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Abstract—Active learning methods have been considered with similarity function between the query and any picture in the
increased interest in the statistical learning community.Initially  database. A usual heuristic is to weigh the axes of the featur
developed within a classification framework, a lot of extensns  gnaca [4]. In order to perform a better refinement of the
are now being proposed to handle multimedia applications. fiis P . T .
paper provides algorithms within a statistical framework to S'm'lamyfuncuon’0pt'm'zat'on't_)ased_tec_hn'ques c&mb(_ad.
extend active learning for online content-based image reteval 1hey are based on a mathematical criterion for computing the
(CBIR). The classification framework is presented with expd-  reweighting, for instance Bayes error [5], or average qatdr
ments to compare several powerful classification techniquein  error [6], [7]. Although these techniques are efficient fangiet

this information retrieval context. Focusing on interactive meth-  gearch and monomodal concept retrieval, they hardly track
ods, active learning strategy is then described. The limitéons of .
complex image concepts.

this approach for CBIR are emphasized before presenting our . ’ ?
new active selection process RETIN. First, as any active ntead is Performing an estimation of the query concept can be seen
sensitive to the boundary estimation between classes, theERIN ~as a statistical learning problem, and more precisely as a

strategy carries out a boundary correction to make the retreval  pinary classification task between the relevant and ireslev
process more robust. Second, the criterion of generalizain error classes [8]. In image retrieval, many techniques based on

to optimize the active learning selection is modified to beér tatistical | ina h b d for inst 8
represent the CBIR objective of database ranking. Third, a latch statistical learning have been proposed, as Tor instangessa

processing of images is proposed. Our strategy leads to a faend ~ Classification [9], k-Nearest Neighbors [10], Gaussian Mix
efficient active learning scheme to retrieve sets of onlinariages tures [11], Gaussian random fields [12], or Support Vector Ma

(query concept). Experiments on large databases show thah¢ chines [8], [3]. In order to deal with complex and multimodal
E(:Eti-\r/ LNStrPaet;hg?gsperforms well in comparison to several other concents, we have adopted a statistical learning approach.
' Additionally, the possibility to work with kernel functi@nis
decisive.
|. INTRODUCTION However, a lot of these learning strategies consider the

Human interactive systems have attracted a lot of reseafEBIR process as a classical classification problem, withawt
interest in recent years, especially for content-basedy@maadaptations to the characteristics of this context. Faaimse,
retrieval systems. Contrary to the early systems, which feéeme discriminative classifiers exclusively return binkatyels
cused on fully automatic strategies, recent approaches hahen real values are necessary for CBIR ranking purposes.
introduced human-computer interaction [1], [2]. In thigppa Furthermore, the system has to handle classification with
we focus on the retrieval ofonceptswithin a large image few training data, especially at the beginning of the search
collection. We assume that a user is looking for a set of imagavhere the query concept has to be estimated in a database of
the query conceptwithin a database. The aim is to build ahousands of images with only a few examples. Active leanin
fast and efficient strategy to retrieve the query concept.  strategies have been proposed to handle this type of problem

In content-based image retrieval (CBIR), the search may Baother point concerns the class sizes, since the querye@dnc
initiated using a query as an example. The top rank simileg often a small subset of the database. In contrast to more
images are then presented to the user. Then, the interactilassical classification problems, relevant and irrelectasses
process allows the user to refine his request as much as rege- highly imbalanced (up to factor 100). Depending on the
essary in a relevance feedback loop. Many kinds of intesactiapplication context, computational time has also to befallye
between the user and the system have been proposed [3],dmtsidered when an online retrieval algorithm is desigfed.
most of the time, user information consists of binary labebddress this problem, we assume that any learning task must
indicating whether or not the image belongs to the desird# at mostO(n), wheren is the size of the database.
concept. The positive labels indicatelevantimages for the  In this paper, we focus on statistical learning techniques f
current concept, and the negative labietslevantimages. interactive image retrieval. We propose a scheme to embed

To achieve the relevance feedback process, the first syratelifferent active learning strategies into a general foratioh.
focuses on the query concept updating. The aim of this glyateThe originality of our approach is based on the associatfon o
is to refine the query according to the user labeling. A simp&components:
approach, callequery modificationcomputes a new query by e Boundary correction, which corrects the noisy classifica-
averaging the feature vectors of relevant images [2]. Aaothtion boundary in the first iterations;
approach, theguery reweightingconsists in computing a new e Average Precision maximization, which selects the im-



ages so that classification and Mean Average Precision a&reinal risk. Their high ability to be used with a kernel fuion
enhanced; provides many advantages that we describe in the next sectio
e Batch selection, which addresses the problem of theFisher Discriminant Analysis also uses hyperplane classi-
selection of multiple images in the same feedback iterationfiers, but aims at minimizing both the size of the classes and
We also propose a pre-selection technique to speed up the inverse distance between the classes [19]. Let us nate th
selection process, which leads to a computational contglexin experiments, they give results similar to SVMs [20].
negligible compared to the size of the database for the whole

active learning process. All these components are intedralg. Feature distribution and kernel framework

n our r_etrleval SyStem’ called RETIN. . I In order to compute the relevance functipn, (x;) for any
In this scope, we first present the binary classification ar Y

RO 'ﬁ%agexi, a classification method has to estimate the density of
kernel framework to represent complex class d'smbu“o'?esach class and/or the boundary. This task is mainly depénden

(section I1). Powerful classification methods and well-dedi on the shape of the data distribution in the feature space. In

kernels for 9'0*?"’" image signatures are evaluated On 486 CBIR context, relevant images may be distributed in a
database experiments. Secondly, we present active Igaimlnsingle mode for one concept, and in a large number of modes

interact with the user (section l1ll), then introduce the RET for another concept, thereby inducing nonlinear classitica
active learning scheme in section IV, where its componenats Ebroblems ’

described in sections V, VI and VII. Finally, we compare our Gaussian Mixtures are highly used in the CBIR context,

method to existing ones using real scenario on large daﬂmbaﬁnce they have the ability to represent these complexidistr

(section VIII). butions [21]. However, in order to get an optimal estimation
of the density of a concept, data have to be distributed as
[1. CLASSIFICATION FRAMEWORK Gaussian (limitation for real data processing). Furtheamtine
arge number of parameters required for Gaussian Mixtures
ieads to high computational complexity. Another approach
?]ri\sists in using the kernel function framework [22]. These

In the classification framework for CBIR, retrieving imag
concepts is modeled as a two-class problem: the relevasg,cl

the set of images in the searched concept, and the irrelev, . . . . . .
class, composed by the remaining database. unctions were introduced in thg stat|st|cal_ Iearm_ng camity
Let {x;}1.. be then image indexes of the database. Afw'th the iu.pport Vectgr Macmr:jes. The first objective qf this
training set is expressed from any user label retrievalisess ramework 15 to map image Inaexes 0 vector;@(xi) n
as A, — {(xi,0)ic1n | i # 0}, wherey; — 1 if the a H|Ipert space, an_d hence_lt turns the non-llr!ear problem
Y ’ into linear ones. It is also different from other linearipat

imagex; is labeled as relevany; = —1 if the imagex; is .\ i o<1\ its ability to implicitly work on the vectors

labeled as irrelevant (otherwigg = 0). The classifier is then of thequIbertyspace K}(larnel mF()atho?:i/s never explicitly com

trained using these labels, and a relevance funcfi i : . )
9 Agp(x;) te the vectorsb(x;), but only work on their dot product

is determined in order to be able to rank the whole databa g
: . . - (D(x;), ®(x,)), and hence allow to work on very large or
Image indexes contain a summary of visual features, in th Sini ; . -
aper histograms of colors and texiures Infinite Hilbert spaces. Furthermore, learning tasks arsiei
P ' bution of data can be separated. Under the assumption that
there is a kernel function which maps our data into a linear
A. Classification methods for CBIR space, all linear learning techniques can be used on anyeimag
Sti‘Jatabase.
We denote byk(x;,x;) the value of the kernel function
between images; andx;. This function will be considered
as the default similarity function in the following.

Bayes and probabilistic classifiers are the most used filas
cation methods for CBIR [13], [14], [15]. They are interesti
since they are directly “relevance oriented®. no modifica-
tions are required to get the probability of an image to bénen t
concept. However, since Gaussian-based models are ggneral
used, they focus on estimating the center of each class, &ndComparison of classifiers
then are less accurate near the boundary than discriménativWe have experimented several classification methods for
methods, which is an important aspect for active learningBIR: Bayes classification [9] with a Parzen density estima-
Furthermore, because of the unbalance of training data, tiwn, k-Nearest Neighbors [10], Support Vector Machinés [8
tuning of the irrelevant class is not trivial. Kernel Fisher Discriminant [19], and also a query-reweiigint

k-Nearest Neighbors determines the class of an imaggategy [7]. Databases, scenario, evaluation protocal an
considering its nearest neighbors. Despite its simplidity quality measurement are detailed in the appendix. Thetsesul
still has real interest in terms of efficiency, especially fioe in terms of Mean Average Precision are shown on Fig. II-C
processing of huge databases [16]. according to the training set size (we omit the KFD which

Support Vector Machines are classifiers which has knovgives results very close to inductive SVMs) for both ANN
much success in many learning tasks during the past yeamsd Corel databases.

They were introduced with kernel functions in the statmtic One can see that the classification-based methods give the
community [17], and were quickly used by researchers of theest results, showing the power of statistical methods over
CBIR community [18]. SVMs select the optimal separatingeometrical approaches, like the one reported here (sityila
hyperplane which has the largest margin and hence the lowestnement method). The SVM technique performs slightly
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Fig. 1. Mean Average Precision(%) for a classification frandomly selected examples on the Corel (left) and the ANgh{yiphoto database.

better than others in this context. As they have a strong maframework [26]. In CBIR, the whole set of images is available
ematical framework and efficient algorithmic implemerdati anytime. These data will be considered as the pool of urdabel
SVMs are used as the default method in the RETIN systerdata during the selective sampling process.

We also made some comparisons between different kernels
(linear, Polynomial, Triangle, Gaussidrnl, Gaussian/.2 and
Gaussiany?). In our experiments, the Gaussiy? gives
the best performance, which is not a surprising result sinceFig. 2 shows the interest of a selection step. In this example
histograms are used as image signatures, ang thdistance the images are represented by 2D feature vectors, the white
is dedicated for comparing distributions. In the followingircles are images the user is looking for, and the black
experiments, we always use a Gaussian kernel witf?a circles are the images the user is not interested in. At the
distance. beginning, the user provided two labels, represented indigu
Remark: As the whole data set is available during the trainindgyy larger circles ¢f. Fig 2(a)). These two labels allow the
it could be interesting to consider a semi-supervised arstra system to compute a first classification. In classical relega
ductive framework. For instance, there are extended vessideedback systems, a common way of selection was to label
of Gaussian Mixtures [11], [13] and transductive SVM [23]the most relevant pictures returned by the system. As one
We have experimented with these methods. The computatiopah see in Fig 2(b), this choice is not effective, since in
time is very high and no improvement has been observed [2#{at case the classification is not improved. Other types of
[25]. Transduction does not seem to be an interesting approaelection of new examples may be considered. For instamce, i
for CBIR as already observed in [3]. Fig 2(c), the active learning selection working on uncentyi

Anyway, the global performances remain very low for anjs proposed: the user labels the pictures the closest to the
proposed methods for the Corel experiments. The MAP fiundary, resulting in an enhanced classification in thae ca
under20%, even when the number of training data is up t€ig 2(c).
100 for Corel. The Corel database is much bigger than ANN
and the simulated concepts are more difficult. The traingtg s o
remains too small to allow classifiers to efficiently leare thB- Optimization scheme
query concept. Active learning is now considered to overeom Starting from the image signaturés;}, ,,, the training set
this problem. Ay = {(xi,¥:)i=1,n | ¥s # 0} and the relevance function
fa, defined in section Il, new notations are introduced for

] o . ] the teaches : X — {—1,1} that labels images as1 or 1,
Active learning is close to supervised learning, except thae indexes of the labeled imagés and the unlabeled ones

training data are not independent and identically-digted 7
variables. Some of them are added to the training set thanksrye gctive learning aims at selecting the unlabeled gata

to a dedicated process. In this paper, we only consider $ga¢ vl enhance the most the relevance functiprirained
lective sampling approaches from the general active lagmiyith the abels(x,-) added tad,. To formalize this selection

framework. In this context, the main challenge is to find daﬁlrOCeSS as a minimization problem, a cost function is
! y

that, once added to the training set, will allow us to achieygioquced. According to any active learning method, the

the best classification function. These methods have beé'é?ected image is; minimizing g4 (x) over the pool of
introduced to perform good classifications with few tra@in . apeled images:l Y

data in comparison to the standard supervised scheme.
When the learner can only choose new data in a pool i* = argmin (gAy(Xi)) (1)
of unlabeled data, it is calleghool-basedactive learning iel

A. Example of active strategies

IIl. ACTIVE LEARNING



(a) Initial training set. (b) Label the most relevant data. (c) Label the most uncertain data.

Fig. 2. Active learning illustration. A linear classifier @mputed for white (relevant) and black (irrelevant) datssification. Only the large circles are
used for training, the small ones represent unlabeled déte.line is the boundary between classes after trainingre@esents the initial boundary; In (b)
two new data (the closest to the relevant one) have been addée training set; the boundary is unchanged. In (c), thetrancertain data (closest to the
boundary) are added to the training data; the boundaryfiigntly moved, and provides a better separation betweerk lelad white data.

C. Active Learning Methods unknown) distribution of the images. Witld,, the training

Two different strategies are usually considered for actiiovides the estimatiof 4, (y|x) of P(y|x), and the expected
learning: the uncertainty-based sampling, that seleesrth  €rror of generalization is:
ages for which the relevance function is the most uncertain . R
(Fig 2), and the error reduction strategy, that aims at mizim E(Pa,) = / L(P(y[x), Pa, (yx))dP(x)
ing the generalization error of the classifier. , o )
According to this distinction, we have selected two populdfith L a loss function which evaluates the loss between the
active learning strategies for presentation and compariso €StimationP, (y|x) and the true distributionP(y[x).
1) Uncertainty-based samplingin our context of binary  1he optimal pair(x}, y7) minimizes this expectation over
classification, the learner of the relevance function has §3€ Pool of unlabeled images:
classify data as relevant or irrelevant. Any data in the pool T . -
of unlabeled samples may be evaluated by the learner. Some (i) = argmin (E(PAYH’%W)) 3)
are definitively relevant, others irrelevant, but some may b
more difficult to classify. Uncertainty-based samplingastgy and Ay = Ayt (xzy1)- , i i
aims at selecting unlabeled samples that the learner is ¢ise m_ S the expected errdf () is not accessible, the integral over
uncertain about. P(x) is usually approximated using the unlabeled set. Roy

To achieve this strategy, a first approach proposed by Cofijd McCallum [26] also propose to estimate the probability
[27] uses several classifiers with the same training setsand £ (¢/%) With the relevance function provided by the current
lects samples whose classifications are the most contoagict ¢/2ssifier. With a0/1 loss functionL, the estimation of the
Another solution consists in computing a probabilisticut €XPectation is expressed for any

(x,y3),0€l

for each sample, and selecting the unlabeled samples véth th N 1 P ‘
probabilities closest td.5 [28]. Similar strategies have also (Pa) = ] Zf( T e A(ylxl))
been proposed with SVM classifier [29], with a theoretical xii€l

justification [18], and with nearest neighbor classifier][30 Furthermore, as the labelgx;) on I are unknown, they
In any case, a relevance functiofy, is trained. This are estimated by computing the expectation for each pessibl
function may be adapted from a distribution, a membershigbel. Hence, the cost functionis given:

to a class (distance to the hyperplane for SVM), or a utility o )
function. Using this relevance function, uncertain datavill 9a, (%)= Y E(Payt(xy))Palylx) 4)
be close ta): fa,(x) ~ 0. ye{-1,1}

The solution to the minimization problem in eq. 1 is: The following relation betweerﬁAy (yx) and fa, (x) is

i* = argmin (|fAy (x1)|) (2) used: )
3 Pa, (%) = 5 (Fa, (%) +)

The efficiency of these methods depends on the accuracy
of the relevance function estimation close to the boundaB/ ) o
between relevant and irrelevant classes. . Active Learning in CBIR context

2) Error Reduction-based strategyactive learning strate-  Active learning methods are generally used for classificati
gies based on error reduction [26] aim at selecting the samplroblems where the training set is large and classes are well
that, once added to the training set, minimizes the error b&lanced. However, our context is somewhat different :
generalization of the new classifier. e Unbalance of classes: the class of relevant images (the

Let denoteP(y|x) the (unknown) probability of sample searched concept), is generally 20 to 100 times smaller than
to be in classy (relevant or irrelevant), and’(x) the (also the class of irrelevant images. As a result, the boundary is



Initialization

user. Note that other initializations could be used, fotdnse
with keywords.
2) Classification: A binary classifier is trained with the

Classificatio labels the user gives. We use a SVM with a Gaussjan
kernel, since it has revealed being the most efficient [33]].[
Correction %k The result is a functiorf 4, (x;) which returns the relevance
I } 4 of each imagex;, according to the examples,, .

3) Boundary Correction:We add an active correction to
the boundary in order to deal with the few training data and
the imbalance of the classes. We present this techniquesin th
next section.

Display Selection
Pre-selection
Criteria
No

Diversification

4) Selection:In the case where the user is not satisfied with
Display P -
the current classification, the system selects a set of image
e the user should label. The selection must be such so that the
labeling of those images provides the best performances. We

Yes
divide the selection into three steps.

The first step aims at reducing the computational time, by
Fig. 3. RETIN active learning scheme. pre-selecting some hundreds of pictures ¢ € J which
may be in the optimal selection set. We propose to pre-select
the closest pictures to the (corrected) boundary. Thisgs®c
very inaccurate, especially in the first iterations of relese is computed very fast, and the uncertainty-based selection
feedback, where the size of the training set is dramaticallyethod have proved its interest in CBIR context.
small. Many methods become inefficient in this context, and The second step is the computation of the selection criterio
the selection is then somewhat random. g, (x;) for each pre-selected image. We use an uncertainty-

e Selection criterion: whenever minimizing the error obased selection criterion which aims at maximizing the Aver
classification is interesting for CBIR, this criterion doest age Precision, whose details are presented in section VI.
completely reflect the user satisfaction. Other utilityteria The third step computes the batch selection. The method
closer to this, such as Precision, should provide more efftci presented in section VIl selecisimagesx;, ¢ € I* using the
selections. previously computed criterig 4, (x;).

e Batch selection: we have to propose more than one imageb) Feedback: The user labels the selected images, and
to label between two feedback steps, contrary to many acti&enew classification and correction can be computed. The
learning techniques which are only able to select a singdgocess is repeated as many times as necessary.
image.

The computation time is also an important criterion for V. ACTIVE BOUNDARY CORRECTION
CBIR in generalized applications, since people will nottwai During the first steps of relevance feedback, classifiers are
several minutes between two feedback steps. Furthermorayained with very few data, aboWt1% of the database size.
fast selection allows the user to provide more labels in th this stage, classifiers are not even able to perform a good
same time. Thus, it is more interesting to use a less efficiesstimation of the size of the concept. Their natural behawio
but fast method than a more efficient but highly-computationthis case is to divide the database into two parts of almast th
one. same size. Each new sample changes the estimated class of

To take into account these characteristics, we proposehondreds, sometimes thousands of images. Selection is then
the next section an active learning strategy dedicated dlwse to a random selection.

CBIR context, based on the optimization of functign, , as A solution is to ensure that the retrieval session is inited
proposed in eq. 2 or eg. 4. Aside from the active learningith a minimum of examples. For instance, Tong proposes to
context, some other learning approaches have been propasdtihlize with 20 examples [33]. Beyond the question of the
in Bayesian framework. Dedicated to target search (where thminimum number of examples required for a good starting
user is looking for a single image) a probability for each gma boundary, initial examples are not always available withou
to be the target is updated thanks to user interaction [32], [ some third-party knowledge (for instance, keywords).

Thus, we propose a method to correct the boundary in order
to reduce this problem. A first version of this method was
proposed in [35], but we introduce here a generalization of

We propose an active learning scheme based on binahs one. The correction is a shift of the boundary:
classification in order to interact with a user looking forage A
concepts in databases. The scheme in summarized in figure 3. Fay, (xi) = fa,, (xi) = be ®)

1) Initialization: A retrieval session is initialized from onewith f,  the relevance function, and, the correction at
image brought by the user. The features are computed on tfeddback step.
new image and added to the database. This image is thellVe compute the correction to move the boundary towards
labeled as relevant, and the closest pictures are showreto tte most uncertain area of the database. In other words,

IV. RETIN ACTIVE LEARNING SCHEME



we want a positive value ofAyt () for any image in the means that the current boundary is too far from the center of
concept, and a negative value for others. In order to get thiee relevant class. In this case a high change, a$ required.

behavior, a ranking of the database is computed;,, = This behavior forh can be obtained by the computation of
argsort(fa,, (X)) with argsortv) a function returning the the average error between the current relevafige (x;) of
indexes of the sorted values of a new labeled imagé € I and the label; ;11 provided by

Let r; be the rank of the image whose relevance is the mdbe user:
uncertain. We have: . . .
h(fag, I yee) = Y (Wirer — fay, (%)) ()

X015, X0g5 + -+ XO7~t71 3 Xort 3 XO7~t+1 sy XO,_1X0, Ely
R k: wh ing SVMs f ting the classifi
Concept center Zone of uncertainty Less relevant images emark: when using s for computing the classifier
o fa,,, this correction process is close to the computation of

Our correction is expressed by; = f(xo,, ). parametei in the SVM decision function :

In order to compute the correction, we propose an algorithm [
based on an adaptive tuning af during the feedback steps. fAyt (xi) = Z oy k(x;j,%i) + b (8)

J

The value at th€t + 1)th iteration is computed considering
the set of labels provided by the user at the current itemdtio Parameteb can be computed using the KKT conditions [20],
Actually, we suppose that the best threshold correspondsfdo instance ifx; is a support vector b = y; — [V (x;).
the searched boundary. Such a threshold allows to present adence, one can see that our boundary correction is close to
many relevant images as irrelevant ones. Thus, if and onhe computation of parametérof the SVM decision function
if the set of the selected images is well balanced (betweffyq. 8), except that we are considering vecteysout of the
relevant and irrelevant images), then the thresheglg good. training set { € I}).
We exploit this property to tune.
At the tth feedback step, the system is able to classify VI. AVERAGE PRECISIONMAXIMIZATION
images using the current training set. The user gives ne

. Any active learning method aims at selecting samples
labels for iIMageso,, _, »»X0,,:X0,, 4/ and they are com-

e . which decreases the error of classification. In CBIR, ussss a
pared to the current classification. If the user mostly g'V‘?ﬁterested in database ranking. A usual metric to evaluse t
f Uase

relevant labels, the system should propose new images S - . -
labeling around a higher rank to get more irrelevant Iabelrsg.mklng 's the Average Precision (see appendix for defimytio

On the contrary, if the user mostly gives irrelevant labtisis
classification does not seem to be good to rankand new A. Average Precision vs Classification Error
images for labeling should be selected around a lower rankwe made experiments to evaluate the difference between
(to get more relevant labels). In order to get this behawi@, the direct optimization of the Average Precision and the
introduce the following update rule: classification error.
. . For the minimization of the classification error scheme, the
rer1r = e+ h(fay, IF yie) 6 optimal pair(x},y}) is the one which satisfies the following

with I} the set of indexes of selected images at stemd equation over the unlabeled data pdofct. Eq. 3):

function i() such as: B . | (x*,y}) = argmin (E(PAH(XM)))
« If we have as many positive labels as negative ones in (xi,y1) i€l

* 1 1 1 ~
I '|P0|Chagg$-i ar; neehdeolldsEce lthe btoundary IS certawl){ere E(Pa, ., .,,) 1s the expected error of generalization
well placed. Thush() should be close to zero. of the classifier trained with sedy , «, 4,)-

« If we have much more positive than negative labels, theIn the case of the maximization of the Average Precision,

boundary is certaml)_/ close to the cgnter of the reIevame expression is close to the previous one, except that we
class. In order to find more negative labels, a bett%r

_ ider the A Precisian, = :
boundary should correspond to a further rapnk;, which onsider the Average Frecisioio

means that() should be positive.
« On the contrary, if we have many negative labels, the (x},y7) = argm%X<M Ayt s v))
boundary is certainly too far from the center of the (eiya) i€ T
relevant class. In this cask() should be negative. where OA ) is the ranking of the database computed

The easiest way to carry out a functibrwith such a behavior from the classifier output trained with the s, | (, ,,)-

is to compute the difference between the number of positiveWe compared these two criteria on a reference database

and negative labels; ;. 1, i € I. However, it is interesting Where all the labels are known. One can notice that these

to take into account the error between the current relevangéeria cannot be used in real applications, where most of

fa,, (x;) of a new labeled image; € I; and the label; ., the labels are unknown, and are only used here for evaluation
. :

provided by the user. Indeed, if an image is labeled as pesitipurpose :

(y; = 1) and its current relevance is close to 1, this label Training set size o5 50 75 100

§h0u|d not be taken into ac_count. On the contra_ry, if an _image Ave. Precision Maximization 50% 58% 62% 65%

is labeled as negative and its current relevance is closeito 1 Classif. Error Minimization — 31% 38% 42% 45%




First of all, one can see that for both criteria, the MAP Let us note that the idea of combining "pessimist” (like
always increases, which means that an iterative selectioncertainty-based) and "optimist” (like our precisionesried
of examples will always increase the performance of tHactor) strategies seems to be an interesting way of iryesti
system. Furthermore, whenever the classification errohatkt tion. We have also tested a combination of uncertainty-thase
increases the MAP, the technique maximizing the Averagmd error reduction by selecting images with the algorithm
Precision performs significantly better with a gain aroundf Roy & McCallum[26] but only testing on the 100 closest
20%. This large difference with the error minimization is amages to the boundary. This method works a little betten tha
motivation to develop Average Precision-based strategyies the two other ones (in terms of MAP), but the difference is not
if the true MAP is not available and has to be approximateds large as when combining with a precision-oriented factor
The aim here is to select the images that will maximize the
Average Precision, and hence estimM%A . VIl. BATCH SELECTION

. . . Y. .

‘However, the estimation ol is particularly difficult  the aim of batch selection is to select the set that minimizes
with the kind of samples we have chosen. Indeed, we optggh selection criterion over all the sets gtinlabeled images.
for binary labels, which are simple enough for any non-ekpexs for the selection of one image, this minimization has to be
user. Those labels are well adapted for classification, iy t estimated. Because of the constraint in terms of complefity
are less suitable with the estimation of Average Precisios: the CBIR context, a direct estimation cannot be performed. A
criterion is based on a ranking of the database, but bingijive extension of the selection for more than one sample is

labels do not give any information in such a way. to select the; samples that minimize functiop. However, a
better batch selection can be achieved by selecting sarmples
B. Precision-Oriented Selection an iterative way [36]. Although this strategy is sub-optima

As explained before, the straight estimation of the Avera frequires litle computation in comparison to an exhausti
earch of the best subset.

Precision is not efficient in our context. We opted for ' lorith | . b d
different strategy but have kept in mind the objective of Actua )f/ ourr?gorllt m se efCt? pictures ?ng y one, an
optimization of the ranking. We experimentally noticed ttha"€Vents from the selection of close samples:

selecting images close to the boundary between relevant and I ={}

irrelevant classes is definitively efficient, but when coesing for I € [1..q]
a subset of images close to the boundary, the active sampling i* = argmin (g4, (x;) + max k(x;,x;))
strategy of selecting the closest image inside this subssot * }itf{*_*} jerorr

= 1

necessarily the best strategy. We propose to consider bessu

of images close to the boundary, and then to use a criterion
related to the Average Precision in order to select the winngith k(x;,x;) kernel function between sample and sample
image of the selective sampling strategy. X;.

In order to compute a score related to Average Precision, weThe efficiency of this batch selection is the result of
propose to consider the sub-database of the labeled pictutRe efficiency of current classification techniques, whére t
We have the ground truth for this sub-database, since Vgbeling of one or more close samples provides almost the
have the labels of all its images. Thus, it becomes feasibledame classification output. Hence, this batch selectiooes®
compute the Average Precision on this sub-database, withgrovides more diversity in the training set.
any estimation. We still need a ranking of this sub-databaseQur batch selection does not depend on a particular tech-
in order to compute the Average Precision. We compute théque of selection of only one image, hence it may be used
similarity k(x;,x) of an unlabeled image; to any labeled im- with all the previously described active learning processe
agesx (using the kernel functiok as the similarity function),
and then rank the labeled images according to these sityilari VIIl. ACTIVE LEARNING EXPERIMENTS

values. The resulting facton 4, (x;) is the Average Precision E . ts h b ied out the datab d
on the sub-database with this ranking The aim of this factor xperiments have been carried out on ine databases de-

m., (x;) is to support the picture; that, once labeled, will scribed in the appendix. In the following, we use a SVM

have the most chance to increase the Average Precision, C/2SSifier with a Gaussian kemel anda distance.
Our final cost function achieves a tradeoff between getting
the closest image and optimizing the Average Precision: A. Comparison of active learners

) We compare the method proposed in this paper to an
uncertainty-based method SVM.. [33], and a method
Then, using this factor, in the case where the user labslhich aims at minimizing the error of generalization [26].
the selected image as positive, the image and its neightb@s also add a non active method, which randomly selects the

will be well ranked. Since we selected the image which, at thmages.

same time, is the closest to positive labels and furthesh fro Results per concept are shown in Table | for the Corel photo
negative labels, the new labeled image (and its neightllls) database forl0 to 50 labels. First of all, one can see that
be well ranked, and will probably not bring irrelevant imagewe have selected concepts of different levels of complkeiti

in the top of the ranking. The performances go from few percentages of Mean Average

endfor

gy (%) = [ fa, (x0)] x (1= ma, ()
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Fig. 4. Mean Average Precision(%) for different active teas on the Corel (left) and the ANN (right) photo database.

Precision t089%. The concepts that are the most difficult tdhe performances the most after several feedback steps. Thi
retrieve are very small and/or have a very diversified visuhkhavior is as expected, since the boundary correction aims
content. For instance, the “Ontario” concept higsimages, handling the lack of training samples during the first featba
and is compound of pictures of buildings and landscapes wateps, and the diversification is more interesting when the
no common visual content. However, the system is able tategory becomes large. Finally, the top curve shows ttet th
make some improvements. Next, the RETIN active learnifnhancement of the SVM,... criterion proposed in section
method has the best performances for most concepts. VI increases the performances when used with correction and
Global results are shown in Fig. VII. First, one can sediversification.
the benefit of active learning in our context, which increase
MAP from 11% to 15% for the Corel database. The methog
which aims at minimizing the error of generalization is thed
efficient active learning method. The most efficient method We ran simulations with the same protocol that in the
is the precision-oriented method we introduced in this pap@revious section, but with various numbers of labels per
especially in the first iterations, where the number of sarfeedback. In order to get comparable results, we ensure that
ples is smallest. About computational time per feedbaok, tkhe size of the training set at the end of a retrieval session
SVM,.iive Method needs about 20ms, the method of [263 always the same. We compute the precision/recall curves
several minutes, and the one proposed in this paper 45msfenall the concepts of the database. Results for the “sa/ann
the Corel photo database. concept are shown in Fig. VIII-C; let us note that all consept
One can also notice that the gap between active and n@ave similar results moduling a scaling factor. As one can se
active learning is larger on the Corel photo database, whieh this figure, the more feedback steps, the more perfornsance
has 10 times more images than the ANN database. This shdagiease. Increasing feedback steps leads to more classific
that active learning becomes more and more efficient when thedates, which allows a better correction and selection.
size of the database grows.

. Labeling system parametrization

IX. CONCLUSION

B. RETIN Components In this paper, the RETIN active learning strategy for inter-
The RETIN selection process is composed of three cometive learning in Content-Based Image Retrieval context i
ponents : Active Boundary Correction (section V), Preacisio presented. The classification framework for CBIR is studied
Oriented Selection (section VI), and Diversification (gmtt and powerful classification techniques for informatiomiesial
VII). Experiments have been carried out on the Corel dambasontext are selected. After analyzing the limitation ofivat
in order to show the level of improvement brought by each dfarning strategies to the CBIR context, we introduce the
these components. The results are shown in Fig. VIII-C. Tlyeneral RETIN active learning scheme, and the different
top curve shows the performances using all the componerdsmponents to deal with this particular context. The main
the next one using Diversification and Active Boundary Cocontributions concern the boundary correction to make the
rection, the next one only using Active Boundary Correctiometrieval process more robust, and secondly, the introduoict
and the last one is the selection of the images the closestbfoa new criterion for image selection that better represent
the boundary, with no components. the CBIR objective of database ranking. Other improvements
The first improvements come from the Active Boundargs batch processing and speed-up process are proposed and
Correction and Diversification, but in different ways. Thealiscussed. Our strategy leads to a fast and efficient active
boundary correction increases the performances the mostiéarning scheme to online retrieve query concepts from a
the first feedback steps, while the diversification incrsasdatabase. Experiments on large databases show that th&NRETI
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Fig. 5. Results on the Corel photo database. (left) Mean agerPrecision(%) using one to three components of the REEI&dttEon process. (right)
Precision/Recall curves for the concept ‘savanna’.

method gives very good results in comparison to severakoth®s retrieved most of the relevant images, and few of them are
active strategies. lost.

The framework introduced in this article may be extended. Precision and Recall are interesting for a final evaluation
We are currently working on kernel functions for objecbf one category, however for larger evaluation purposes, we
classes retrieval, based on bags of features: each image isansider the Precision/Recall curve. This curve is the $et o
more represented by a single global vector, but by a set af the couples (Precision, Recall) for each number of insage
vectors. The implementation of such a kernel function i§/ful returned by the system. The curve always starts from the top
compatible with the RETIN active learning scheme describéeft (1,0) and ends in the bottom right (0,1). Between these t
in this article, and the initial results are really encoungg  points, the curve decreases regularly. A good PrecisiardiRe
curve is a curve which decreases slowly, which means that at
the same time, the system returns a lot of relevant images and
few of them are lost. This property is interesting since tize s
DatabasesWe considered two databases. The first one is tm the Category is not p|ay|ng an important r0|e, which akow
COREL photo database. To get tractable computation for thies comparison of Precision/Recall for different categsri
statistical evaluation, we randomly selected 77 of the CORE The Precision/Recall curve can also be summarized by a
folders, to obtain a database ®f000 images. The second onesingle real value called Average Precision, which corresiso
is the ANN database from the Washington university, with 508 the area under an ideal (non-interpolated) recall/giesi
Images. curve.

Features.We use a histogram of 25 colors and 25 textures for To evaluate a system over all the categories, the Average
each image, computed from a vector quantization [35].  Precisions for each category are combined (averaged) sacros
Concepts.For the ANN database, we used the already existirgl categories to create the non-interpolated Mean Average
11 concepts. For the Corel database, in order to perforRrecision (MAP) for that set. Let’s note that this criterisn
interesting evaluation, we built from the datab&seconcepts the one used by the TRECVID evaluation campaign[37].

of various complexity. Each concept is built from 2 or 3 of The Precision and Recall values are measured by simulating
the COREL folders. The concept sizes are from 50 to 30fstrieval scenario. For each simulation, an image category
The set of all concepts covers the whole database, and maaydomly chosen. Next, 100 images are selected using active

APPENDIX DATABASES AND FEATURES FOR EXPERIMENTS

of them share common images. learning and labeled according to the chosen category.eThes
Quality assessmentThe CBIR system performance measurdabeled images are used to train a classifier, which returns
ment is based on the Precision and Recall. a ranking of the database. The Average Precision is then

Precision and Recall are considered for one category, acmimputed using the ranking. These simulations are repeated
have as many values as images in the database (from 4060 times, and all values of are averaged to get the Mean
image retrieved to the maximum number of images the systéiwerage Precision. Next, we repeat ten times these sirulsti
can return). Precision and Recall are metrics to evaluate o get the mean and the standard deviation of the MAP.
ranking of the images returned by the system for one categoRETIN interface.

The Precision curve is always decreasing (or stationand, a The RETIN user interfacec{. Fig. 6) is composed of three
the best Precision curve is the one which decreases the Issfy-parts. The main one at the top left displays the current
which means that whatever the number of images retrievezhking of the database. The second at the bottom displays
by the system, a lot of them are relevant ones. The Rectile current selection of the active learner. The user gives
curve is always increasing, and the best Recall curve is thew labels by clicking the left or right mouse button. Once
one which increases the fastest, which means that the systeaw labels are given, the retrieval is updated, and a new



Fig. 6. RETIN user interface.
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(a) Top rank after 3 iterations of 5 labels
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(b) Top rank after 5 iterations of 5 labels

Fig. 7. RETIN results: 75 most relevant pictures for the @mic’'mountain” after 3 or 5 feedback iterations of our actigarning-based strategy.
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TABLE |

MEAN AVERAGE PRECISION(%) PER CONCEPT FOR EACH ACTIVE LEARNERON THE COREL PHOTO DATABASE (A) = ROY & M CCALLUM
MINIMIZATION OF THE ERROR OF GENERALIZATION (B) = SVMgctive ; (C) = RETINACTIVE LEARNING.

10 labels 20 labels 30 labels 40 labels 50 labels
Method @ () ()@ () (@ (b @ b (| @ b ()
animals 29 39 41|34 41 45|41 43 49|46 45 52|49 45 54
caves 20 21 22|24 26 32|28 28 44|32 32 56|39 37 61
doors 27 33 41|40 47 54|51 53 63|56 54 67|60 56 70
fish 50 55 66|62 66 79|69 72 8|73 75 88|78 77 89
flowers 18 23 37|25 27 43|31 29 46|35 32 48| 38 33 49
food 38 37 47|53 54 58|59 59 65|62 61 69|64 65 72
rome 17 16 20|24 24 30|33 32 36|38 37 43| 41 41 48
roses 27 31 38|36 37 47|45 41 53|49 44 59|54 48 63
african 8 8 8| 9 9 11|10 12 13|12 14 15|13 15 17
savana 14 17 18|19 23 22|23 29 27|27 32 31|31 35 35
asia 5 5 6 7 7 8] 9 10 10|10 12 12|13 14 15
bears 7 8 10| 9 10 13|12 13 15|13 15 17|14 17 18
birds 6 6 7 6 7 9 7 8 10| 8 9 12| 9 10 14
city 10 9 11|14 13 14|18 17 19|21 20 22|23 23 24
cougars 8 6 8 |12 8 10|14 10 12|17 12 13|19 15 16
country 9 8 10| 9 9 10|10 10 11|11 11 12|12 12 13
desert 7 8 8| 8 9 9/9 10 10|10 11 11|11 12 12
dogs 8 9 15(12 12 19|16 14 24|21 17 28|24 19 32
england 7 6 8 | 8 7 8 | 9 8 910 9 10|11 10 11
europe 7 8 9| 8 9 10| 8 9 10| 9 10 11|10 11 11
fabulous 8 9 8 |11 12 12|14 15 15|16 17 18|19 19 21
festive 19 21 24|26 27 32|31 30 37|35 33 41|38 34 43
finland 8 8 9] 9 9 11|11 12 13|14 16 15|16 17 18
france 17 22 24|21 26 27|25 29 30|27 31 31|29 33 34
fruit 11 11 12|15 16 19|19 21 25|24 25 32|27 30 37
garden 9 8 1211 11 15|14 15 18|16 18 21|18 20 23
greece 4 5 6|5 6 8 6 7 10| 7 9 12| 9 10 14
house 6 6 6 | 7 7 81110 9 10|11 10 12|12 12 13
ice 8 12 10| 9 12 12|11 13 14|12 15 16| 14 17 18
meditar. 8 10 9 |10 13 11|13 17 14|17 21 17|19 24 20
mountains | 10 11 15| 13 15 18|17 18 21|20 22 23|24 26 26
objects 11 11 12|14 14 19|20 20 25|24 24 29|29 28 33
people 5 6 7|6 8 8| 8 8 9| 8 9 10| 9 10 11
savana 23 22 26|29 29 31|34 34 34|38 37 38|42 39 42
sunsets 11 14 16|16 22 24|21 27 31|25 32 36|28 36 41
tropical 5 6 7 7 8 919 10 11|11 12 14| 14 13 16
usa 8 12 10| 9 12 11|10 12 12|11 12 13|11 12 14
wine 4 5 6 6 7 8 7 9 98 10 11|10 12 13
beaches 4 5 5|5 5 6|5 7 6 6 8 8 | 7 8 8
britain 4 4 4 | 4 5 4 |5 5 5| 5 6 6| 6 6 6
canada 3 3 3| 3 3 3| 3 3 4] 3 4 4 | 4 4 5
castles 6 6 5 6 6 6 | 7 7 7117 8 8 | 8 9 9
green 3 3 4] 3 4 5 | 4 5 6|5 5 71|65 7 8
india 4 4 5|5 5 7 6 5 8 7 6 9 | 8 7 10
kenya 4 5 5|5 6 6| 6 8 718 10 8| 9 11 10
ontario 3 3 4] 3 3 4] 4 4 4 | 4 4 5 5 5 5
portugal 3 3 4| 3 3 4| 4 4 5|4 5 51| 4 5 6
underwater| 3 4 4 4 5 5 5 6 6 6 7 6 6 8 7
europe 5 5 55 5 6 6 6 6| 6 6 7 7 7 8
Mean 11 12 14|14 15 18|17 18 21|19 20 23|21 22 25
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