
Active Learning in Multi-Armed Bandits

András Antos1, Varun Grover2, and Csaba Szepesvári1,2

1 Computer and Automation Research Institute
of the Hungarian Academy of Sciences

Kende u. 13-17, Budapest 1111, Hungary
antos@szit.bme.hu

2 Department of Computing Science
University of Alberta, Edmonton T6G 2E8, Canada

{vgrover,szepesva}@cs.ualberta.ca
Abstract. In this paper we consider the problem of actively learning the
mean values of distributions associated with a finite number of options
(arms). The algorithms can select which option to generate the next
sample from in order to produce estimates with equally good precision for
all the distributions. When an algorithm uses sample means to estimate
the unknown values then the optimal solution, assuming full knowledge
of the distributions, is to sample each option proportional to its variance.
In this paper we propose an incremental algorithm that asymptotically
achieves the same loss as an optimal rule. We prove that the excess
loss suffered by this algorithm, apart from logarithmic factors, scales as
n−3/2, which we conjecture to be the optimal rate. The performance of
the algorithm is illustrated in a simple problem.

1 Introduction

Consider the problem of production quality assurance in a factory equipped with
a number of machines that produce products of different quality. The quality can
be monitored by inspecting the products produced: An inspection of a product is
modeled as a random number say between zero and one, one meaning the best,
zero the poorest quality. The outcome will depend on random effects influencing
the production and how the inspection was done, but the main assumption is
that the mean of this random variable characterizes the maintenance state of
the machine. Due to the randomness of the inspection results, multiple measure-
ments are necessary to control the precision of the quality estimates. We are
interested in keeping the precision of the estimates equal across the machines.
If the inspection of a product is expensive (as is the case when inspection re-
quires the destruction of the product) then to keep the cost low, it is logical
to inspect machines that produce products of highly varying inspection results
more frequently. The problem is then to decide about exactly how frequently the
quality of each machine should be checked by inspecting a product produced on
it. The loss is measured by taking the largest of the mean-squared errors of the
estimates produced for the machines.

The basic problem is to estimate unknown quantities corresponding to a
finite number of options by sequentially drawing random variables from distri-
butions associated with the options so as to keep the estimation error across

all the options the same. Active learning problems involve estimating unknown
parameters by selectively and adaptively sampling from the input space. Hence,
this problem can be seen as an instance of active learning. The problem is also
similar to multi-armed bandit problems [7, 2] in that only one option (arm) can
be probed at any time. However, the performance criterion is different from
that used in bandits where the observed values are treated as rewards and per-
formance during learning is what matters. Nevertheless, we will see that the
exploration-exploitation dilemma which characterizes classical bandit problems
will still play a role here. Because of this connection we call this problem the
max-loss value-estimation problem in multi-armed bandits.

The formal description of this problem is as follows: We are interested in
estimating the expected values (µk) of some distributions (Dk), each associated
with an option (or arm). If K is the number of options then 1 ≤ k ≤ K.
For any k, the decision maker can draw independent samples {Xkt}t from Dk.
The sample Xkt is observed when a sample is requested from option k the tth

time. (These samples correspond to the outcomes of inspections in the previous
example). The samples are drawn sequentially: Given the information collected
up to trial n the decision maker can decide which option to choose next. At any
time n, the decision maker keeps an estimate, µ̂kn, of the mean of Dk. The error
of estimate k is measured with the expected squared error:

Lkn = E
[
(µ̂kn − µk)2

]
.

The overall loss is measured by the worst-case loss over the K options:

Ln = max
1≤k≤K

Lkn.

This expresses the desire that all estimates are equally important. The goal of
the decision maker is to make this loss as small as possible.

For the sake of simplicity assume that the estimates µ̂kn are produced by
computing the sample means of the respective options:

µ̂kn =
1

Tkn

Tkn∑
t=1

Xkt,

where Tkn denotes the number of times a sample was requested from option k.
Consider the non-sequential version of the problem, i.e., the problem of choos-

ing T1n, . . . , TKn such that T1n + . . . + TKn = n so as to minimize the loss. Let
us assume for a moment full knowledge of the distributions, so there is no value
in making this choice data dependent. Due to the independence of samples

Lkn =
σ2

k

Tkn
,

where σ2
k = Var [Xk1]. For simplicity assume that σ2

k > 0 holds for all k. It is not
hard to see then that the minimizer of Ln = maxk Lkn is the allocation {T ∗kn}k

2

that makes all the losses Lkn (approximately) equal, hence (apart from rounding
issues)

T ∗kn = n
σ2

k

Σ2
= λkn.

Here Σ2 =
∑K

j=1 σ2
j is the sum of the variances and

λk =
σ2

k

Σ2
.

The corresponding loss is

L∗n =
Σ2

n
.

The optimal allocation is easy to extend to the case when some options have
zero variance. Clearly, it is both necessary and sufficient to make a single ob-
servation on such options. The case when all variances are zero (i.e., Σ2 = 0) is
uninteresting, hence we will assume from now on that Σ2 > 0.

We expect a good sequential algorithm A to achieve a loss Ln = Ln(A) close
to the loss L∗n. We will therefore look into the excess loss

Rn(A) = Ln(A)− L∗n.

Since the loss of option k can only decrease if we request a new sample from
Dk, one simple idea is to request the next sample from option k whose estimated
loss, σ̂2

kn/Tkn, is the largest amongst all estimated losses. Here σ̂2
kn is an estimate

of the variance of the kth option based on the history. The problem with this
approach is that the variance might be underestimated in which case the option
will not be selected for a long time, which prevents refining the estimated vari-
ance, ultimately resulting in a large excess loss. Thus we face a problem similar
to the exploration-exploitation dilemma in bandit problems where a greedy pol-
icy might incur a large loss if the payoff of the optimal option is underestimated.
One simple remedy is to make sure that the estimated variances converge to their
true values. This can be ensured if the algorithm is forced to select all the options
indefinitely in the limit, which is often called the method of forced selections in
the bandit literature. One way to implement this idea is to introduce phases
of increasing length. Then in each phase the algorithm could choose all options
exactly once at the beginning, while in the rest of the phase it can sample all
the options k proportionally to their respective variance estimates computed at
the beginning of the phase. The problem then becomes to select the appropriate
phase lengths to make sure that the proportion of forced selections diminishes at
an appropriate rate with an increasing horizon n. (An algorithm along these lines
have been described and analyzed by [5] in the context of stratified sampling.
We shall discuss this further in Section 5.) While the introduction of phases al-
lows a direct control of the proportion of forced selections, the algorithm is not
incremental and is somewhat cumbersome to implement.

In this paper we propose and study an alternative algorithm that implements
forced selections but remains completely incremental. The idea is to select the

3

option with the largest estimated loss except if some of the options is seriously
under-sampled, in which case the under-sampled option is selected. It turns out
that a good definition for an option being under-sampled is Tkn ≤ c

√
n with some

constant c > 0. (The algorithm will be formally stated in the next section.) We
will show that the excess loss of this algorithm decreases with n as Õ(n−3/2).3

2 Algorithm

The formal description of the algorithm, that we call GAFS-MAX (greedy al-
location with forced selections for max-norm value estimation), is as follows:

Algorithm GAFS-MAX
In the first K trials choose each arm once
Set Tk,K+1 = 1 (1 ≤ k ≤ K), n = K + 1
At time n do:

Compute σ̂2
kn = 1

Tkn

∑Tkn

t=1 X2
kt −

(
1

Tkn

∑Tkn

t=1 Xkt

)2

Let λ̂kn = σ̂2
kn/(

∑K
j=1 σ̂2

jn) if
∑K

j=1 σ̂2
jn 6= 0,

otherwise let λ̂kn = 1/K.
Let Un = { k : Tkn <

√
n + 1 }

Let

In+1 =

{
min Un, if Un 6= ∅
argmax1≤k≤K

λ̂kn

Tkn
, otherwise,

where in the second case ties are broken in an arbitrary,
but systematic manner.

Choose option In+1, let Tk,n+1 = Tk,n + I { In+1 = k }
Observe the feedback XIn+1,TIn+1,n+1 .

Of course, the variance estimates can be computed incrementally. Further, it is
actually not necessary to compute λ̂kn because in the computation of the arm
index λ̂kn can be replaced by σ̂2

kn without effecting the choices.

3 Main Results

The main result (Theorem 3) for GAFS-MAX is a bound of the form Ln ≤ L∗n +
Õ(n−3/2). We also prove high probability bounds on Tnk/n − λk (Theorem 1).
The proof is somewhat involved, hence we start with an outline: Clearly, the rate
of growth of Tkn controls the rate of convergence of λ̂kn to λk. In particular, we
will show that given Tkn ≥ f(n) it follows that λ̂kn converges to λk at a rate
of O(1/f(n)1/2) (Lemma 2). The second major tool is a result (Lemma 3) that
shows how a faster rate for λ̂kn transforms into better bounds on Tkn. The actual
proof is then started by observing that due to the forced selections Tkn ≥

√
n.

3 A nonnegative sequence (an) is said to be Õ(f(n)), where f : N → R+, if an ≤
Cf(n) log(n) with a suitable constant C > 0.

4

The proof is developed through a series of Lemmata. First, we state Hoeffd-
ing’s inequality in a form that suits the best our needs:

Lemma 1 (Hoeffding’s inequality, [6]). Let Zt be a sequence of zero-mean,
i.i.d. random variables, where a ≤ Zt ≤ b, a < b reals. Then, for any 0 < δ ≤ 1,

P

(
1
n

n∑
t=1

Zt ≥
√

1
2

(b− a)2

n
log(1/δ)

)
≤ δ.

Let

∆(R2, n, δ) = R

√
log(1/δ)

2n
.

Let µ
(2)
k = E

[
X2

kt

]
, Rk be the size of the range of the random variables {Xkt}t

(i.e., |supp(Xkt)| ≤ Rk), Sk be the size of the range of the random variables
{X2

kt}t, and Bk be the size of the range of the random variables {|Xkt|}t. Note
that Bk ≤ Rk and Sk ≤ B2

k. Let

Aδ =

 ⋂

1≤k≤K,n≥1

{∣∣∣∣∣
1
n

n∑
t=1

X2
kt − µ

(2)
k

∣∣∣∣∣ ≤ ∆(S2
k, n, δn)

}
 ⋂

⋂

1≤k≤K,n≥1

{ ∣∣∣∣∣
1
n

n∑
t=1

Xkt − µk

∣∣∣∣∣ ≤ ∆(R2
k, n, δn)

}
,

where δn = δ/(4K(n(n+1)). Note that δn is chosen such that
∑K

k=1

∑∞
n=1 δn =

δ/4. Hence, we observe that by Hoeffding’s inequality

P (Aδ) ≥ 1− δ.

The sets {Aδ}δ will play a key role in the proof: Many of the statements will be
proved on these set.

Our first result connects a lower bound on Tkn to the rate of convergence of
λ̂kn. Let ak = |µk|+ Bk, bk = Sk + akRk, and a′k = σ4

k/(4b2
k).

Lemma 2. Fix 0 < δ ≤ 1 and n0 > 0, and assume that for n ≥ n0, 1 ≤ k ≤ K,
Tkn ≥ f(n) ≥ 2 holds on Aδ, where f(n) → ∞. Then there exists constants
N0 ≥ n0 and c > 0 such that for any n ≥ N0, 1 ≤ k ≤ K, on Aδ

∣∣∣λ̂kn − λk

∣∣∣ ≤ c

√
log(δ−1

n)
f(n)

(1)

holds. In particular, c =
√

2(bk + λk

∑K
j=1 bj)/Σ2 ≤ 5

√
2(B2

k +
∑K

j=1 B2
j)/Σ2.

If f(n) = bnp (p > 0) then N0 = max(n0, n1), where n1 is a number such
that for n ≥ n1

log n ≤ ba′k
p

np − 1 + log
(

4K
δ

)
+ 2 log b

2p
. (2)

5

Proof. First, we develop a bound on |σ̂2
kn− σ2

k|. Let µ̂
(2)
kn = 1/Tkn

∑Tkn

t=1 X2
kt and

µ̂kn = 1/Tkn

∑Tkn

t=1 Xkt. Consider any element of Aδ. Then by the definition of
Aδ, |1/m

∑m
t=1 X2

kt − µ
(2)
k | ≤ ∆(S2

k,m, δm) holds simultaneously for any m ≥ 1.
Hence, for n ≥ n0 it also holds that

∣∣∣∣∣
1

Tkn

Tkn∑
t=1

X2
kt − µ

(2)
k

∣∣∣∣∣ ≤ ∆(S2
k, Tkn, δTkn

) ≤ ∆(S2
k, f(n), δf(n)),

where we have used that log(x(x + 1)/δ)/x is monotonically decreasing when
x ≥ 2 and Tkn ≥ f(n) ≥ 2. Similarly, we get that

∣∣∣∣∣
1

Tkn

Tkn∑
t=1

Xkt − µk

∣∣∣∣∣ ≤ ∆(R2
k, f(n), δf(n)).

Using σ̂2
kn = µ̂

(2)
kn − µ̂2

kn and σ2
k = E

[
X2

kt

]− (E [Xkt])2 = µ
(2)
k − µ2

k, we get

∣∣σ̂2
kn − σ2

k

∣∣ ≤
∣∣∣µ̂(2)

kn − µ
(2)
k

∣∣∣ +
∣∣µ̂2

kn − µ2
k

∣∣

≤ ∆(S2
k, f(n), δf(n)) + ∆(R2

k, f(n), δf(n))(|µk|+ Bk), (3)

where we used |a2 − b2| ≤ |a− b| (|a|+ |b|).
Denote the right-hand side of (3) by ∆k(n, δ). Now, let us develop a lower

bound on λ̂kn in terms of λk. Then, for n ≥ n0,

λ̂kn =
σ̂2

kn
K∑

j=1

σ̂2
jn

≥ σ2
k −∆k(n, δ)

Σ2 +
K∑

j=1

∆j(n, δ)
≥ λk

1−

K∑
j=1

∆j(n, δ)

Σ2

− ∆k(n, δ)

Σ2
,

where we used 1/(1 + x) ≥ 1− x that holds for x > −1.
An upper bound can be obtained analogously: For n ≥ n0, if

Σ2 ≥ 2
K∑

j=1

∆j(n, δ) (4)

then

λ̂kn =
σ̂2

kn
K∑

j=1

σ̂2
jn

≤ σ2
k + ∆k(n, δ)

Σ2 −
K∑

j=1

∆j(n, δ)
≤ λk

1 + 2

K∑
j=1

∆j(n, δ)

Σ2

 + 2

∆k(n, δ)
Σ2

,

where we used 1/(1 − x) ≤ 1 + 2x that holds for 0 ≤ x ≤ 1/2. This constraint
follows from (4), that is implied if n is big enough so that

2∆j(n, δ) ≤ σ2
j , 1 ≤ j ≤ K. (5)

6

The upper and lower bounds above together give

|λ̂kn − λk| ≤ 2
Σ2

λk

K∑

j=1

∆j(n, δ) + ∆k(n, δ)

 .

Noting that ∆j(n, δ) equals to

(Sj + Rj(|µj |+ Bj))

√
log(δ−1

f(n))

2f(n)
= bj

√
log(δ−1

f(n))

2f(n)
, (6)

where bj = Sj + Rj(|µj |+ Bj), we get

|λ̂kn − λk| ≤
√

2
Σ2

λk

K∑

j=1

bj + bk

√
log(δ−1

f(n))

f(n)
.

Since f(n) ≤ Tkn ≤ n, δ−1
f(n) can be upper bounded by δ−1

n leading to (1).
At last, to satisfy (5), by (6), it suffices if

f(n) ≥ 2b2
j

σ4
j

log(δ−1
f(n)) =

2b2
j

σ4
j

(log(f(n)(f(n) + 1)) + log(4K/δ))

that is guaranteed by f(n) →∞ for n large enough.

If f(n) = bnp then bnp ≥ 2b2j
σ4

j
(2p log n + 2 log b + 1 + log(4K/δ)) will ensure

that. Reordering this gives (2). ut

Now we show how a rate of convergence result for λ̂kn can be turned into
bounds on Tkn/n−λk. Let λmin = min1≤j≤K λj . In what follows, unless otherwise
stated, we will assume that λmin > 0.

Lemma 3. Fix 0 < δ ≤ 1 and n0 > 0. Assume that f(n) ≤ n such that f(n)/n2

is monotone decreasing, and consider an event such that

|λ̂kn − λk| ≤ c

√
log(δ−1

n)/f(n), 1 ≤ k ≤ K (7)

holds with some c ≥ 1, for all n ≥ n0. Let

H(n, δ) = c

(
1 +

2
λmin

)
n

√
log(δ−1

n)
f(n)

.

Then the following inequalities hold for n ≥ n0 and 1 ≤ k ≤ K:

Tkn ≤ nλk + max(n0, 1 + H(n, δ)),
Tkn ≥ nλk − (K − 1)max(n0, 1 + H(n, δ)).

7

Proof. By definition Tk,n+1 = Tkn + I { In+1 = k }. Let Ekn = Tkn − nλk. Note
that

K∑

k=1

Ekn = 0 (8)

holds for any n ≥ 1. Notice that the desired result can be stated as bounds on
Ekn. Hence, our goal now is to study Ekn. If bjn is an upper bound for Ejn

(1 ≤ j ≤ K) then from (8) we get the lower bound Ekn = −∑
j 6=k Ejn ≥

−∑
j 6=k bjn ≥ −(K − 1)maxj bjn. Hence, we target upper bounds on {Ekn}k.

From the definition of Ekn and Tkn we get

Ek,n+1 = Ek,n − λk + I { In+1 = k } .

By the definition of the algorithm

I { In+1 = k } ≤ I
{

Tkn ≤ d√ne or k = argmin
1≤j≤K

Tjn

λ̂jn

}
,

with the understanding that c/0 = +∞. Assume now that k is an index where
{Tjn

λ̂jn
}j takes its minimum, that is,

Tkn

λ̂kn

≤ min
j

Tjn

λ̂jn

.

Using Tjn = Ejn + nλj and reordering the terms gives

Ekn + nλk ≤ λ̂kn min
j

Ejn + nλj

λ̂jn

≤ λ̂kn

(
min

j

Ejn

λ̂jn

+ n max
j

λj

λ̂jn

)
.

By (8), there exists an index j such that Ejn ≤ 0. Since λ̂jn ≥ 0 for any j, it
holds that minj

Ejn

λ̂jn
≤ 0. Hence, Ekn + nλk ≤ nλ̂kn maxj

λj

λ̂jn
. Using (7) and

1/(1 − x) = 1 + x/(1 − x) ≤ 1 + 2x, which holds for x ≤ 1/2, provided that
n ≥ n0, we get

λj

λ̂jn

≤ λj

λj − c
√

log(δ−1
n)/f(n)

≤ 1 +
2c

λj

√
log(δ−1

n)
f(n)

.

Using λ̂kn ≤ 1 and (7) again,

Ekn ≤ n(λ̂kn − λk) +
2cn

λmin

√
log(δ−1

n)
f(n)

≤ c

(
1 +

2
λmin

)
n

√
log(δ−1

n)
f(n)

.

Note that the right-hand side is H(n, δ). Hence,

I { In+1 = k } ≤ I{ Tkn ≤ d√ne or Ekn ≤ H(n, δ)
}

.

8

Assume now that Tkn ≤ d√ne. We want to show that in this case Ekn ≤ H(n, δ).
By the definition of Ekn, from Tkn ≤ d√ne it follows that Ekn = Tkn − nλk ≤
d√ne ≤ √

2n. Hence, Ekn ≤ H(n, δ) follows if
√

2n ≤ H(n, δ). In particular, this
follows from the bounds on c, λmin, f(n), and δ. Therefore

I { In+1 = k } ≤ I {Ekn ≤ H(n, δ) } .

We need the following technical lemma:

Lemma 4. Let 0 ≤ λ ≤ 1. Consider the sequences En, Ẽn, In, Ĩn (n ≥ 1) where
In, Ĩn ∈ 0, 1, En+1 = En + In − λ, Ẽn+1 = Ẽn + Ĩn − λ, Ẽ1 = E1 and assume
that In ≤ Ĩn holds whenever En = Ẽn. Then En ≤ Ẽn holds for n ≥ 1.

Due to the lack of space we only sketch the proof of Lemma 4. The idea is
that Pn = Ẽn−En can only take on integer values and step 0 or 1. Then Pn ≥ 0,
n ≥ 1 follows since P1 = 0 and when in Pn = 0 then Pn+1 ≥ 0.

Now, returning to the proof of Lemma 3, define Ẽkn by

Ẽk,n+1 = Ẽk,n − λk + I
{

Ẽkn ≤ H(n, δ)
}

, n ≥ n0,

Ẽk,n0 = Ek,n0 .

The conditions of Lemma 4 are clearly satisfied from index n0. Consequently
Ek,n ≤ Ẽk,n holds for any n ≥ n0. Further, since H(n, δ) is monotone increasing
in n, Ẽk,n ≤ max(Ek,n0 , 1+H(n, δ)) ≤ max(n0, 1+H(n, δ)), finishing the upper-
bound. ut

Using the previous result we are now in the position to prove a linear lower
bound on Tkn:

Lemma 5. Let 0 < δ ≤ 1 arbitrary. Then there exists an integer N1 such that
for any n ≥ N1, Tkn ≥ nλk/2 holds on Aδ.

In particular,

N1 = max

(
2(K − 1)

λmin
max(3, N0), D2

2

[
log D2

2 +
1
2

(
log

(
4K

δ

)
+ 1

)]2
)

, (9)

where N0 = max
(
K2, (1/a′k)2

[
log((1/a′k)2) + (1 + log(4K/δ))

]2) and D2 =

4(9c(K − 1))2/λ4
min.

For the proof we need the following technical lemma that quantifies the point
when for a > 0 the function at1/2 + b overtakes log t.

Lemma 6. Let q(t) = at1/2 + b, `(t) = log t, where a > 0. Then for any t ≥
(2/a)2

[
log((2/a)2)− b

]2, q(t) ≥ `(t).

The proof of this lemma is elementary and is hence omitted.

9

Proof (Lemma 5). Due to the forced selection of the options built into the al-
gorithm, Tkn ≥ √

n holds for n ≥ K2. Hence, we can apply Lemma 2 with
f(n) = n1/2. By Lemma 6, n1 defined by (2) can be chosen to be

(1/a′k)2
[
log((1/a′k)2) + (1 + log(4K/δ))

]2
.

Hence, for n ≥ N0 = max(K2, n1) and c > 0 as defined in Lemma 2, we get,

∣∣∣λ̂kn − λk

∣∣∣ ≤ c

√
log(δ−1

n)
n1/2

. (10)

Possibly replacing c with max(c, 1), we can assume that c ≥ 1. By Lemma 3, for
n ≥ max(N0, 1/λmin), Tkn ≥ nλk− (K−1)max(N0, 1+H(n, δ)), and H(n, δ) =

D1n
3/4

√
log(δ−1

n), where D1 = c
(
1 + 2

λmin

)
≤ 3c/λmin. Hence, Tkn ≥ nλk/2

by the time when n ≥ 2N0(K − 1)/λmin and n ≥ 2(K − 1)(1 + H(n, δ))/λmin.
Lemma 6 and some tedious calculations then show that these two constrained
are satisfied when n ≥ N1, where N1 is defined as in equation (9). ut

With the help of this result we can get better bounds on Tkn, resulting in
our first main result:

Theorem 1. Let 0 < δ ≤ 1 be arbitrary. Then there exists an integer N2 and a
positive real number D3 such that for any n ≥ N2,

−(K − 1)
max(N2, 1 + G(n, δ))

n
≤ Tkn

n
− λk ≤ max(N2, 1 + G(n, δ))

n

holds on Aδ, where

G(n, δ) = D3

√
n log(δ−1

n). (11)

Here D3 ≤ 3
√

2 c/λ
3/2
min,

N2 = max
(

N1,

(
4

λmina′k

) [
log

(
2

λmina′k

)
+

1
2

+
1
2

log
(

4K

δ

)])
,

where N1 is defined in Lemma 5.

The theorem shows that asymptotically the GAFS-MAX algorithm behaves
the same way as an optimal allocation rule that knows the variances. It also
shows that the deviation of the proportion of choices of any option from the
optimal value decays as Õ(1/

√
n).

For the proof we need the counterpart of Lemma 6 for linear functions:

Lemma 7. Let q(t) = at + b, `(t) = log t, where a > 0. Then for any t ≥
(2/a)(log((1/a))− b), q(t) ≥ `(t).

10

Proof (Theorem 1). The proof is almost identical to that of Lemma 5. The
difference is that now we start with a better lower bound on Tkn. In particular,
by Lemma 5 Tkn ≥ nλk/2 holds whenever n ≥ N1. By Lemma 2, for some
N2 ≥ N1, c ≥ 1,

∣∣∣λ̂kn − λk

∣∣∣ ≤ c

λ
1/2
k

√
log(δ−1

n)
n

(12)

holds for all n ≥ N2. In particular, solving (2) for n1 with f(n) = nλk/2 and
Lemma 7 give that

N2 = max
(

N1,
4

λmina′k

[
log

(
2

λmina′k

)
+

1
2

+
1
2

log
(

4K

δ

)])

will suffice. By Lemma 3, for n ≥ max(N2, λ
−1
min) = N2,

Tkn ≤ nλk + max(N2, 1 + G(n, δ)), and
Tkn ≥ nλk − (K − 1)max(N2, 1 + G(n, δ)),

where G(n, δ) is given by (11), and D3 =
√

c
λmin

c
(
1 + 2

λmin

)
. ut

This result yields a bound on the expected value of E [Tkn]:

Theorem 2. Let N ′
2 be such that N2 ≤ N ′

2 log2(4K/δ) holds for any δ > 0,
where N2 is defined in Theorem 1. Then, there exists and index N3 that depends
only on N ′

2, D3 and K, such for any n ≥ N3,

E [Tkn] ≤ nλk + D3

√
n(1 + log(4Kn(n + 1))) + 2. (13)

Proof. First note that N ′
2 exists and N2 ≤ N ′

2 log2(δ−1
n) holds for any n ≥ 2. Fix

0 < δ ≤ 1. If n ≥ N2
2 /(D2

3 log(δ−1
n)), then 1 + G(n, δ) ≥ N2, thus it follows from

Theorem 1 that for n ≥ max(N2, N
2
2 /(D2

3 log(δ−1
n))),

P
(

Tkn − nλk − 1
D3n1/2

>

√
log(δ−1

n)
)
≤ δ

where we used P (Aδ) ≥ 1 − δ. Let Z = (Tkn − nλk − 1)/(D3n
1/2) and ε =√

log(δ−1
n). The above inequality is equivalent to

P (Z > ε) ≤ 4Kn(n + 1) e−ε2
.

By the constraints that connect n and δ, this inequality holds for any pair (n, ε)
that satisfy

n ≥ max(N ′
2 log2(δ−1

n), N ′
2
2 log3(δ−1

n)/D2
3) = max(N ′

2ε
4, N ′

2
2
ε6/D2

3),

that is, for any (n, ε) such that

ε ≤ min((n/N ′
2)

1/4, (nD2
3/N ′

2
2)1/6).

Also, since Z ≤ n1/2/D3 is always true, P (Z > ε) = 0 holds for ε ≥ n1/2/D3.
We need the following technical lemma, a variant of which can be found, e.g., as
Exercise 12.1 in [4]:

11

Lemma 8. If P (Z > ε) ≤ C exp(−cε2) for any ε ≤ a, a > 0, and P (Z > ε) = 0
for any ε ≥ b (≥ a), then

E [Z] ≤
√

(1 + log C)/c + Cb2e−ca2 . (14)
Due to the lack of space the proof is omitted.

Applying Lemma 8 with a = min((n/N ′
2)

1/4, (nD2
3/N ′

2
2)1/6), and b = n1/2/D3,

C = 4Kn(n + 1), c = 1,

E [Z] ≤
√

1 + log(4Kn(n + 1)) + 4Kn2(n + 1)e−min((n/N ′
2)

1/2,(nD2
3/N ′

2
2)1/3)/D2

3.

Equation (13) then follows by straightforward algebra.

In order to develop a bound on the loss Ln,k we need Wald’s (second) identity:

Lemma 9 (Wald’s Identity, Theorem 13.2.14 of [1]). Let {Ft}t be a fil-
tration and let Yt be an Ft-adapted sequence of i.i.d. random variables. As-
sume that Ft and σ({Ys : s ≥ t + 1 }) are independent and T is a stopping time
w.r.t. Ft with a finite expected value: E [T] < +∞. Consider the partial sums
Sn = Y1 + . . . + Yn, n ≥ 1. If E

[
Y 2

1

]
< +∞ then

E
[
(ST − TE [Y1])2

]
= Var [Y1] E [T] . (15)

The following theorem is the main result of the paper:

Theorem 3. Fix k, n ≥ N2, where N2 is as in Theorem 1. Then

Ln ≤ L∗n + Õ(n−3/2).

Proof. Let Skn =
∑n

t=1 Xkt, L̂kn = (Sk,Tkn
− Tknµk)/Tkn, G′(n, δ) = (K −

1)max(N2, 1 + G(n, δ)) and

G′′(n) = D3

√
n(1 + log(4Kn(n + 1))) + 2.

Note that by Theorem 1,

P (Tkn ≤ nλk −G′(n, δ)) ≤ P (n, δ) , I {n < N2 }+ I {n ≥ N2 } δ (16)

holds for any n ≥ 1 and 0 < δ ≤ 1. Then, for any 0 < δ ≤ 1,

Lkn = E
[
L̂2

kn

]

= E
[
L̂2

knI {Tkn > nλk −G′(n, δ) }
]

+ E
[
L̂2

knI {Tkn ≤ nλk −G′(n, δ) }
]

≤ E
[
(Sk,Tkn

− Tknµk)2
]

(nλk −G′(n, δ))2
+ R2 P (Tkn ≤ nλk −G′(n, δ))

=
σ2

kE [Tkn]
(nλk −G′(n, δ))2

+ R2 P (Tkn ≤ nλk −G′(n, δ)) (by Lemma 9)

=
σ2

kE [Tkn]
(nλk −G′(n, δ))2

+ R2 P (n, δ) (by (16))

≤ σ2
k(nλk + G′′(n))

(nλk −G′(n, δ))2
+ R2 P (n, δ) (by 13)

=
σ2

k

nλk

1
(1−G′(n, δ)/(nλk))2

+
σ2

kG′′(n)
(nλk −G′(n, δ))2

+ R2 P (n, δ).

12

Now choose δ = n−3/2. Then, for n sufficiently large, G′(n, n−3/2)/(nλk) ≤
1/2. Further, since N2 ≤ N ′

2 log(4K/δ), for n sufficiently large I {n < N2 } ≤
I
{

n < N ′
2 log(4Kn3/2)

}
= 0 and thus P (n, δ) = δ.

Therefore, for n sufficiently large, using 1/(1 − x) ≤ 1 + 2x (|x| ≤ 1/2) we
get,

Lkn ≤ σ2
k

nλk

(
1 + 2

G′(n, n−3/2)
nλk

)2

+
σ2

kG′′(n)
(nλk −G′(n, n−3/2))2

+ R2 n−3/2,

which gives

Lkn ≤ σ2
k

nλk
+ Õ(n−3/2) =

Σ2

n
+ Õ(n−3/2) = L∗n + Õ(n−3/2).

Taking the maximum with respect to k yields the desired result. ut
With a little extra work the case when for some options λk = 0 can also be

handled and we can get identical bounds. Due to the lack of space this is not
considered here.

4 Illustration

In addition to theory, empirical experiments show that our method indeed per-
forms better than the non-adaptive solution. Further, our experiments verified
that the allocation strategy found by our algorithm converges to the optimal
allocation strategy at the rate predicted by the theory.

Here we illustrate the behavior of these algorithms in a simple problem with
K = 2, with the random responses modeled as Bernoulli random variables for
each of the options. In order to estimate the expected squared loss between the
true mean and the estimated mean we repeat the experiment 100,000 times,
then take the average. The error bars shown on the graphs show the standard
deviations of these averages. The algorithms compared are GAFS-MAX (the al-
gorithm studied here), GFSP-MAX (the algorithm described in the introduction
that works in phases) and “UNIF”, the uniform allocation rule. In order for an
adaptive algorithm to have any advantage the two options have to have different
variances. For this purpose we chose p1 = 0.8, p2 = 0.9 so that λ1 = 0.64 and
λ2 = 0.36.

Figure 1 shows the rescaled excess loss, n3/2(Ln − L∗n), for the three algo-
rithms. We see that the rescaled excess losses of the adaptive algorithms stay
bounded, as predicted by the theory, while the rescaled loss of the uniform sam-
pling strategy grows as

√
n. It is remarkable that the limit of the rescaled loss

seems to be a small number, showing the efficiency of the algorithm. Note that
this example shows that the uniform allocation initially performs better than
the adaptive rules. This is because the adaptive algorithms need to get a good
estimate of the statistics before they can start exploiting.

Figure 2 shows and the rescaled allocation ratio deviations,
√

n(Tkn/n−λk),
for k = 1. Again, as predicted by the theory, the rescaled deviations stay bounded

13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

R
es

ca
le

d
E

xc
es

s
Lo

ss

Number of Samples (x 1000)

Mean1: 0.8, Mean2: 0.9

GAFS-MAX
GFSP-MAX

UNIF

Fig. 1. The rescaled excess loss against the number of samples.

-2

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

R
es

ca
le

d
A

llo
ca

tio
n

de
vi

at
io

n
fo

r
k=

1

Number of Samples (x 1000)

Mean1: 0.8, Mean2: 0.9

GAFS-MAX
GFSP-MAX

UNIF

Fig. 2. The rescaled allocation deviation for k = 1 against the number of samples.

for the adaptive algorithms, while, due to mismatch of the allocation ratios,
grows as

√
n for the uniform sampling method. In this case the incremental

method (GFSP-MAX) performs better than the algorithm that works in phases
(GAFS-MAX), although their performance is quite similar.

5 Related Work

This work is closely related to active learning in a regression setting (e.g., [3]).
Interestingly, in the by now rather extensive active learning literature to the best
of our knowledge no one looked into the problem of learning in a situation where
the noise in the dependent variable varies in space, i.e., under heteroscedastic
noise. Although the rate of convergence of a method that pays attention to
heteroscedasticity will not be better than that of the one that does not, the
finite-time performance can be improved greatly by such adaptive algorithms.
This has been demonstrated convincingly in the related problem of actively
deciding about the proportions of samples to be used in stratified sampling [5].

14

Interestingly, this application is very closely related to the problem studied here.
The only difference is that the loss is measured by taking the weighted sum of
the losses of the individual prediction errors with some fix set of weights that
sum to one. With obvious changes, the algorithm presented here can be modified
to work in this setting and the analysis carries through with almost no changes.
The algorithm studied in [5] is the phase-based algorithm. The results in this
paper are weak consistency results, i.e., no rate of convergence is derived. In
fact, the only condition the authors pose on the proportion of forced selections
is that this proportion should go to zero such that the total number of forced
selections for any option goes to infinity.

6 Conclusions and Future Work

When finite sample performance is important, one may exploit heteroscedasticity
to allocate more samples to parts of the input space where the variance is larger.
In this paper we designed an algorithm for such a situation and showed that the
excess loss of this algorithm compared with that of an optimal rule, that knows
the variances, decays as Õ(n−3/2). We conjecture that the optimal minimax rate
is in fact O(n−3/2). Our analysis can probably be improved. In particular, the
dependence of our constants on λ−1

min can probably be improved by a great extent.
Although in this paper we have not considered the full non-parametric re-

gression problem, we plan to extend the algorithm and the analysis to such
problems. We also plan to apply the technique to stratified sampling.

Acknowledgements

This research was funded in part by the National Science and Engineering Research
Council (NSERC), iCore and the Alberta Ingenuity Fund and by the Hungarian Academy
of Sciences (Bolyai Fellowship for András Antos).

References

1. K.B. Athreya and S.N. Lahiri. Measure Theory and Probability Theory. Springer,
2006.

2. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

3. R. Castro, R. Willett, and R.D. Nowak. Faster rates in regression via active learning.
In Advances in Neural Information Processing Systems 18 (NIPS-05), 2005.

4. L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni-
tion. Applications of Mathematics: Stochastic Modelling and Applied Probability.
Springer-Verlag New York, 1996.

5. P. Etore and B. Jourdain. Adaptive optimal allocation in stratified sampling meth-
ods, 2007. http://www.citebase.org/abstract?id=oai:arXiv.org:0711.4514.

6. W. Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58:13–30, 1963.

7. T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in Applied Mathematics, 6:4–22, 1985.

15

