method 
aims to construct an accurate classi�er with the least amount of 
annotation. To generate the rewarding query from unannotated 
data, several algorithms have been proposed and are in use, includ-
ing uncertainty sampling19, query-by-committee20, expected model 
change21, expected error reduction22 and variance reduction23. �e 
semi-supervised learning and active learning methods both try to 
use an abundance of unannotated data to train an accurate classi�er. 

�ese approaches have a wide �eld of application such as in medical 
image analysis, text classi�cation and voice recognition. However, 
these approaches are not intended to facilitate the annotation task 
itself. Improvement of the annotation style during active learning 
will further reduce the user’s task while maintaining the accuracy 
of the classi�cation.

Here we describe a novel active learning framework with inter-
active clustering for bioimage classi�cation to reduce the human 
labour cost for annotation and enhance versatility in image clas-
si�cation. In contrast to the existing methods of semi-supervised 
learning and active learning framework, we focus on the ease of 
interactive annotation. To accomplish this aim, we developed a visu-
alization method, which is suitable both for browsing of images and 
for �exible response to the annotation. We call this system CARTA 
(Clustering-Aided Rapid Training Agent), which is also derived 
from ‘card’ in Portuguese and a Japanese card game ‘karuta’. CARTA 
includes a new active learning algorithm that integrates supervised 
learning methods with an unsupervised learning algorithm, the self-
organizing map (SOM). A SOM can perform nonlinear projections 
of high-dimensional data onto a two-dimensional map with preser-
vation of high-dimensional topology, facilitating visualization and 
interpretation of clustering results24–26. Moreover, a SOM is more 
robust to data with outliers or without a normal distribution and can 
maximize data visualization over the area of the computer monitor. 
SOMs have been adapted to various analyses of massive data sets 
including genome informatics27 and gene expression analysis28,29. 
CARTA is a potentially useful framework for incorporating SOMs 
into bioimage classi�cation to supply a universal platform for a wide 
range of imaging systems. A SOM has the advantage of being able 
to browse the images. In CARTA, the user can easily inspect image 
categories by SOM visualization on the computer monitor. CARTA 
also has the ability for data mining. A SOM enables unexpected 
categories to be found by the survey of image distribution through 
e�ective visualization.

Results
Framework of CARTA. To speed up the annotation task with 
minimal e�ort, CARTA provides an interactive interface for 
displaying unannotated images to the user in an organized manner. 
Suppose, given a set of N input images, D features are extracted from 
each image, where N is the total number of input images and D is the 
total number of features. Each image then appears as a point x in the 
feature space RD. It is a feature vector x composed of D component 
values in the D-dimensional coordinates. Input images can be 
described by a set of N vectors such that X = {x1, x2, … xN}, x∈RD. 
As with active learning, the user adds annotation information y to 
image x as to which class the image x belongs to. Let yi = {0}{1, 2, …
 K} denote the labels of image xi, where 0 represents ‘unannotated’ 
and K is the total number of classes, and the annotation status of 
image set X is represented by Y = {y1, y2, … yN}. To facilitate the user-
driven annotation task, the distribution of image set X in the high-
dimensional feature space RD should be visualized in an ordered 
manner on the two-dimensional coordinate system. At the same 
time, as the total number of images N is too large to be displayed 
simultaneously, some representative images should be selected and 
assigned onto the two-dimensional rectangular grid. Each of the 
images are parameterized with respect to an integer coordinate pair 
Q1×Q2. Here Q1 = {1, 2, …, q1}, and similarly for Q2. Let f(x) denote 
the position of grid Q1×Q2, the function f maps the feature space to 
the grid: 

R Q QD → ×1 2

 
x f x ( ).

In contrast to the conventional active learning approach, CARTA 
aims to achieve a further e�ciency by allowing the user to select 

(1)(1)

(2)(2)
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unannotated images for annotation from the representative images 
ordered by some sort of criteria on the rectangular grid Q1×Q2. 
�e reason for this is that the annotation task by a comparison of 
ordered images is easier and faster than the individual and repeated 
annotation of each image, even for experts. As a result of the 
annotation, the labels of the input images Y are updated.

Because the function f is for the display to the user and the opti-
mal form of f is dependent on the properties of the input images 
and the user’s intent, we cannot obtain the optimal f in advance. 
�e properties of the images are represented by feature vectors X 
through feature extraction. �e user’s intent for classi�cation is rep-
resented by the annotation status Y, which is dynamically updated 
by active learning. �en we can estimate function f for the speci�c 
images and each intent using X and Y. Let a function V be the evalu-
ation function of f, then the optimization of f can be formulated as 

f V f X Y
f

best = arg max ( , , ).

 Because the function V has the argument Y, which can vary with 
every cycle of the annotation, CARTA searches for the suboptimal f 
asymptotically and synchronously to the annotation step.

Implementation of CARTA framework. To implement the CARTA 
framework, we aimed to combine simple methods in an e�ort to 
achieve general versatility and simplicity. In that context, the func-
tion f is composed of a feature-selecting function g and SOM func-
tion h. At �rst, function g selects some features from the feature 
vector x ∈RD, therefore, an input image is mapped to a vector in 
lower dimensional feature space as g(x)∈RS, where S is a number 
of selected features and D ≥ S ≥ 1. Next, function h tiles the images 
on the rectangular grid Q1×Q2. Taken together, formula (1) is per-
formed by functions h and g via the subspace RS: 

R R Q QD S→ → ×1 2

 
f x h g x Q Q( ) ( ( )) .≡ ∈ ×1 2

�en we focus on the optimization of function g, which compresses 
the input image onto the feature subspace RS: 

f h g h V h g X Ygbest best= =( ) (arg max ( ( ), , )).

Function g can be perceived as a feature �lter that select S features 
from D features, and in that respect CARTA can also be used as a 
solving tool for feature-selection problems (FSPs)30. We used the 
genetic algorithm (GA) as an optimization technique for �nding the 
suboptimal solution from multiple candidates: 2D − 1 combinations. 
�e GA, which imitates biological reproduction and natural selec-
tion31, has the advantages that it is free from the need for parameter 
tuning and it converges quickly. Because of this, the GA has already 
been used in FSP solver32.

We de�ne the function V, which is the target of optimization, as 
following: 

V h g X Y
d h gkk

K

( ( ), , )
( ( ))

,=
=
∑ 1

1

where dk is the intra-class distance of class k on the rectangular grid 
Q1×Q2. As the intra-class distance, CARTA use the sum of edge 
length in minimum-spanning tree (MST)33 on the grid.

From a di�erent viewpoint, the �ow of CARTA until the con-
struction of the classi�er is as follows. Initially, CARTA extracts 
all features from the images using the feature extractor (Fig. 1a). 

(3)(3)

(4)(4)

(5)(5)

(6)(6)

(7)(7)

�e features can be referred to as Kashiwa bioimaging (KBI)  
features (http://hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/KbiFeatures02). 
�e KBI feature extractor internally performs three thresholding 
algorithms including Otsu’s method34 and image correlation spec-
troscopy35 (Fig. 1b). Based on randomly selected features, the SOM 
viewer in CARTA displays an ‘initial SOM’ to show the distribution 
of images with representative images, which are displayed from an 
image group in the same node. �e user can then easily categorize 
the represented images by delineating lines on the initial SOM as 
highlighted by blue in Fig. 1a, a process referred to as annotation in 
this paper. �e annotation information is then incorporated into the 
feature optimizer (FO). �e FO selects appropriate features to seg-
regate images into di�erent classes by GA. �e SOM generator then 
prepares an ‘updated SOM’ from the selected features. �e selected 
features are also displayed to the user by showing allocated num-
bers. �e feature evaluator then evaluates the validity (the function 
V in equation (3)) of the SOM clustering as the distance between 
the images that are annotated as the same groups in the SOM. 
�e evaluated results are incorporated into the FO. �e FO selects 
features again based on the evaluated results. �e user can again 
annotate the represented images by the updated SOM (Fig. 1a).  
�e iterative process can be stopped at any time according to the 
user’s judgment by monitoring the �tness curve of the function V, 
or it can be automatically stopped in the event that the �tness does 
not improve within a user-de�ned generation interval in the GA 
(Fig. 1c). A�er clustering at the end of CARTA, selected features are 
transferred into the classi�er generator using SVM. Once the classi-
�er is trained, newly supplied images can be automatically classi�ed 
into the user-de�ned categories with the classi�er.

To validate the classi�cation ability of CARTA, we tried to iden-
tify images with a speci�c subcellular localization pattern in the 
green �uorescent protein (GFP) database (GFP-AtORF DB; http://
data.jic.bbsrc.ac.uk/cgi-bin/gfp/) in plants36. Improvement of SOM 
clustering was clearly shown by gathering the distribution of four 
images that the user annotated to show single nuclei (right upper 
region) from the randomly selected 16 images (Fig. 1d). CARTA 
was also useful for identifying unannotated images with speci�c 
GFP localization from the image database. All images (155 images) 
from the database were applied to CARTA (Fig. 1e). CARTA was 
able to gather images that were annotated by the user and at the 
same time, unannotated images with nuclear localization located 
around the annotated images. �is result demonstrates that CARTA 
can identify analogous images from a large image database using 
only the annotation of a few images. Moreover, based on subcellular 
localization of GFP signals, the 155 images in the GFP-AtORF data-
base were classi�ed into �ve classes, including ‘cytoplasm’, ‘nuclear’, 
‘nucleolar’, ‘cell wall’ and ‘others’, in the database. For the classi�ca-
tion of ‘cytoplasm’, ‘nuclear’ and ‘cell wall’, CARTA performed bet-
ter than human annotators who were experts in studying plant cell 
biology (Table 1).

To demonstrate the e�ciency of using CARTA to perform  
annotation, we measured the time required for three experts to anno-
tate the �uorescence images. CARTA was successful in decreasing 
the annotation time to 49% of that of image-by-image annotation 
(Fig. 1f) while maintaining the same level of accuracy (Fig. 1g).

E�cient browsing in CARTA. �e SOM, which is also called a ‘tiled’ 
map in this study, is an excellent browser for exhibiting the image 
group as a node in a lattice map. �e representative images, which 
are selected from the majority of images at each node, are positioned 
(Fig. 2a). However, if a large amount of images are arranged on the 
SOM, each node includes many images and the user has no way of 
revealing the proportion of di�erent types of images at the node. To 
visualize the proportions of image types in the node, CARTA can 
produce a pie chart map in addition to a tiled map. In the pie chart 
map, the colour sectors demonstrate the proportion of image types 
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and the size of the circle is proportional to the number of images at 
each node (Fig. 2b). �e pie chart map can summarize the anno-
tated images and illustrate the image type proportion in each node.

Accurate classi�cation by CARTA. To evaluate the accuracy 
of CARTA, we used �uorescent images of HeLa cells expressing  

histone H1 fused with GFP37 in the control and ASURA (PHB2) 
RNAi experiments. ASURA-knockdown induces mitotic delay38. A 
mixture of 4,598 images were manually classi�ed into seven classes 
based on nuclei or chromosome morphology: interphase, prophase, 
prometaphase, metaphase, anaphase, telophase, and abnormal 
phenotypes including apoptosis. Using the image features and these 
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annotations, we �nally obtained the classi�er by the SVM using 
186 features. �e classi�cation accuracy reached ~90% (Fig. 2c) as 
visualized by the SOM (Fig. 2a,b). �e accuracy was maintained at 
a high level when the class number increased by class separation 
(Fig. 2c). �e output of the classi�er showed the same percentage of 
mitotic phases in the control and RNAi cells as that with classi�ca-
tion by an expert (Fig. 2c)38. �is result shows that discrimination of 
mitotic phases by an expert can be replaced by CARTA. CARTA can 
also classify several types of images other than �uorescent images, 
as well as feedback the classi�cation results to the original images. 
Using the classi�er based on annotation of di�erential interference 
contrast images of 300 apoptotic cells, CARTA can morphologically 
discriminate apoptotic cells from di�erential interference contrast 
images without apoptotic indicators with 98.4% accuracy as com-
pared with researchers (Fig. 2d).

We evaluated the performance of CARTA as compared with 
commercial so�ware, the Cell Cycle application module in version 
7.5 Metamorph (CCAM) so�ware. �e accuracy of CCAM with the 
same image sets used with CARTA was reduced below 70% mainly 
because CCAM treated a cluster of chromatids as two di�erent 
nuclei or chromatids (Fig. 3a,b). In addition, CCAM was not robust 
to the GFP expression level, because it depends on the absolute val-
ues of the intensity. �is demonstrates the limitation of the built-in 
features used in CCAM.

Semi-automatic classi�cation of biomedical images using 
CARTA. Irregular and complex medical images create di�culties 
for accurate clinical examination. One of most important diag-
nostic tasks in cancer imaging is the identi�cation of the origin 
of tumours, which contributes to the selection or determination 
of therapy39. Pathological diagnosis is the gold standard method. 
However, in many cases, biopsy for pathological diagnosis cannot 
be performed due to the potential for complications40. In contrast, 
the identi�cation of the origin of tumours by diagnostic imaging 
depends on the pro�ciency of the medical specialist. �us, to test 

the feasibility of using CARTA for the automatic identi�cation of 
the origin of tumours, we used MR images of tumours that were 
induced by subcutaneous injection of di�erent cancer cells. S180 
and FM3A, which are derived from sarcoma and mammary cancers, 
respectively, were transplanted into mice. Two hundred sixty-eight 
images were collected from tumours on 19 individual mice. CARTA 
separated the tumour images derived from S180 and FM3A in the 
lower and upper regions in the SOM (Fig. 4a,b), and achieved 94.0% 
classi�cation accuracy. Such accurate classi�cation of MR images by 
CARTA demonstrates the potential for automatic discrimination of 
tumour cell origins.

To con�rm the ability of CARTA for evaluation of colour tis-
sue images, we classi�ed images of retinal layers within the UCSB 
benchmark data set (http://www.bioimage.ucsb.edu/biosegmenta-
tion/). Evaluation of structural and cellular changes in the retina is a 
crucial step in the examination of injury and disease. One hundred 
seventy-one confocal microscopic images of detached cat retinas 
were classi�ed. CARTA was able to accurately classify these features 
according to retina recovery a�er detachment (Fig. 4c,d). �e spe-
ci�c distribution of image groups included images of ‘no detach-
ment’, ‘3 days a�er detachment (d.a.d.)’, ‘7 d.a.d.’ and ‘28 d.a.d.’ �ese 
data indicate that CARTA can automatically classify biomedical 
images into appropriate categories for clinical judgment, demon-
strating that CARTA has the ability to reduce the e�ort required of 
medical specialists to classify images.

Use of customized features for image classi�cation. CARTA 
can use user-de�ned features for image classi�cation. �erefore, 
users can replace the KBI features with more appropriate features 
according to the desired classi�cation purpose. To demonstrate this 
advantage of CARTA, we compared the KBI features and thresh-
old adjacency statistics (TAS) features that were previously used for 
�uorescence-tagged protein localization with iCluster so�ware41. 
Nocodazole-treated and untreated images of the endosomal protein 
SNX1 are freely available in http://icluster.imb.uq.edu.au/imagesets.

Figure 1 | Bioimage clustering and classification by CARTA. (a) Workflow of CARTA algorithm that is composed of the annotation and classification 

phase. Lists and lines in red correspond to the pseudocode as shown in Supplementary Software 1. (b) Pipeline of image processing for extraction of 

KBI features. (c) Example for a fitness curve in the iterative clustering with generations in genetic algorithm (GA). Gp and G shows peakGeneration and 

generation as shown in List 2 of Supplementary Software 1, respectively. (d) Upgrade of the self-organizing map (SOM) in CARTA. The initial SOM shows 

the arrangement of 16 fluorescent images of green fluorescent protein (GFP) localization (GFP-AtORF database)36 (left panel). After the annotation of 

images to show nuclear localization in the red open boxes, the updated SOM shows the gathering of annotated images in the right upper region (right 

panel). (e) Identification of unannotated images by CARTA. The initial SOM shows the arrangement of 155 fluorescent images of GFP localization (GFP-

AtORF database)36 with 83 representative images (left panel). After the annotation, the updated SOM shows the grouping of annotated images in red 

open boxes and unannotated images in blue boxes in the left upper region (right panel). (f,g) Comparison of annotation speed (f) and accuracy (g) 

between image-by-image annotation and annotation with CARTA. We prepared 82 images of prophase/prometaphase chromosomes within HeLa cells. 

Three expert observers annotated the image set image-by-image or by using CARTA.

Table 1 | Comparison of subcellular localization of GFP-fused proteins in plant-cultured cells.

Classes Cytoplasm Nuclear Nucleolar Cell wall Others

Consistency (%)
CARTA* 91.8 93.6 87.8 96.7 78.2
Expert† 86.0 78.1 90.0 95.6 81.4

*Consistency of annotation in the GFP database versus prediction with CARTA calculated by leave-one-out cross-validation.

†Averaged consistency (n=4) of annotation in the GFP database versus experts.
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html, and were classi�ed as a benchmark test. �e accuracy was 
98.1% and 96.9% with KBI and TAS features (Fig. 5a), respectively, 
suggesting that KBI features are comparable to TAS features in �uo-
rescence protein localization analysis. To test for the di�erences of 
these features, we added Gaussian noise to the original images. TAS 
features achieved higher accuracy when the noise was magni�ed 
(Fig. 5a). �ese results indicated that KBI features are acceptable 
for the initial analysis choice. If users are unsatis�ed with the results 
obtained with the KBI features, they can freely replace them with 
the alternative features like TAS features as customized features.

We encountered a di�cult problem in the classi�cation of 
opened/closed stomata, a pore for gas and water exchange of plants. 
When the combination of features to discriminate between open 
and closed conditions of stomata was searched by CARTA, KBI fea-
tures were insu�cient because they were a�ected by the direction of 
stomata. �us, we introduced new rotation-invariant features based 
on the statistics of intensity on concentric circle (see Supplementary 
Methods for a de�nition). By use of 130 rotation-invariant features, 
CARTA distinctly separated 114 images into di�erent SOM regions 

consisting of open or closed stomata (Fig. 5b,c). �is result demon-
strates that CARTA can improve classi�cation performance by the 
introduction of user-customized features.

Discussion
CARTA is a novel algorithm that combines active learning and 
interactive annotation based on the distribution of input images. 
Such a combination focuses on the reduction of human labour costs 
in contrast to supervised learning alone, which consumes longer 
time42. In the active learning paradigm, a classi�cation model is 
at �rst temporarily generated from annotated samples by some 
supervised learning algorithm. By using the classi�cation model, 
the active learner selects an ambiguous sample that is least certain 
how to label from the pool or stream of unannotated samples. For 
example, when using a probabilistic model for binary classi�cation, 
the active learner queries the sample whose posterior probability of 
being positive is nearest to 0.5 (refs 43,44). �us, the active learning 
empirically reduces the number of annotations required to achieve 
a given level of accuracy45. In addition, several theoretical analyses  
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of nuclei and chromosomes in human cultured cells. The frames of representative images and colour sectors of the pie chart indicate the class of mitotic 

phases including interphase (Int) in orange, prophase (Pro) in red, prometaphase (Prometa) in purple, metaphase (Meta) in blue, anaphase (Ana) in 

light blue and telophase (Telo) in light green. Abnormal cells (Abn) in yellow include apoptotic cells. The pie chart size is proportional to the number of 

images at the node. (c) Comparison of classification of RNAi cells by a human annotator and CARTA. (d) Discrimination of apoptotic cells in a differential 

interference contrast image using a CARTA classifier. Differential interference contrast images of apoptosis-induced HeLa cells were classified by CARTA. 

The red and blue windows show apoptotic and non-apoptotic cells, respectively.
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have reported that certain active learner strategies require fewer 
annotations to achieve the same error as the standard supervised 
algorithm46,47. For simplicity, we consider the simple example where 
the unannotated samples can be mapped onto the one-dimensional 
feature space, and can be split by some threshold into two categories. 
In that case, a standard supervised learning acts similar to a random 
search algorithm and requires O(1/ε) annotations, where ε is the 
maximum desired error rate. On the other hand, an active learner 
including CARTA acts like a binary search algorithm and requires 
only O(log 1/ε) annotations18. Furthermore, CARTA takes a set 
of unannotated images as input and presents to the user the part 
of images as query for annotation. From this aspect, CARTA can 
be considered an improved type of batch-mode active learning48. 

�e batch-mode active learning is an extended algorithm of active 
learning to increase the number of query samples per iteration. 
When compared with batch-mode active learning, CARTA allows 
the user to decide whether and what images should be annotated, 
and represents the image sets by similarity-based order to assist the 
user’s decision using SOM. CARTA uses the SOM not only to visu-
alize the images but also to help with annotation. Previous meth-
ods have used static clustering including SOMs as only a browser of 
clustering results to show the data distribution25–29. In contrast, the 
SOMs in CARTA can be repeatedly trained and optimized by GA31. 
�e update of the SOM contributes to the minimum annotation, 
meaning that CARTA avoids the laborious annotation of numer-
ous images. In fact, CARTA could halve the annotation time while 
maintaining classi�cation accuracy (Fig. 1f,g). Such similarity-
based visualization has attracted attention for the purpose of reduc-
ing a user’s cognitive e�ort in content-based image retrieval49. For 
example, tree-structured SOM had been extended to organize the 
images on the World Wide Web and adapt to the user’s preferences 
in selecting which images resemble each other50.

�erefore, to our knowledge, CARTA is the �rst algorithm of 
an active learning framework that uses the tiled and ordered set of 
images for bioimage classi�cation. �e CARTA algorithm can be 
used for bioimage classi�cation by a wide range of methods with 
acceptable accuracy in di�erent image databases (Fig. 5a) and 
images acquired by various imaging systems (Figs 2, 4 and 5). More-
over, CARTA can allow human experts to evaluate existing feature 
sets (Fig. 5a) and develop novel features (Fig. 5b,c). In the compu-
ter vision community, a large number of feature libraries have been 
and will continue to be developed. Among them, the algorithm of 
CARTA especially �ts global image features such as colour histo-
grams, grey-level of co-occurrence matrix51 and gist descriptor52,53. 
�e adaptivity for di�erent feature sets will expand the application 
range of CARTA. Automatic or semi-automatic classi�cation frame-
works such as CARTA can enable not only high-throughput but also 
innovative phenotyping.

Methods
Algorithm of CARTA. �e algorithm is given in Supplementary So�ware 1  
and 2 as pseudocode. A �owchart of Supplementary So�ware 1 is shown in  
Fig. 1a. CARTA takes as an input a set of images and extracts feature vectors from 
each image (Supplementary So�ware 1 List 1 lines 2–4). From the input images 
and feature vectors, iterative clustering (Supplementary So�ware 1 List 1 line 6, 
function iterativeClustering in Supplementary So�ware 1 List 2) simultaneously 
performs the solving of the FSP and interactive annotation as described in detail 
below. �e selected features are displayed to the user (Supplementary So�ware 1 
List 1 line 7) and the classi�cation accuracy is estimated by the cross-validation 
test (Supplementary So�ware 1 List 1 lines 9 and 10, function trainAndValidate in 
Supplementary So�ware 2 List 7). CARTA does not directly train the �nal classi-
�er from selected features in contrast to many FSP algorithms. Because modern 
supervised learning algorithms such as SVM are robust to irrelevant features, the 
preceding feature selection step sometimes limits the accuracy. �erefore, CARTA 
compares the classi�cation accuracy obtained from the cross-validation test to 
determine whether the classi�er using a selected feature set is better than that 
achieved using all features (Supplementary So�ware 1 List 1 lines 9–12). Finally, all 
images including the unannotated images are classi�ed by the improved classi�er 
(Supplementary So�ware 1 List 1 lines 12–15, function classify in Supplementary 
So�ware 2 List 8).

CARTA uses an iterative clustering (Supplementary So�ware 1 List 2) for  
optimizing and annotating step using an interactive GA combined with SOM.  
GA has previously been used to solve FSP by searching for the combination of 
useful features in supervised learning54–56. In CARTA, each individual chromo-
some in the GA population represents selected features as in the previous reports, 
namely, a chromosome is the vector, which is zero or one in each component and 
its dimension is equal to the feature vector. Initially, S features (S is smaller than or 
equal to the dimension of feature vector D) are randomly selected and are assigned 
to each individual in the �rst population (Supplementary So�ware 1 List 2 line 8,  
procedure makeFirstGeneration in Supplementary So�ware 2 List 5). To speed 
up the convergence of the optimization, CARTA adopts the m-feature operators, 
which limit the number of selected features32 (Supplementary So�ware 2 List 5 
line 12). Subsequently, the main loop of GA (Supplementary So�ware 1 List 2 lines 
10–38) is performed to evolve a better set of features. CARTA then evaluates the 
�tness value of each individual according to the result of SOM (Supplementary 

Figure 3 | Classification of mitotic phases by a commercially available 

software. (a) A tiled map of the same 900 images classified by the 

application module in the Metamorph software. The images are same as 

those classified by CARTA in Fig. 2. Blue, green, orange and red indicate 

cells in interphase at G1/S phase, interphase nuclei at G2 phase, in early 

M phase and in late M phase, respectively. (b) A magnified area of the 

tiled map. The yellow box shows an erroneous classified image where the 

application module treated a cluster of chromatids as two different nuclei 

or chromatids. The light blue box shows another erroneously classified 

image where the application module could not classify images over the 

assigned intensity.
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So�ware 1 List 2 line 12, procedure evaluate in Supplementary So�ware 1 List 3), 
to be described later. In CARTA, the generation that achieved the best-�tness value 
(peakGeneration in Supplementary So�ware 1 List 2) is used to stop the main loop 
(Supplementary So�ware 1 List 2 line 21) and is updated using a record of the  
�tness value of each generation (Supplementary So�ware 1 List 2 lines 14–37,  
Fig. 1c). In addition, the user can stop the loop when the best-�tness value 
becomes saturated (Supplementary So�ware 1 List 2 line 21) by monitoring the 
history of the �tness values (Supplementary So�ware 1 List 2 line 16).

As the interactive GA, CARTA accepts user annotation during the main loop 
of GA (Supplementary So�ware 1 List 2 line 24, function acceptAnnotation in 
Supplementary So�ware 1 List 4). Using the best-selected features (peakSelector 
in Supplementary So�ware 1 List 2), the SOM is trained in the feature subspace 
(Supplementary So�ware 1 List 4 lines 2–3) and all images are dispatched into 
their best-matching units in the SOM (Supplementary So�ware 1 List 4 lines 4–7). 
Next, for each node of SOM, one image is selected from the dispatched images into 
the node and displayed to the user (Supplementary So�ware 1 List 4 lines 8–12). 
�e user can recognize the distribution of input images by monitoring only the 
representative image of each node (Fig. 1d,e). Optionally, the user can annotate 
the displayed images by tagging the class label that the image should be classi�ed 
with (Supplementary So�ware 1 List 4 lines 13–14). When the user annotates 
some images, the best-�tness value is discarded (Supplementary So�ware 1 List 2 
line 26), as the criteria for �tness will have changed. All annotated information is 
accumulated (Supplementary So�ware 1 List 2 lines 29–34) and is applied to the 
next evaluation step (Supplementary So�ware 1 List 2 lines 11–13) and the training 
of classi�ers (Supplementary So�ware 1 List 1 lines 9–10).

�e generation change of CARTA (Supplementary So�ware 1 List 2 lines 
36–37) is described in Supplementary So�ware 2 List 6 (function makeO�springs). 
It adopts a tournament selection, a uniform crossover and point mutation (Supple-
mentary So�ware 2 List 6 lines 7–10). A�er the mutation step, m-feature operators 
are additionally applied to limit the number of selected features32 (Supplementary 
So�ware 2 List 6 line 11) to the same as the initial population (Supplementary 
So�ware 2 List 5 line 12).

From the point of view of the �tness evaluation (Supplementary So�ware 1 List 
2 lines 11–13, procedure evaluate in Supplementary So�ware 1 List 3), the applica-
tion of GA in the FSP can be divided into two major categories: �lter methods and 
wrapper methods32. �e �lter methods use an indirect measure of the quality of 
the selected features, so a faster convergence of the algorithm is obtained. On the 
other hand, wrapper methods use as selection criteria the output of the learn-
ing machine. CARTA adopts the �lter methods because the supervised-learning 
machine is unable to train from the input data set of CARTA, unsupervised images. 
As a measure of the quality of the selected features, the compactness of the SOM of 
images that are labelled with same class is evaluated. First, CARTA trains a SOM 
based on all feature vectors projected to subspace according to the selected features 
(Supplementary So�ware 1 List 3 lines 5–6). Second, each class is dispatched to the 
points on the two-dimensional space by �nding the best-matching units of their 
vectors (Supplementary So�ware 1 List 3 lines 8–12). Better features will provide 
a more compact distribution of the points (Fig. 1d,e). �ird, CARTA constructs a 
MST binding all points with minimum links (Supplementary So�ware 1 List 3 line 
14). �e total length of the arcs of MST (Supplementary So�ware 1 List 3 line 15) 
is treated as a raw �tness value indicating the compactness of the points. �e raw 

3 DaysNot detached 7 Days 28 Days

FM3AS180 FM3AS180

3 DaysNot detached 7 Days 28 Days

Figure 4 | Automatic classification of biomedical images. A tiled map (a) and a pie chart map (b) of magnetic resonance images of mouse tumours. 

Two hundred sixty-eight images of tumour were classified by CARTA. Blue and red frames show representative images corresponding to S180 and 

FM3A cancer cells, respectively. A tiled map (c) and a pie chart map (d) of colour images of detached cat retinas. One hundred seventy-one images of 

rod photoreceptors and microglia in cat retinas were visualized by anti-rod opsin antibody in red and anti-isolectin B4 antibody in green. Representative 

images of no detachment and 3, 7 and 28 days after detachment are shown in the red, blue, green and orange frames, respectively.
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�tness values for each class are summed to yield the �tness value considering all 
classes. Finally, the �tness values are adjusted based on the occupancy of all input 
feature vectors on the SOM (Supplementary So�ware 1 List 3 lines 18–22).

CARTA construction and performance. We have developed a CARTA plugin 
for ImageJ so�ware57 (National Institutes of Health, Bethesda, Maryland, USA; 
http://rsb.info.nih.gov/ij/). �e CARTA plugin was implemented in the Scala 
language (http://www.scala-lang.org/) and is executable under Windows, Mac OS 

X and Linux. Annotations on SOM can be performed using the Freehand selection 
tool of ImageJ. SVM (libsvm, http://www.csie.ntu.edu.tw/~cjlin/libsvm/)58 was 
used for supervised learning in CARTA. �e libsvm library is automatically called 
from the CARTA plugin. We used KBI features version 2 that contains 296 features 
(http://hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/KbiFeatures02), but more preferred 
features can be used for speci�c purposes as shown in Fig. 5. �e computation 
takes 0.29 s per image (130×130 pixels) for feature extraction, 8.25 s per generation 
in GA (N = 64, 20 images, 10×10 SOM) for feature selection, 0.05 s per image for 
supervised learning, and 0.02 s for classi�cation of new images. Computation was 
performed on a computer workstation with a Core i7 1.2 GHz processor and 4 GiB 
of memory.

Live cell imaging of RNAi of HeLa cells and apoptotic induction. We acquired 
�uorescent and di�erential interference contrast images with an automated 
epi�uorescence microscope (IX-81; Olympus, Tokyo, Japan) under a ×40 objective 
lens with a cooled charged couple detector camera head system (CoolSNAP HQ2; 
PhotoMetrics, Arizona, USA) using Metamorph so�ware version 7.5 (Molecu-
lar Devices, Sunnyvale, California, USA). We incubated HeLa cells onto 35 mm 
glass-bottomed dishes (Matsunami, Osaka, Japan) and maintained them in DMEM 
without phenol-red (Invitrogen, California, USA) with 10 mM HEPES (pH 7.2) at 
37 °C in a microscopic CO2 incubator (MI-IBC; Olympus, Tokyo, Japan). RNAi for 
ASURA (PHB2) was performed as described elsewhere37. Induction of apoptosis 
in HeLa cells was performed by addition of bisphenol A at the �nal concentration 
of 10 µM59. 
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Figure 5 | Exploitation of customized features in CARTA. (a) Comparison 

of classification accuracy between KBI features and threshold adjacency 

statistics (TAS) features. Qualities of fluorescent images are artificially 

reduced by additive white Gaussian noise. (b) A tiled map of stomata in the 
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