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Active learning in materials science with emphasis on adaptive

sampling using uncertainties for targeted design
Turab Lookman1, Prasanna V. Balachandran1,2, Dezhen Xue 1,3 and Ruihao Yuan1,3

One of the main challenges in materials discovery is efficiently exploring the vast search space for targeted properties as
approaches that rely on trial-and-error are impractical. We review how methods from the information sciences enable us to
accelerate the search and discovery of new materials. In particular, active learning allows us to effectively navigate the search space
iteratively to identify promising candidates for guiding experiments and computations. The approach relies on the use of
uncertainties and making predictions from a surrogate model together with a utility function that prioritizes the decision making
process on unexplored data. We discuss several utility functions and demonstrate their use in materials science applications,
impacting both experimental and computational research. We summarize by indicating generalizations to multiple properties and
multifidelity data, and identify challenges, future directions and opportunities in the emerging field of materials informatics.
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ACCELERATING MATERIALS DISCOVERY

A central question related to accelerating the materials discovery
process is how do we guide experiments towards materials with
desired properties? This is a question of optimal experimental
design and our focus is to highlight how the computational and
analysis tools developed in this and related areas can be
employed to accelerate the materials discovery process. The
Materials Genome Initiative in the U.S.,1 where the stated objective
is to reduce in half the time and costs of finding new materials,
has catalyzed and spawned considerable activity. However, the
number of materials discovered so far with enhanced properties,
as a consequence of this initiative, is far and few between. Figure 1
illustrates a perspective in terms of our ability to find materials
with increasing complexity as a function of time. Our trajectory
has been one where trial-and-error has been followed by intuition,
and often rapid progress is made if the synergy between theorists,
who can often generate and suggest a list of compounds for
possible synthesis, and experimentalists is exploited. High-
throughput calculations based on T= 0 K first principles codes
have provided the means to generate large databases of varied
crystal structures and chemistries with calculated properties.2–4

Depending on the functionals used for the exchange correlations
for given properties for these calculations, including stability, their
fidelity will dictate how rapidly we make progress on the curve of
materials complexity versus time. The thesis behind high-
throughput computations is one of populating fully the phase
space of materials possibilities, given the approximations inherent
in these calculations, and then down selecting worthy candidates
for further study.5 If the red curve of Fig. 1 is our desired goal
(Target), the jury is very much out on whether this is an optimal
strategy for the accelerated discovery process. The perspective we
take in this review is that tools from statistical experimental
design,6 pattern recognition,7 operations research8 and the fields
of reinforcement and active learning9 in computer science offer

enormous opportunities and suggest a complementary paradigm
for the discovery process. Many of these tools are unfamiliar to
materials scientists but have been utilized in other fields, such as
drug discovery,10 in biology for learning protein-protein interac-
tions11 and predicting macromolecular structure,12 and cancer
genomics,13 as well as in industry in the context of engineering
design.14 For instance, in drug discovery it is not tractable to
explore all possible compounds and active learning methods are
used to iteratively guide experiments such that only a subset of
promising experiments are carried out. The active learning
methods offer, in principle, a more systematic means to approach
the red line in Fig. 1 and have the potential to change the way
materials science will be carried out in the future; not by changing
the fundamental iterative nature of the materials design process
with its reliance on distilling physical principles and mechanisms,
but by improving the choices that we make to decide which
material designs to test and by improving our ability to learn from
previous data, experimental or computational or both. Experi-
mental observations or calculations can be difficult, time
consuming and therefore maximizing the value of experimental
observation via designing experiments to be optimal by some
measure is critical. We would like to be able to make decisions
about what to measure, which variables to interrogate and what
experimental conditions to use.
The materials challenge in its full generality encompasses a very

high-dimensional discovery or search space with millions of
possible compounds of which only a vary small fraction have been
experimentally explored. The space spans aspects of chemistry,
crystal structure, processing conditions, microstructure, and the
compounds can be multicomponent, for example, solid solutions
and the properties can be dependent on materials descriptors or
features at several length scales. Most efforts using first principles
codes have largely focused on establishing a library of crystal
structures and chemistries relevant to the problem, defining the
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training space in terms of samples and features, which can be
elemental properties (e.g., electronegativity, Mendeleev number
etc.), bond angles, bond lengths, energetics from first principles
calculations, and aspects of thermodynamics from experiments or
codes such as Calphad, to down-select promising candidates for
experiments or further studies.15 A number of studies have also
used inference models, such as off-the-shelf regression and
classification learning tools, which can include deep neural
networks for large datasets of microstructures and high-
throughput computational databases, to make predictions. The
approach has been employed to suggest new Heusler alloys,16

polymers,17 and thermoelectrics18 to name a few. In the case of
Heusler alloys, the predicted compounds have also been
synthesized. In spite of a significant amount of work using this
approach, few examples exist where the final properties exceed
those of the best compounds in the training data sets. There are
now a number of articles and reviews19–26 emphasizing the merits
of using machine learning and statistical inference to make
predictions in a large combinatorial space. However, few focus on
aspects of making the optimal next decisions for synthesis and
characterization by experiments or calculations.27–36 The predic-
tions from machine learning are not necessarily optimal. Aspects
related to multiscale modeling and constitutive response at the
engineering design scale are discussed in the book by McDowell
et al.37

In contrast, the approaches we will discuss are based on an
active learning or adaptive design paradigm, whereby the
predictions from a surrogate model, which can be an inference
model or a physics-based or reduced order model (ROM), serve as
the input to define a utility or acquisition function, the optimal of
which dictates the next experiment or calculation to be
performed.38,39 This is the optimal experimental design compo-
nent, the key decision making aspect of the active learning loop of
Fig. 2. The results of the experiment or computation then
augment the training data and the loop continues until the
material requirements for the desired targets are met. The
approach is unique in that most of the work done in the field
essentially involves one or two of these steps. Taking data,
building a model, making predictions and validating them with
calculations or experiments. We are not aware of studies in which
new materials have been found even via the inner feedback loop
(green) of Fig. 2, let alone incorporating uncertainties and
performing experimental design. However, a Bayesian and
decision-theoretic approach discussed in this review naturally
lends itself to adaptive sampling and active learning.40 The input

to the decision making can come from predictions from any
inference, surrogate or machine learned model. One first defines
the utility of an experiment or calculation and then, taking into
account uncertainties in both the parameter values (if any) and
the observations or objectives, chooses experiments or calcula-
tions by maximizing an expected utility. The utilities are defined
according to information theoretic considerations given the
desired goals. The approach can also be used for model selection,
that is, the design of experiments using maximum information
criteria to distinguish between models. For any experimental
design procedure, we should have a notion of the value of the
information (or cost of uncertainty) that is gained (or reduced) by
observing a specific data point. Then, the possible alternatives to
observe (experiments) can be ranked by the expected value of
information they provide so that we can prioritize experiments
based on this.
To set the stage, we first review briefly the classic design of

experiments approach in “Design of experiments” section
followed by the Bayesian approach to inference and design41 in
“Adaptive sampling and Bayesian optimization” section with its
focus on incorporating prior information and data to predict the
property or objective. However, other approaches to inference
based on machine learning methods can also be used for this
purpose. The concept of utility function was previously introduced
in decision theory42 in the context of value of information (and
hence uncertainties) and this provides us with the means to make
decisions about where to optimally sample next. We review a
number of these functions, such as the widely studied expected
improvement,38 which provide criteria for making choices. This
two-stage approach, also known as Bayesian Global Optimiza-
tion40,43,44 provides a natural active learning strategy to iteratively
improve the model. In “Application to materials science” section,
we discuss applications of this framework to discover new
compositions of materials with targeted properties, as well as
increase the computational efficiency of simulations towards
targeted design of optoelectronic structures, and their use in high
throughput density functional theory calculations. These applica-
tions reflect areas of our own expertize, however, we follow these
examples with a review of other applications and related studies.
We conclude in “Challenges and future development” section by
suggesting directions for future research and challenges to be
overcome with its impact on materials science.

Fig. 1 The trajectory for the discovery of new materials with
increasing complexity as a function of time as we accelerate the
process from trial and error to using high throughput calculations
and statistical design methods to improve our ability to learn from
existing data and make decisions for the next materials to test
(TARGET)

Fig. 2 The adaptive design paradigm to iteratively learn a surrogate
model and use uncertainties to trade-off exploitation and explora-
tion of the search space of unexplored materials to select the next
best experiment or calculation. Red arrow represents efforts such as
AFLOWLIB,2 Materials Project3 and OQMD,4 etc
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DESIGN OF EXPERIMENTS

Design of experiments (DoE)45 encompasses many statistical
approaches that seek to study the behavior of a system where
there are variations in data controlling inputs and outputs. The
field has a rich history dating from the work of Fisher,46 Box and
Wilson47 and recent developments due to Taguchi.48 In classical
design, factors refer to the input variables, which can adopt many
discrete levels, and their combinations over the allowed ranges of
variables define the search space over which a decision needs to
be made regarding the best choice of variables to use for the next
decision. Factorial and Composite designs45 are examples of the
usual experimental design approach often used to find a
relationship between the input and output variables. The basic
idea is to distill the interrelationships between the various factors
and their bearing on the response. Prioritizing these contributions
and encoding them within an inference model then allows us to
study how the response can be optimized. The models are usually
of the form yi= fθ(xi) ± ei, where the uncertainties are assumed to
be normally distributed, N(0, σ). Assuming a linear model, the
variance in the parameters, θ and objective, yi, are given in terms
of the moment matrix, M= (XTX)−1, where X denotes the design
matrix with rows (1, f1(xi),...fp(xi)) where p is the number of
parameters/coefficients, such that var(θ)= σ2M and var(yi)=
σ2MXi. The optimal design is then chosen based on the choice
of optimality conditions, such as A - optimality which chooses xi
based on minimizing TrðM�1

x Þ and the common G—optimality,
which maximizes the variance in f(x).
An important consideration in DoE is to minimize the number of

experiments which need to be carried out in the overall space of
variables and parameters (the design space) in order to reduce
costs and time. Ordinary DoE puts the same amount of resources
in high and poor performance regions of the parameter space and
so the costs can go up exponentially in search of the optimal
design. As a result, in the early design stages where uncertainties
are higher, we need appropriate strategies for the analysis of
relatively expensive experiments or high-fidelity codes because
seeking for an accurate numerical value of the optimum in the
conceptual design stage is not efficient as there can still exist
unknowns in the design that need to be addressed later in the
design cycle. Also, traditional sequential design of experiments,
which involves one design step followed by another, tends to be
“exploitative” towards the point of interest based on previous
experimental data. Hence, in the case of fairly expensive functions,
adaptive sampling (also called on-line or infill sampling) is
preferred over traditional design of experiments (DoE).14

ADAPTIVE SAMPLING AND BAYESIAN OPTIMIZATION

Adaptive sampling features two possible aspects that can
compete: the exploration of the overall search space so that any
model to be developed adequately samples globally, and
exploiting local regions of the search space, where the model is
likely to yield good predictions near the optimal solution. It serves
the objective of rapidly assessing potential regions of interest at
the initial stages of a given design. It is thus usual for engineers to
employ cheap surrogate models when the engineering model is
computationally intense. These surrogate models are based on a
relatively small number of training points (Fig. 3) and the use of
Bayesian Global Optimization (BGO) has had impact in industry for
addressing large scale computational tasks since the 1990s,
following the work of Jones, Schonlau and Welch, who introduced
the efficient global optimization (EGO) method.38 This relied
substantially on early work by Kushner49 on optimizing unknown
functions, as well as work by Mockus and Zilinskas.50 The notion of
maximizing the probability of improvement from the “best-so-far”
was introduced in these studies. BGO has been used extensively in
design applications when optimization of unknown functions are

often required, especially where the computations are
expensive.14

Utility functions

The development and applications of BGO in statistics and
engineering has progressed steadily and over the last five years
there has been much interest from the machine learning
community, where BGO has been employed for tuning hyper-
parameters of machine learning models.51 Only recently have
these methods been applied to problems related to materials
discovery and computation, the application area we will focus on.
However, complementary ideas date back to developments in
decision theory with the work of Howard,52 who presented a
theory of the value of information for the joint probabilistic and
economic factors affecting decisions and how numerical values
could be attributed to the reduction and suppression of any
uncertainty. Lindley,53 using a decision theoretic approach,
brought a number of ideas together into a fully Bayesian scheme
involving the definition of a utility function for experimental
design so that an experiment is selected to maximize the
expected utility function. The utility is defined as
UðeÞ ¼

R

Y

R

Θ
uðe; y; θÞpðθ; yjeÞdθdy, where u(e, y, θ) is a utility

function which is chosen so that it reflects the purpose, cost or
usefulness of the experiment, e, selected from a large number of
possible experiments with a particular outcome, y, belonging to
the set over all possible outcomes y.41,54 As the outcome is not
known before the experiment is carried out because we do not
know the parameters, θ, the expectation is taken with respect to
the joint posterior distribution of θ and y. The choice of utility
functions include the gain in Shannon or relative entropy
(Kullback-Leibler divergence), quadratic loss and improvement
from the best, which we will discuss in greater detail. We
emphasize that the usually studied uncertainty quantification
approaches based on variance and entropy take into account the
statistical characteristics of uncertainty without regard to the
objective, and the information gained associated with an
experiment is measured in terms of the reduction in the entropy
or variance.6

Fig. 3 Bayesian Global Optimization builds a surrogate model from
data based on input x and selects new design points with estimates
for the output ŷ for the next calculation, which in turn will yield the
actual value y
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Two steps of Bayesian global optimization (BGO): model
prediction and decision-making

The problem we want to solve is stated by maxxf(x), that is, to find
the design, x that maximizes y= f(x). BGO offers a powerful and
efficient means for searching for extrema of objective functions
which are costly and for which derivatives and convexity
properties are unknown. The efficiency results from being able
to incorporate prior belief in the form of smoothness, locality of f
(x) to guide the adaptive sampling and active learning. If D= {xi, f
(xi)} (i= 1:n) is the set of observations, then by Bayes’ rule, the
posterior distribution is given by P(f|D)∝ P(D|f)P(f), where the
posterior will capture the updated beliefs about the unknown f(x)
given the prior information about f combined with how likelihood

the data seen so far, P(D|f). This step can be interpreted as
estimating f(x) with a response surface or even a surrogate model,
such as a Gaussian process (GP) or any machine learned model.
We could choose a number of possibilities for the prior, for
example, a Wiener or GP. A common example of the former is a
random walk with random step sizes and this stochastic process
was used in the early work of Kushner.49 However, it has been
shown that a GP, extension of the multivariate Gaussian
distribution to a stochastic process with an infinite number of
variables, is well suited if we make a number of simplifying
assumptions and has become the mainstay for BGO.55,56 Instead
of a Gaussian distribution over a random variable specified by a
mean and variance, a GP is a distribution over functions specified
by its mean function, m and covariance function, k, i.e.,
f ðxÞ � GP mðxÞ; kðx; x0Þð . A common choice for k is the squared

exponential kðx; x0Þ ¼ exp � 1
2 jjx � x0jj2

� �

which approaches 1 as

data points x and xʹ get close together and 0 when they are far
apart. However, the GP can allow for several kernels. In addition to
the gaussian kernel exp(−1/2*(h/θ)2) with h= ||x−xʹ|| and θ a
parameter, the exponential exp(−h/θ) and Matern functions

1þ
ffiffiffiffiffiffiffi

ð3Þ
p

� h=θ
� �

� exp �
ffiffiffiffiffiffiffi

ð3Þ
p

� h=θ
� �

, ð1þ
ffiffiffiffiffiffiffi

ð5Þ
p

� h=θþ

ð1=3Þ � 5 � ðh=θÞ2Þ � expð�
ffiffiffiffiffiffiffi

ð5Þ
p

� h=θÞ and exp(−(h/θ)p) are also
often used. In principle, the choice of these priors can affect the
surrogate model predictions. However, this depends on the data
sets. The Matern kernels are more flexible as they include more
free parameters to the model compared to the standard Gaussian
kernels. On the other hand, for a specific set of parameters the
Matern kernel reduces to the gaussian kernel.
Figure 4 summarizes the two components of BGO:

(a) a model that provides the value or posterior distribution of
the objective f(x) at unevaluated points based on available
data (xi, yi) with i= 1, ..n

(b) choice of utility function, u(x|D1:t−1), such that its maximum
over the all the data in the sampling domain, xt= argmaxxu
(x|D1:t−1) provides a potentially high value of the objective at
which to evaluate the function to guide the next experiment
or calculation. This is the “good” decision making step to
direct future sampling.

If f(x) is the outcome of an experiment, the observations are
influenced by noise and hence the objective needs to be written
as y(xi)= f(xi)+ εi, where the noise ε is distributed normally. The
posterior distribution for f(x) will now be a summation of two
normal distributions and will itself be normally distributed so that
the effects of noise is that the posterior distribution no longer
interpolates the data points but the credible or confidence interval
has positive width at all data points. In addition, the machine
learning algorithms also contain “hyperparameters”, such as the
penalty term, insensitive loss function term and coefficient of the
kernel function, that control model complexity and help balance
the bias-variance tradeoff. In general, the hyperparameters are
adjusted to optimize the leave-one-out error, which in turn is
computed by constructing an independent model for each
training set by leaving out a single data point. The trained model
now predicts the response of the left out data point. The leave-
one-out error is defined as the average of the out-of-training
sample residual over each model. The hyperparameters that
minimize the leave-one-out error are identified and used to train a
single final model. On the other hand, in a Bayesian treatment
(such as GP), one can choose the hyperparameters directly from
training data by minimizing the negative log marginal likelihood
with respect to the hyperparameters and the noise (where the
cost of Monte Carlo methods are prohibitively high). Typically,
samples are drawn randomly from a prior distribution (such as the
uniform prior or chosen based on domain knowledge) and

Fig. 4 Model prediction and decision making by maximizing the
utility function, which in this case chooses the sample with the
largest uncertainty—“exploration”. a Actual function (cyan) repre-
sents the ground truth function fitted to the data (Response=
−826.815x6+ 2443.982x5− 2573.867x4+ 1093.097x3− 118.369x2−
14.842x+ 5.087, where x is the Input). We randomly pick five data
points (training data) to train a surrogate model with GP Regression,
the predictions of which are shown by the red points (new data) and
fitted curve. The GP predicts the Response (y-axis) for the test points
along with the associated uncertainties (error bars). The exploration
strategy recommends the data point with the largest uncertainty for
the next experiment or computation. b The updated surrogate
model after the first iteration with now 6 training data points. Notice
the reduction in the error bars in b compared to a. The data point
with the largest uncertainty is recommended for the next (second)
iteration for validation and feedback
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allowed to converge. The final estimate corresponds to an
instance with the smallest negative log marginal likelihood.

Examples of utility functions

Expected improvement, E[I]. The utility function we will focus on is
an improvement based function, I, initially suggested by
Kushner49 in order to maximize the probability of improvement
over the best observed so far, f(x+). That is, I=max(f(x)−f(x+),0)
would be the improvement associated with each choice x. Before
evaluating f(x), we do not know what the improvement will be but
as we have the probability distribution on f(x), we can evaluate the
amount of improvement using E[I(x)]= E[f(x)−f(x+)] for positive I,
where E is the expectation over the posterior distribution.38 Since f
(x) is normally distributed with mean, μ, and standard deviation, σ,
it is straightforward to show that

E½IðxÞ� ¼
R1
f ðxþÞðz � f ðxþÞÞϕðzÞdz

¼ μðxÞ � f ðxþÞ ϕ μðxÞ�f ðxþÞ
σðxÞ

� �

þ σðxÞΦ μðxÞ�f ðxþÞ
σðxÞ

� �h i� (1)

where φ and Φ are the standard normal density and cumulative
distribution functions. Thus, a new sample point, x*, is chosen
amongst other data points based on the largest expected
improvement, i.e. x= argmaxxEI[x]. The limiting cases of uncer-
tainty on E[I(x)] give us:

● Small σ: E[I(x)]→ μ−f(x+), i.e. choose the μ greater than f(x+) to
maximize E[I(x)] or exploit the model predictions.

● Large σ: E[I(x)]→ σ, i.e. choose the μ with largest uncertainty to
maximize E[I(x)] or explore the sample space.

Additionally, E[I(x)] is largest where both μ(x) and σ(x) are large.
That is, points likely to give the most gains are those with the best
prediction but also where uncertainty is greatest. These aspects
emphasize the exploration—exploitation tradeoff, which is central
to aspects of active57 and reinforcement learning.58 It characterizes
many problems, including the multi-armed bandit problem, in
which decisions need to be made repeatedly but where the
outcomes are uncertain and we wish to obtain immediate results
as to where to sample optimally so that we get better results in the
future. The multi-armed bandit problem59 is an example illustrating
the exploration-exploitation dilemma and refers to a slot machine
with n-arms or “bandits” with each arm having its own probability
distribution of success. Pulling any one of the arms gives a
stochastic reward of either success or failure. The objective is to
pull the arms one-by-one in sequence such that the total reward
collected in the long run is maximized. The problem has
applications in many real-world situations where one would like
to select the “best” bandit out of a group of bandits i.e., A/B testing,
line-up optimization, evaluating social media influence.

Knowledge gradient (KG). In the presence of noise in the data, the
utility function becomes a generalization of expected improve-
ment, namely knowledge gradient, KG(x).43,60 With noise, the f(x)
values are not exactly known. Instead, we consider μ(x) so that
best choice at the next step with the largest improvement is given
by μ�nþ1 ¼ maxxμnþ1ðxÞ and KGðxÞ ¼ E½μ�nþ1 � μ�n�. If we normalize
the change in means by the number of standard deviations, σ,
then KG(x) is given by,

KGðxÞ ¼ σ ϕ
μðxÞ � f ðxþÞ

σðxÞ

� �	 


þ Φ
μðxÞ � f ðxþÞ

σðxÞ

� �

(2)

The next sampling point is then one for which KG(x) is largest,
that is argmaxxKG(x). The sampling region over which μ�n, μ

�
nþ1 are

determined is not restricted to the observed data, as in the case of
E[I(x)], but can be extensive covering many allowed possibilities.
This aspect, and the noise in the data, are the key difference from

expected improvement. Recently, expected improvement has
been generalized to also include noise.61

Mean objective cost of uncertainty (MOCU). An objective based
uncertainty quantification scheme was recently introduced to
study interactions among genes to develop drugs to mitigate
aberrant phenotypes, such as cancers, in the design of gene
regulatory networks.62–64 The basic idea is that the presence of
large uncertainties can degrade experimental design and the aim
of new measurements should be to reduce uncertainties in finding
materials with desirable properties. That is, one needs an
objective-based uncertainty quantification scheme as compared
to reducing overall variances or entropy to monitor information
gain in an experiment. A prior distribution that encodes knowl-
edge about the unknown parameters or features, say θ, is
assumed, which after knowing the outcome of an experiment, is
updated to a posterior distribution. If further measurements are
required, then this distribution is used as the new prior for the
next experimental design loop. The MOCU serves as the utility
function and measures the deterioration in the design due to the
presence of model uncertainty, i.e., it measures the degradation in
performance between an optimal design based on partial prior
knowledge and data compared to a design with full knowledge of
the system. One chooses the next experiment to shrink the
uncertainty the most, i.e., the experiment that is expected to
minimize the variance in the posterior distribution the most. That
is, the alternative that is expected to decrease the MOCU the most
is selected at each iteration, so that after observing that
experiment’s output, we would be able to make a better decision
towards the objective.
Clarifying further, suppose we are at iteration 0 and we have a

cost function f(x) with unknown parameters θ, i.e., we have
observed initial data points and have updated prior distributions
to posterior, f(x), but not yet selected the next experiment x. At
this step if we want to stop doing any more measurements and
select the x that, for example, maximizes f(x) based on our current
state of belief, we would select x which maximizes the expected
value of f(x) over the unknown parameters, θ, assuming we have a
prior distribution for θ to allow us to evaluate the expected value.
Thus, we would select xrobust= argmaxxEθf(x). This is the best we
can do “on average”, hence the term “robust”, because we do not
know the θ's and we are not guaranteed to choose the true
optimal. In many ways it is this “robust” we seek which is expected
to perform optimally on average. Now, corresponding to each
parameter value, θ, the “optimal” material, x+, can be found by
performing x+= argmaxxfθ(x). We will have an optimal for each
parameter value θ and this is our best choice if there are no
unknown parameters. As we do not know the true parameter
values, θ, the amount we lose is the difference between the true
maximum value f(x+) and the value associated with the robust
selection. This difference in the absence and presence of
uncertainty is the objective cost of uncertainty (OCU) and its
expectation over all θ is MOCU, which is given by

MOCU ¼ Eθ½fθðx
þÞ � fθðxrobustÞ� (3)

The next experiment selected is that which reduces MOCU the
most. Hence, for each x, we consider all possible values of the
experimental outcome, y, to calculate MOCU weighted by the
probability distribution, P(y|x), of y being the true experiment
outcome of x,. The selected experiment for measurement, x*, is
then given by

x� ¼ argminxEyjxðEθjx ½fθjxðx
þÞ � fθjxðxrobustÞ�Þ; (4)

where Ey|x is expectation over P(y|x). If we want to stop
measurements at the next time step and select the candidate
with highest expected y= f(x), our final selection will be given by
the robust alternative by taking the expectation over θ.
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This method has recently been applied within Landau or phase
field simulations to determine dopants that minimize the energy
dissipation, which affects the fatigue of shape memory alloy such
as FePd.28 These simulations assume a random initial dopant
distribution in the FePd matrix and associated with the dopants is
a concentration, potency and range, all of which can vary. Figure 5
summarizes the active learning strategy that the authors have
used leveraging MOCU. In the simulations, a stress is incrementally
applied to obtain a stress versus strain curve from which the
energy dissipated is estimated. The data from the simulations
serve as the training data to essentially fit a nonlinear model to
the dissipation in terms of the concentration, potency and range
of the dopants. This model is then used for the experimental
design step in Fig. 5 to select the next best dopant and its features
on the basis of MOCU, that is, the dopant that minimizes the
overall deterioration in the model uncertainty. After the measure-
ment is performed (in the real situation) or as here, after the
outcome is known, the prior distribution in terms of the unknown
dopant parameters is then updated to give a posterior distribu-
tion, which serves as the new prior for the next step in the active
learning loop.
The prior distribution is chosen as a Dirichlet distribution by

generating different samples using different dopant concentra-
tions, strength and parameters. The plot in Fig. 5 shows how the
average energy dissipation behaves after different numbers of
measurements. The five measurements for the proposed
approach are compared to ten measurements for pure exploita-
tion and random selection selection policies. A summary of the
utility functions discussed here is given in Table 1

APPLICATIONS TO MATERIALS SCIENCE

We discuss three independent examples to demonstrate the
breadth of application of the active learning strategies in materials
science. In all three examples discussed below, several iterations
of the design loop are performed with five iterations for each of
the four AL strategies of the experimental materials discovery of
ferroelectrics in Example 1, up to a 1000 iterations for the
optoelectronic simulations of Example 2, and twenty five iterations
for one AL strategy of the first principles code used in Example 3.
Unlike the more common statistical studies (discussed later) on
data with assumed distributions, experimental data as well as
computational data from physics codes do not offer the luxury to
randomly select different training sets because each evaluation of
a sample data point is expensive.

Materials discovery

The discovery of materials with targeted properties typically
involves investigating a vast search space efficiently. Systematic
design strategies aid in guiding or recommending iteratively the
optimal compounds for synthesis. The strategies discussed above
have been applied to alloys27,29 and ceramic materials.30,35,36

Example 1: piezoelectrics with large electrostrains. We review a
recent example35 where the goal was to find Barium Titanate
(BaTiO3) based piezoelectrics with large electrostrains. The idea is
to use chemical substitution (i.e., doping), such that Ca2+ and Sr2+

cations replace Ba2+ on the A-site of the ABO3 perovskite
structure, and Zr4+ and Sn4+ substitute for Ti4+ on the B-site.

Fig. 5 The objective based uncertainty approach, MOCU, to experimental design (right) with its emphasis on construction of a prior
distribution to commence the search. The plot on the left shows the performance of the method for simulations of shape memory alloys
where the objective, the average energy dissipation, is plotted versus the number of measurements.28 MOCU finds the material features for
minimizing the objective in far fewer experiments than pure exploitation or random selection. Reproduced with permission from ref. 28
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Thus, the family of solid solutions being considered is given by
(Ba1−x−yCaxSry)(Ti1−u−vZruSnv)O3, where the compositions x, y, u,
and v are constrained by 1−x−y > 0.6, x < 0.4, y < 0.3, 1−u−v >
0.6, u < 0.3 and v < 0.3 so that relaxor phases are avoided. As the
composition of each ion can be controlled to 0.01 in the synthesis
process, there are potentially about 605,000 possible compositions
of which the training data consists of only 61 which have been
synthesized (~.01%). All 61 training data points, corresponding to
different chemistries and compositions, were synthesized and
characterized using the identical protocols by the same research-
ers to remove lab-to-lab variability and processing. In addition, all
data points were chosen essentially at random, i.e., no prior
knowledge is used in performing the experiments or correlating
the results from differing compositions to build the training data
set.
The features, which should be easily available for all unexplored

materials, are expected to be physically meaningful and should
have a bearing on the property. The seven features (Fig. 6) we
employed included microscopic attributes such as electronega-
tivity, polarizability, ionic displacement, ionic radius and volume,

as they impact polarization and strain, as well as features which
capture the direction (increase, decrease or no change) of the
dependence of the cubic to tetragonal ferroelectric transition
temperature and tetragonal to orthorhombic ferroelectric transi-
tion temperature, respectively, on the doping elements. The data
has been uploaded as part of the Supplemental Information.
The result of the dimensional reduction using multidimensional

scaling is given in the Supplementary Fig. 1, which shows little
evidence of clustering amongst the compounds. Moreover, the
analysis of the way the ML was done, including feature selection,
the use of bootstrap methods for ensemble sampling to estimate
uncertainties of the surrogate model, are given in ref. 35 and the
Supplement to it, which discuss these aspects. A number of
models, including polynomial fits, Lasso, support vector machine
(SVR) with a linear (SVR.LIN) and radial-based (SVR.RBF) kernel
function, and Gradient Tree Boosting were used. Given such a high
quality experimental data set from an unknown distribution, the
statistical method of non-parametric bootstrap sampling with
random replacement65 was used to generate 1000 samples of
training data. The basis of bootstrap sampling is that the empirical

Table 1. Utility functions

Utility function Description

Efficient global optimization Evaluates trade-off between exploration and exploitation in the absence of uncertainties in the response

Knowledge gradient Evaluates trade-off between exploration and exploitation in the presence of uncertainties in the response

Mean objective cost of uncertainty Evaluates the degradation in performance between an optimal design based on partial prior knowledge and
data compared to a design with full knowledge of the system

A summary of the three main utility functions discussed in this review

Fig. 6 Active learning loop comparing experimentally the performance of the expected improvement, E[I] (trade-off ), based on balancing the
trade-off between exploitation-exploration with design selection strategies based on a maximum uncertainty from the surrogate model
prediction b the best (maximum) prediction from the model, and c purely random choice, for finding a BaTiO3 based piezoelectric with the
largest electrostrain at 20 kV/cm. Reproduced with permission from ref. 35 Copyright John Wiley and Sons, Inc. 2018
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distribution so obtained mimics the statistics associated with the
original population. An ensemble of 1000 models then gave
predictions with means and variances. Cross-validation (CV),
typically 10-fold and grid-search to optimize the hyperparameters,
was used for each model. To be specific, for the case of SVR on the
given training data, we first constructed a model with the best
combination of hyperparameters leading to the smallest CV error.
We then evaluated the model performance by monitoring two
errors, the cross-validation error and the mean squared error. For
the mean squared error, we used bootstrap sampling on the
whole training data with replacement. For the selected bootstrap
sample, one model was built with the hyperparameters tuned by
10-fold cross-validation, and then applied on the whole training
data. In total we had 1000 bootstrap samples, so that 1000 models
were trained giving 1000 predictions, from which the mean
squared error was calculated.
A number of steps were carried out to build an adequate model.

Before the first iteration, a model was built with 55 data points and
6 randomly chosen test points using bootstrap sampling and 10-
fold cross validation on the 55 points. These results together with
the test results on the 6 points are shown in Supplemental Fig. 2.
The MSEerror for the training data was 0.0047 and that for the test
data was 0.0044. This suggests that the model is not overfitting.
Also considered were safeguards usually undertaken to avoid
overfitting, including regularization as well as the use of ensemble
models. Regarding the former, the hyperparameters were
optimized using cross validation and for the latter, bagging as
well as boosting were used (see Supplemental Fig. 3 for the model
fit on the 55 points using SVR.RBF with bootstrap and Gradient
tree boosting), and they give similar error estimates.
Figure 6 captures the active learning loop in which the

performance of the expected improvement, E[I] is compared with
other design selection strategies experimentally. These include
selection of a composition for synthesis from all allowed possible
samples based on (a) maximum uncertainty in the electrostrain
from the surrogate model prediction (b) the best (maximum)
prediction from the model (c) purely random choice. Thus (a)
corresponds to pure exploration in Fig. 6, (b) to pure exploitation,
and the trade-off between the two is characterized by E[I].
Random bootstrap sampling (ref. 65) with replacement on the
training data set was used to generate 1000 samples, from which
1000 models were learned to predict the mean and standard

deviation. Figure 7a compares the relative performance of the
design after synthesis and characterization of the new compounds
predicted by each of the selection criteria after five iterations of
the loop. After each iteration, the new results augment the
training data and the iterative loop repeats. The compound with
the largest electrostrain, (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3, was
obtained on the third iteration. The trade-off, given by E[I], was
the best performing strategy in every iteration with random
selection being the worst overall performer. Interestingly, pure
exploration and exploitation also had their peaks in the third
iteration. The predictions in Fig. 7b of the electrostrain from the
inference and different selection criteria show a similar tendency
to the experimental results, although the compound with the
largest strain occurs an iteration later.
Figure 7c shows the measured strain (x-axis) vs predicted strain

(y-axis) obtained by SVR.RBF. Groups 1 to 5 indicate the 20 new
compositions that were added as a result of AL (four per Group or
iteration). The blue data points correspond to the original trained
model before any new experiments. The model at the end of the
fourth group of experiments is shown in Supplemental Informa-
tion 4; the experimental measurements, overall, are quite
consistent with the predictions. Pure exploitation is superior to
pure exploration. It tends to sample the property-feature space in
the vicinity of local minima, in contrast to exploration which
samples more globally in regions where there is limited data and
uncertainties are high, and is preferred for this problem. As 9 of
the 20 compounds had a strain value larger than the best in the
training set, the Fisher p value <0.001, indicating that the result is
significant and the probability that this result is due to chance, is
low. Also, the results of experiments (as depicted in Fig. 7a) show
that the AL strategies perform better over five experimental
iterations and 20 newly synthesized/characterized samples than
random sampling. Additionally, Supplementary Figure 5 shows
that for the original training data set, a bootstrap statistical
analysis with replacement yields that the number of new
measurements required to find the sample with the largest
electrostrain as a function of training size, is far fewer for AL
strategies than random sampling. This result is consistent with the
results of Fig. 7a from in-fact experiments.
We observe from Fig. 7c (and also from Fig. 12b of Example 3)

that although the initial surrogate model is reasonable, subse-
quent iterations are not particularly improving the model, if

Fig. 7 a Comparison of the relative performance of the design on the four selection strategies after synthesis and characterization of new
compounds after five iterations of the loop. The third iteration leads to the compound (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3 with the largest
electrostrain with E[I] the best performer in every iteration. b The predictions from the design. c The quality of the model based on the
training data and after each iteration. Reproduced with permission from ref. 35 Copyright John Wiley and Sons, Inc. 2018
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anything the model can be argued to get worse as the design
guides the selection of the next compound for synthesis. More
work is needed to capture the underlying reasons and to study the
interplay between the quality of the surrogate model and the
observed behavior.
Figure 8a, b show the performance of the design as a function

of the number of iterations of the loop. In Fig. 8a, we plot the
calculated expected improvement (y-axis) for each composition
chosen from each AL strategy as a function of five iterations (x-
axis). The expected improvement does not monotonically
decrease; it fluctuates but the trend is a decreasing one so that
eventually the expected improvement will decrease from further
experiments, and in the limit we expect it to tend to zero (a more
rigorous study with computational data is discussed in Section IV
B. 2). In Fig. 8b, we also plot the corresponding standard deviation
(our measure of prediction uncertainty) as a function of the five
iterations of experiments. The standard deviation of the selected
samples, together with their means, goes in determining E[I]. For E
[I], the standard deviation decreases with increasing iterations as
exploitation of the model is more favored. For the case of the
randomly selected compounds, their E[I] values are essentially flat.
This is because most of the compounds in the ~605,000
possibilities have an E[I] that is very small or close to zero (that
is, most compounds are not likely to lead to any improvement). As
expected, the standard deviations are relatively large for the
compounds selected on the basis of the pure exploration strategy.

Simulations for targeted design

We focus here on two examples that discuss the application of
active learning methods to iteratively guide physics-based
computational codes, such as a Poisson-Schrödinger equation
solver (APSYS) used for optoelectronic simulations to design
structures of light emitting diodes (LEDs), and density functional
theory (DFT). The objective is to build cheap, surrogate models
that are sufficiently accurate in carrying out specific tasks without
the need for executing these expensive physics-based codes every
time a new instance is chosen. We discuss the details below.

Example 2: building surrogate models for optoelectronic simulations.
Poisson-Schrödinger (P-S) simulations are often used to optimize
fabrication of light emitting diode (LED) structures. The structures
are built from a series of quantum wells and the objective is to
maximize the optical output, typically the quantum efficiency or
yield.66 Such simulations for optoelectronic applications self-
consistently solve coupled classical and quantum equations and
are available in commercial packages such as APSYS. The process
is quite time consuming as different inputs to the code are tried

until a satisfactory structure or conditions for fabrication are
obtained. The simulations themselves are computationally
demanding and thus what is desired is to rapidly construct a
surrogate model that maps the LED structure or inputs to
simulated efficiency, thereby overcoming time-consuming trial
and error based simulations to obtain the optimal design in as few
iterations as possible. Leduc et al.31 addressed this problem by
starting with a database of LEDs with known structure (i.e.,
number of layers, their composition, doping, and widths) with
labeled electro-luminescence internal quantum efficiency, and
built a GP surrogate model to make predictions of the efficiency
for as-yet unseen structures. They used the E[I] algorithm for the
selection and ranking and their work shows that to find a globally
optimum LED, striking a delicate balance between exploration and
exploitation is favored in selecting new sample points. This trade-
off serves to improve the global accuracy of the model, thereby
minimizing the possibility of becoming stuck in a local region of
the LED design space for which the efficiencies are only locally
optimal.
Figure 9a shows the structure of the GaN LED studied by Leduc

et al. consisting of a feature space of 6 dimensions, so that each
point, x was defined by the Indium composition of each of the 5
quantum wells as well as the average Indium value of the barriers.
The width of the quantum wells will be a function of the indium
levels as well as the barrier height so that the wavelength does
not especially vary. The input parameters used in the APSYS code
were those from ref. 66 with a current density of 75 A/cm2 and the
output included the band structure as well as the results of the
solution of the coupled transport equations subject to the band
structure deformation and carrier redistribution. Figure 9b shows
the results for the internal quantum efficiency calculated using
APSYS with GP and E[I] performing the optimization. Figure 9b (i)
shows that within 25 iterations, the code has reached 75% of the
total efficiency, hence BGO converges rapidly, and after 75
iterations the efficiency is at its optimal with little improvement
thereafter (Fig. 9b (ii)). From 150 iterations onwards, the simulation
is essentially working towards reducing the uncertainties so that
at the end, R2, the coefficient of determination, as determined by
cross validation, is greater than 0.99 (Fig. 9b (iii), (iv)).
Poisson-Schrödinger simulations require tuning of a number of

parameters, such as the damping step of the Newton solver that
reaches equilibrium, and convergence is often an issue. Optimiz-
ing parameters is a general problem in computational sciences
and physics55,67–70 and in machine learning.71,72 Leduc et al.32

recently demonstrated how a surrogate model, using random
forest (RF) to predict the convergence rates and E[I] to do the
sampling, can be applied to speed up convergence of simulations,
such as the P-S equations encoded in APSYS.

Fig. 8 The behavior of E[I], the expected improvement, and the standard deviation as a function of the number of experimental loops carried
out. a The expected improvement does not monotonically decrease, but the the trend is a decreasing as the expected improvement will
eventually decrease from further experiments. For the case of the randomly selected compounds, their E[I] is essentially zero as most of the
compounds in the search space of possibilities have an E[I] that is very small or close to zero. b The uncertainty or standard deviation in the
surrogate model decreases with iteration number, except for pure exploration, which is driven by selecting compounds with maximum
variance
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Rather than a GP model, Leduc et al.32 utilized a RF model to
predict the fraction of convergence for a given simulation, so that
0% refers to a simulation that does not converge at all and 100%
identifies a simulation successfully converged. For this application,
the completion fraction of optoelectronic simulations in which
voltages or currents are ramped up to target values, determines
the convergence rate. For example, a simulation where the drain
to source voltage is ramped up from 0 to 10 V, but the simulation
fails for 7.5 V, is said to have converged at 75%. A RF is a collection
of decision trees, and the prediction of the forest is an average of
the predictions of each tree, hence various measures of
uncertainty can be evaluated. In this work, the empirical estimate
of the error between the RF prediction and the true convergence
ratio was used as an uncertainty measure.
Figure 10 demonstrates the efficacy of the approach to

parameterization. The first 15 iterations show the lack of

convergence of simulations for which parameters have been
chosen randomly. The simulations that follow from the
black line onwards in Fig. 10, using a database of the initial
random simulations, are then set up automatically using the
active learning strategy with RF and E[I]. With the points
showing the convergence fraction, these simulations quickly
converge, and similar to the simulations in Fig. 9b, there is
little subsequent improvement except the uncertainties
decrease. The occasional drops in the convergence fraction
that are seen in Fig. 10 are indicative of the exploration
of regions in parameter space as the simulation proceeds
toward building a robust model. The coefficient of determina-
tion, R2, past 150 iterations is ~0.9. This example on GaN
simulations demonstrates the potential of machine learning for
automated speed up in search of target properties as well as
convergence.

Fig. 9 a A schematic of the structure of a light emitting diode (LED) showing quantum wells and conduction band that was used in the
surrogate based modeling and optimization b (i) and (ii) Results of the simulated quantum efficiency of the LED as a function of the active
learning steps executed by the code. The simulation converges rapidly and there is little improvement beyond the optimal reached, except
that the uncertainties decrease. (iii), (iv) Parity plots of the out of sample data showing the efficiencies predicted by the GP model and those
obtained from the simulations after (iii) 150 iterations and (iv) 1000 iterations when the uncertainties are much smaller and the fits superior.
Reproduced from ref. 31
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Example 3: guiding density functional theory codes. One of the
popular approaches in computational materials science is to use
density functional theory (DFT) methods to calculate properties
such as the band gap (Eg), thermal conductivity, and modulus
(elastic, bulk, and shear) to name a few, in a high-throughput
manner.2–4,17 More recently, there is also interest in exploring the
potential use of machine learning methods to learn from DFT data
and, in turn, make new predictions.17,73–76 Typically, machine
learning combined with DFT studies has the following flavor: a
reasonably large dataset from high-throughput DFT is built, a
machine learning model is trained on the dataset, and the trained
model then predicts new responses for compositions not present
in the dataset. Note that this approach does not account for

uncertainties or active learning. Here, we demonstrate a specific
application of active learning where machine learning methods
iteratively guide DFT calculations towards promising regions in
the composition space.77

We consider stoichiometric apatite compounds for this work
that have a chemical formula of A10(BO4)6X2, where A and B are
divalent and pentavalent cations, respectively, and X is an anion.
Apatites find applications as biomaterials, luminescent materials,
and host lattices for immobilizing heavy and toxic elements and
radiation tolerant materials.78 We focus on a chemical space,
where A= {Mg, Ca, Sr, Ba, Zn, Cd, Hg, or Pb}, B= {P, As, or V}, and
X= {F, Cl, Br, or OH}. This gives a total of 96 unique compositions
that satisfy the A10(BO4)6X2 stoichiometry. The goal is is to rapidly
find an apatite composition with the largest Eg by combining
active learning methods with DFT calculations in as few iterations
as possible.
The training data consists of 13 randomly chosen apatites for

which Eg is calculated within the generalized gradient approxima-
tion (GGA). Each apatite is represented by rA, rB, and rX, which
correspond to the Shannon ionic radius of A-site, B-site, and X-site
elements, respectively.79 The largest Eg (5.35 eV) in the training set
belongs to the Sr10(PO4)6F2 (SrPF) composition in the P63/m crystal
symmetry. We used an ensemble of 100 SVR-RBF ML models to
establish a relationship between the three features (rA, rB, and rX)
and the property, Eg. The hyperparameters for each SVR-RBF
model were optimized using the leave-one-out cross-validation
method. Each SVR-RBF model will return a prediction for Eg. Since
there are 100 such models, we can estimate the mean (μ or Êg)
and standard deviation (error bar, σ) from the 100 Eg predictions.
We estimated the resubstitution absolute mean squared error to
be 0.54 eV/composition.
The iterative design loop is shown in Fig. 11a. Our training set

contained 13 compositions from which we built an ensemble of
100 SVR-RBF models. Our next step is to predict the Êg ± σ for the
remaining 83 compositions for which the Eg data from DFT-GGA
calculations is not known. We recommend a composition that has
the largest E[I] for DFT-GGA validation and feedback. The training
set is then augmented with this new composition. We set a
computational “budget” of 25 total iterations to gain an under-
standing of the adaptive design process. In Fig. 11b, we show the
DFT-GGA calculated Eg data for the compositions recommended.

Fig. 10 Active learning applied to the convergence of GaN transistor
simulations by optimizing numerical parameters (5 in total). Each
point on the plot is the convergence ratio for a simulation, and the
blue line shows the moving average or trend of the convergence
ratio. A random choice of numerical parameters leads to an average
convergence fraction of 10%, with no simulations fully converging.
These random simulations serve as an initial database and as the
active learning is initiated (black vertical line), the simulations
converge fully within a few iterations. Reproduced with permission
from ref. 32 Copyright AIP Publishing 2017

Fig. 11 Active learning for guiding Density Functional Theory (DFT) calculations. a Overarching strategy in iteratively guiding DFT calculations
to find a composition with the largest band gap. b DFT-GGA Eg data (y-axis) as a function of iteration number (x-axis), where the red dashed
line represents a composition with the largest Eg in our initial training set. c Evolution of maximum E[I] at the end of each iteration showing
that it does not decrease monotonically, but fluctuates. Further, the data point corresponding to the best composition (9th iteration) need not
coincide with the largest E[I] in the whole composition space. Adapted with permission from ref. 77 Copyright Springer 2018
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The optimal composition, [Ca10(PO4)6F2], with the largest Eg of
5.67 eV was identified in the 9th iteration.
In order to provide insights into the iterative adaptive learning

process, we also tracked the maxE[I] at the end of each iteration.
Ideally, we expect maxE[I] to have large values during the initial
iterations and to monotonically decrease as the number of
iterations increases (especially after the optimal material is
identified). However, we find that maxE[I] shows a non-
monotonic trend and does not decrease smoothly as a function
of the number of iterations. This is shown in Fig. 11c. The maxE[I]
consistently attains a value of zero only from the 16th iteration
onwards. This is intriguing because the optimal composition was
found in the 9th iteration, yet the maxE[I] did not reduce to zero.
This outcome sheds light into the one of the difficult questions
related to the stopping criterion, i.e., when should one stop the
iterative loop? We do not recommend stopping immediately after
maxE[I] has reached a small value. Instead, it is important to
confirm that the maxE[I] is consistently small and does not
increase. This can be accomplished by running additional
experiments or simulations. An alternative maxE[I]-agnostic
criterion would be to stop the iterative loop when a material
with the desired response is found. However, this approach will
not ensure an optimal ML model because the search space will
not be surveyed adequately.

Review of other applications and studies

In addition to examples we have already referred to, there have
been a number of recent efforts on the topic of active learning,
adaptive design, sequential design, and/or Bayesian optimization
in materials science. We briefly review these, deferring to the
individual publications for details.
One of the earliest works can be traced to Seko et al.80,81 who

used kriging in conjunction with a simplified version of the
probability of improvement to guide DFT calculations towards
targeted regions in the design space. They demonstrated this
approach to computationally find compounds with high melting
points and low lattice thermal conductivity. A similar strategy,
using kriging together with simplified probability of improvement,
was adopted by Kiyohara et al.82 to computationally identify a
stable interface structure for a simplified coincidence-site lattice

grain boundary of FCC-Cu. Ueno et al. developed a Bayesian
optimization software framework (referred to as COMBO) for
black-box optimization, especially for large data problems.33 The
COMBO has several functionalities including Thompson sampling
(which is based on probability matching that chooses a candidate
point according to the probability of being optimal), one-rank
Cholesky update, random feature maps, and automatic hyper-
parameter tuning. Ling et al.34 emphasize the importance of how
estimates for uncertainties are calculated. They bias the usual
standard deviation estimate and compare its performance using a
RF method on four test data sets including those for magneto-
calorics, superconductivity, and thermoelectrics. Comparing stra-
tegies in terms of number of evaluations required to find the best
property. They find that although random selection was the
inferior strategy in all cases, the performance was essentially data
dependent. In the limit of adequately large data sets, different
uncertainty estimates would be expected to behave similarly,
however, an interesting aspect to be explored is the behavior
when data sizes are limited, given that we do not know the actual
uncertainties associated with the data.83 For Example 1 with the
electrostrain data, Xue et al.84 have shown that with a data size of
61 the uncertainties calculated by standard deviation and
jackknife based on a RF model using 50,000 bootstrap samples,
behave very similarly. Yamawaki et al.85 use COMBO to perform a
structural optimization of graphene nano-ribbons with the
objective of identifying a configuration with a high-zT for
thermoelectrical properties via separately controlling the electron
and phonon transport. Herbol et al.86 used Bayesian optimization
with expected improvement utility criterion to maximize the
intermolecular binding energy for exploring the combinatorial
space associated with lead ion solvation in hybrid
inorganic–organic perovskites.
The reports discussed above use the formalism of active

learning to guide computations or have applied to test cases to
demonstrate the potential of these methods in materials science.
There have now been a number of studies where iterative
machine learning methods have been used to guide experiments.
One such work is that of Ren et al.87 who used RF to identify glass
formers in ternary bulk metallic alloy systems (Co-V-Zr), which in
turn were validated by high-throughput combinatorial

Fig. 12 Model quality and active learning. a Performance of the SVR model (y-axis) vs. DFT data (x-axis) in predicting the shear modulus (G) of
MAX phases. The blue and green data points correspond to in-sample and out-of-sample data points. The red data point correspond to the
next recommendation from active learning at the “k”= 34th measurement. Symbols μ* and μ'′ represent data points with the largest G in the
population and SVR predictions on the out-of-sample data points. b Relative performance of various active learning methods (including
random sampling, max: highest expected score, max-A: alternates between choosing the highest expected score and the most uncertain
estimated score, max-P: maximizes the probability of improvement) in maximizing G. The smaller the number of new measurements (y-axis),
the better the accelerated search. X-axis shows the number of initial in-sample data points used for training the SVR model. Error bar is the
standard deviation from 1000 random trials. Reproduced from ref. 99
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experiments. The authors showed the importance of feedback to
improve the machine learning model predictions.
Broadening the scope, a number of studies have utilized

surrogate based optimization to accelerate materials discovery or
codes by minimizing number of experiments or evaluations. Chen
et al.88 applied the knowledge gradient function with Bayesian
inference to study the stability of an emulsion. Its release is
triggered by the excitation of gold nanoparticles on the surface of
oil droplets and their focus was targeted controlled release
through a set of tunable model control parameters. Knowledge
gradient was similarly used in maximizing the output current in an
optoelectronic device.89 Xue et al.29 studied the design of NiTi
based alloys with high transformation temperatures. They
employed polynomial regression with features for chemical
bonding and atomic size coupled with E[I], knowledge gradient
and maximum variance to guide the next experiments. Aggarwal
et al.25 studied a Cahn-Hilliard model with Bayesian optimization,
maximizing the expected utility of the KL divergence to select
experiments that provide maximal information about parameters
in the model given a certain budget of experiments. Their
problem of interest was to find the subsurface properties in a thin
film deposited on a substrate. They show that the information
gained with two values of the parameters is comparable to that
with eight randomly selected values of the same parameters, thus
reducing the experimental effort compared to a random strategy
by roughly a factor of four. They also studied the problem of
metal-metal interfaces and trapping of helium (He) impurities,
important in nuclear materials, and also used KL divergence for
model selection amongst competing models.
In the field of ferroelectrics, Xue et al. used a Landau model

together with Bayesian regression as well as support vector
regression combined with E[I] to find Pb-free piezoelectrics in the
BaTiO3 family with morphotropic phase boundaries that show
minimum sensitivity to temperature.30 Their training data
consisted of 20 well characterized phase diagrams of solid
solutions with a search space of 1200 possible phase diagrams.
Balachandran et al.36 developed a novel two-step machine
learning approach that combines classification learning with
regression and adaptive design methods to recommend promis-
ing chemical compositions of Bi-containing PbTiO3 solid solutions
that simultaneously satisfy two constraints: (i) They should have a
perovskite crystal structure and (ii) They should have a high
ferroelectric Curie temperature. From screening a set of 61,000
potential compositions, ten compositions were identified in five
iterations and six of them were confirmed to be in the perovskite
crystal structure from X-ray diffraction with a composition in the Bi
(Co,Fe)O3-PbTiO3 chemical space with a highest Curie temperature
of 898 K among them.
Optimizing interphase properties in polymer nanocomposites

was the problem studied by Wang et al.90 Their objective was to
minimize the difference between predicted bulk properties of a
nanocomposite using simulations for dielectric and viscoelastic
properties with those obtained from experiments using a GP
model together with E[I].
Genetic algorithms have been extensively used as a means to

optimize given target properties iteratively in a variant of the
approaches we have considered. Starting with a random initial
population of n-block polymers (for any given n), and letting them
undergo evolution in terms of constituent blocks and their
neighbors based on a genetic algorithm, a set of polymers may be
obtained with properties closest to the provided targets.91 Such
methods can be efficient in the search for materials with desired
properties compared to random searches, however, they do not
use the exploitation—exploration type strategies based on
selection and ranking discussed here.
Active learning methods have also been used to parameterize

interatomic potentials for molecular dynamics simulations.
Podryabinkin and Shapeev92 demonstrated the use of active

learning for building machine learning interatomic potentials to
resolve the transferability or extrapolation problem. Using a D-
optimality criterion, which minimizes the generalized variance of
the parameter estimates of a pre-specified model functional form,
the authors showed that reliable machine learning interatomic
potentials can be built. In a recent paper entitled, “Less is more:
sampling chemical space with active learning”. Smith et al.93 also
consider the development of accurate and transferrable potentials
for predicting molecular energetics. They use a “query by
committee” ranking strategy to sample the chemical space where
the potential fails to accurately predict the potential energy,
thereby improving the overall fitness of the potentials.
Finally, in addition to the use of active learning methods in

computational materials and physics which we have discussed in
Sec. IVB, there is the whole area of the design of computer
experiments,94–96 which utilizes adaptive and iterative strategies
to address various problems by combining system knowledge
with space-filling for sample placement. Many physical processes
are difficult to simulate and a simulation code often serves as a
proxy for the process with various inputs and outputs. Our
Example 2 was a case in point and, with easier access to more
powerful computer resources, such studies are becoming
important as surrogates to complement physical experiments.
Computer experiments allow many of the criteria and designs,
such as two-level factorials, Latin hypercubes, U- designs, lattice
designs to be compared. In addition, in purely deterministic
computer experiments, the observations from the code with the
same input variables will be the same. Thus, in modeling data
from such an experiment, bias due to model inadequacy becomes
important rather than the need to reduce variance.

CHALLENGES AND FUTURE DEVELOPMENT

The nature of experimental data in materials science is such that
we do not have the luxury to randomly select different training
sets from a population and evaluate the ground truth, because
each experiment is expensive. Typically we have a training data
set of samples from an unknown population and we need to
employ statistical methods, such as non-parametric bootstrap
sampling with replacement (and other variants of this methodol-
ogy) which we have discussed, to generate many training data
sets to form a prescribed distribution to train surrogate models.
There are different ways to evaluate the efficacy of AL methods.

One of the approaches is to use simulated datasets, where the
ground truth labels are known for all data points in the
population. This approach has advantages because one can
randomly select several training sets from a population, explore AL
methods independently on each of the training set, and provide
statistically meaningful comparisons. In fact, such studies on
different AL strategies on simulated datasets have been
performed in the literature.97,98 For example, Theiler and Zimmer97

compare Bayesian global optimization methods using simulated
datasets in four distinct regimes, corresponding to high and low
levels of measurement noise and to high and low levels of
“quenched noise.” They investigate the choice of AL methods
when the surrogate model is well matched to the data. Their
numerical experiments provide a direct way to compare Bayesian
global optimization algorithms, and in particular, in a way that
controls for the choice of surrogate model and avoids the issue of
model mismatch. They isolate the role of the surrogate model
from the AL. So, rather than choosing anecdotal functions to
optimize, they draw their functions (thousands of them) from a GP
prior, and then use the same prior to initialize the GP regression.
By comparing these algorithms over different regimes of
quenched and measurement noise, they compare relative
performance of the different AL strategies. Their work on gaussian
generated data categorically demonstrates that random sampling
is the worst performer compared to other strategies. Similarly,
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Balachandran et al.99 used data from DFT calculations and
evaluated various AL methods with the objective of accelerated
materials design, albeit post factum. Here, the authors considered
a population of 223 compounds for which the ground truth data
was available. They were able to randomly sample a number of
training sets from the population and estimate the statistics. Even
in this case, AL consistently out-performed random sampling.
One of the unresolved questions in adaptive design is the

importance of model quality in the accelerated search. We have
empirically observed that it is not necessary to have a highly
accurate machine learned model to accelerate the search when
active learning is also involved in recommending the next
experiment or computation. In Fig. 12a, we show a particular
example of a machine learned model that was trained using the
DFT data. The term “G” refers to shear modulus of a particular
compound99 obtained from DFT calculations. It can be seen that
this is particularly not an accurate model. However, when this
model is coupled to active learning algorithms (E[I], KG etc) in
search of a new compound with the largest G, then it performs
better than the random method (see Fig. 12b). This result indicates
that the active learning is forgiving of the poor model quality. Our
preliminary studies have shown that the choice of features may
also have a key role in finding the optimal material when dealing
with poor model quality. However, the underlying reasons behind
these observations are not clear and worthy of further
investigation.
Similarly, there is a need for results providing stricter guidance

on stopping criteria to prevent excessive exploration of the
feature space. In the examples we have considered, we have
stopped when either our budget has run out or when we are
satisfied with the outcome.
The methods we have outlined have been generalized to deal

with multi-objectives so that given two properties, one needs to
make the best selection for the next materials in parts of the two
dimensional Pareto plot likely to improve on the existing Pareto
front.100–103 The Pareto plot has the axes as the properties so that
we can define a characteristic boundary on which lie materials
where none of the objectives can be improved in value without
degrading the other objective value. Such boundary points, the
non-dominated data-points, define a Pareto front (PF) that
represents the best trade-off between the objectives. Although
the method has been exercised on materials databases,103 such as
for shape memory alloys and piezoelectrics, it yet has to be
demonstrated experimentally to find new materials with
enhanced properties.
The extensions of the basic ideas here to multi-fidelity

optimization, in which larger amounts of relatively cheap data
are used in conjunction with smaller amounts of more expensive
data to make credible predictions, has also been well studied.
These methods employ GP and extend well known kriging
regression to heterogeneous variable-fidelity information,104,105

and this framework has been successfully demonstrated within an
optimization scheme. Its use in materials science has recently
been demonstrated by combining two levels of DFT exchange
correlation functionals (PBE and Hybrid functionals) to make
predictions of band gaps for double perovskites.106 However, no
design was performed and the method still needs to be
demonstrated with experiments. Nevertheless, there are a number
of materials science problems where this method will become
important.
Recently, there has been interest in the use of text mining

methods and natural language processing techniques to build
datasets from the digital literature for guiding materials synthesis
and design.107,108 Such advances can have key implications with
the adaptive learning approach, especially in rapidly constructing
the training datasets for building surrogate models. Currently the
training sets are constructed manually from surveying the
published literature, which can be a time-consuming process.

We envision that combining the text mining approach for training
set construction with adaptive learning can have an impact in the
accelerated search for new materials.

SUMMARY

Our objective is to bring global optimization based tools,
developed in other areas, to the attention of the materials
community by showing via three diverse examples that involve
experiments or computations how the number of experiments or
iterations can be minimized. Although a large number of studies
exist that build and make predictions using machine learning
models, the importance of experimental design and active
learning—the selection of the next material to test—is only now
being studied in materials science. In particular, we have
highlighted the importance of how different design strategies,
in the form of surrogate models and utility functions, can
minimize the number of iterations to find materials with desired
properties. These tools have certainly led to new materials in their
class and other aspects as illustrated by our three examples, and
the variety of other examples we have briefly discussed in Sec. IVC.
Other applications relate to processing,39 as well as the use of
computational codes for design in the materials and mechanical
engineering areas14,37 and functional polymers.91 Many of these
studies (experimental and computational) have shown that the
design strategies are superior to random selection in minimizing
the number of experiments. We also note as demonstrated by
Example 3 in the context of MAX and apatite compounds, that the
surrogate model does not necessarily improve over the course of
the iterations, even though it leads to fewer measurements or
better properties in the course of the iterations (Fig. 12a, b). This
aspect has been observed also in other studies.27,30 There is thus a
need for statistical studies of the interplay between the quality of
the model and the selections recommended by the design
strategies. However, we need to be cognizant of the “no free lunch
theorem,”109 which essentially states that there is no universal
optimizer for all problems! That is, there is no guarantee that a
model trained on one data set will work on a different data set.
We are still at the stage where these methods have been barely

exercised experimentally. The examples we have given have
involved bulk synthesis with relatively slow turn around time and
characterization. High throughput experiments performing synth-
esis by sputtering and X-ray have had success with thin film
geometries110 as screening strategies for shape memory alloy
design in bulk. For bulk synthesis, self-propagation high-tempera-
ture synthesis (SHS),111 methods based on laser additive
manufacturing,112 and suspended droplet alloy processing show
significant promise. The holy grail of automated on the fly
synthesis and characterization will require the kinds of design
tools we have discussed for next material selection. Recent steps
in this direction include the use of unsupervised learning, such as
cluster analysis, to convert composition and structural data from
combinatorial libraries and material structure databases into
potential composition phase diagrams and potential constituent
phases.113,114 The convergence of the information sciences with
materials science augurs considerable promise in changing the
way new materials with targeted properties will be discovered,
and how materials science will be studied in the future.
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