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Abstract. Previous research efforts on the influence maximization problem as-
sume that the network model parameters are known beforehand. However, this is
rarely true in real world networks. This paper deals with the situation when the
network information diffusion parameters are unknown. To this end, we firstly
examine the parameter sensitivity of a popular diffusion model in influence maxi-
mization, i.e., the linear threshold model, to motivate the necessity of learning the
unknown model parameters. Experiments show that the influence maximization
problem is sensitive to the model parameters under the linear threshold model. In
the sequel, we formally define the problem of finding the model parameters for
influence maximization as an active learning problem under the linear threshold
model. We then propose a weighted sampling algorithm to solve this active learn-
ing problem. Extensive experimental evaluations on five popular network datasets
demonstrate that the proposed weighted sampling algorithm outperforms pure
random sampling in terms of both model accuracy and the proposed objective
function.
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1 Introduction

Social networks have become a hot research topic recently. Popular social networks
such as Facebook and Twitter are widely used. An important application based on so-
cial networks is the so-called “viral marketing”, the core part of which is the influence
maximization problem [5, 11, 9].

A social network is modeled as a graph G = (V, E), where V is the set of users
(nodes) in the network, and E is the set of edges between nodes, representing the con-
nectivity and relationship of users in that network. Under this model, the influence max-
imization problem in a social network is defined as extracting a set of k nodes to target
for initial activation such that these k nodes yield the largest expected spread of in-
fluence, or interchangeably, the largest diffusion size (i.e., the largest number of nodes
activated), where k is a pre-specified positive integer. Two information diffusion mod-
els , i.e., the independent cascade model (IC model) and the linear threshold model (LT
model) are usually used as the underlying information diffusion models. The influence
maximization problem has been investigated extensively recently [3, 2, 4, 1, 14].

To the best of our knowledge, all previous algorithms on influence maximization
assume that the model parameters (i.e., diffusion probabilities in the IC model and
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thresholds in the LT model) are given. However, this is rarely true in real world so-
cial networks. In this paper we relax this constraint for the LT model, assuming that
the model parameters are unknown beforehand. Instead, we propose a framework of
active learning to obtain those parameters. In this work, we focus on learning the model
parameters under the LT model since it is relatively simple, and we will investigate the
same problem under the IC model in the future.

Learning the information diffusion models has been studied in [7, 13, 12]. However,
there is a problem with the methods from [7, 13, 12], as these methods assume that a
certain amount of information diffusion data (propagation logs in [7]) on the network
is available. This data is usually held by the social network site and not immediately
available to outsiders. In some cases, it is not available at all due to privacy considera-
tions. Considering a scenario in which we wish to use “viral marketing” techniques to
market some products on Facebook, most likely we cannot get any data of information
diffusion on Facebook due to privacy reasons.

Therefore, we need to actively construct the data of information diffusion in or-
der to learn the information diffusion model parameters. This naturally falls into the
framework of active learning. There are two advantages using the active learning ap-
proach. Firstly we are no longer restricted by the social network sites’ privacy terms.
Secondly we have the additional advantage that we can explicitly control what social
influence to measure. For example, we can restrict the influence scope to either “mu-
sic” or “computer devices”. Based on the scope, we can learn the diffusion model with
a finer granularity. Therefore we can do influence maximization on the “music” prod-
ucts and the “computer device” products separately. Intuitively, the influential nodes of
“music” products and the “computer devices” should be different.

A simple way to construct the information diffusion data is to send free products
to some users and see how their social neighbors react. All social neighbors’ reaction
constitutes the information diffusion data. This is our basic idea to acquire the diffu-
sion data. Now we rephrase this process in the context of information diffusion. We set
some nodes in a network to be active. Then we observe which nodes become active at
the following time steps. The observed activation sequences can be used as the infor-
mation diffusion data. We can then make inference of the model parameters based on
this observed activation sequences.

In this context, we would naturally want to achieve the following two goals: (1) we
would like to send as few free products as possible to learn the information diffusion
model as accurately as possible; (2) we would like to make sure the learned diffusion
model is useful for influence maximization. Ultimately, we would like to make sure
that the set of influential nodes found by using a greedy algorithm on a learned model is
more influential than that found by the greedy algorithm on a randomly guessed model.

Motivated by these two objectives, in this paper we firstly empirically show that the
influence maximization problem is sensitive to model parameters under the LT model.
We define the problem of active learning of the LT model for influence maximization.
In the sequel, we propose a weighted sampling algorithm to solve this active learn-
ing problem. Extensive experiments are conducted to evaluate our proposed algorithm
on five networks. Results show that the proposed algorithm outperforms pure random
sampling under the linear threshold model.
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The rest of the paper is organized as follows. Section 2 reviews the preliminaries,
including the LT information diffusion model and the study of parameter sensitivity un-
der the LT model. We also define the problem of finding model parameters as an active
learning problem in this section. Section 3 details our weighted sampling algorithm to
learn the model parameters. Experimental results are shown in section 4. Finally, we
review related work in section 5 and conclude in section 6.

2 Preliminaries and Motivation

In this section, we first introduce the LT information diffusion model. We then detail
our study on the sensitivity of model parameters for the LT model, which motivates
the necessity to learn the model parameters when they are unknown. We then formally
define the problem of finding the model parameters for influence maximization as an
active learning problem.

2.1 The Linear Threshold Model

In [9], because the threshold of each node is unknown, the influence maximization
problem is defined as finding the set of nodes that can activate the largest expected
number of nodes under all possible thresholds distributions. However, in our research,
we assume that each nodes ni in the network has a fixed threshold θi, which we intend
to learn.

The linear threshold model [8, 9] assumes that one node u will be activated if the
fraction of its activated neighbors are larger than a certain threshold θu. In a more
general case, each neighbor v may have a different weight w(u, v) to node u’s decision.
In this case, a node u becomes active if the sum of the weights of its activated neighbors
is greater than θu. The requirement of a node u to become active can be described by
the following equation:

Σvw(u, v) ≥ θu;

where v is an activated neighbor of u. In our research, we focus on finding the set of
θus under the LT model.

For the convenience of presentation, we define the influence spread of a given set of
nodes |S| as the number of the nodes that are activated by the set S when the diffusion
process terminates. In this paper we focus on the influence maximization problem on
the LT model with fixed static unknown thresholds.

2.2 Sensitivity of Model Parameters

In this section we will empirically check whether the influence maximization problem
is sensitive to the model parameters under the LT model.

To check the sensitivity of model parameters, we assume that there is a true model
with the true parameters. We also have an estimated model. We use a greedy algorithm
on the estimated model and get a set of influential nodes. Denote this set as Sestimate.
We perform the greedy algorithm on the true model, get another set of influential nodes,
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Fig. 1. Model Parameter Sensitivity Test on the GEOM network

and denote this set as Strue. We check the influence spread of Sestimate and Strue on
the true model. The sensitivity of models is then defined as follows: if the difference
between Strue and Sestimate is smaller than a given small number, we can infer that the
influence maximization problem is not very sensitive to model parameters; otherwise it
is sensitive to model parameters.

To test the sensitivity of the LT model, we assume that the thresholds of the true
model are drawn from a truncated normal distribution with mean 0.5 and standard de-
viation of 0.25. Suppose all the thresholds in the estimated model are 0.5. Figure 1
shows that the influence spread of Sestimate is significantly lower than that of the set
Strue. We have conducted similar experiments on other collaboration networks and ci-
tation networks, and similar pattern can be found in those networks. These observations
motivate us to find the parameters in the LT model for influence maximization.

2.3 Active Model Parameter Learning for Influence Maximization

Since the influence spread under the LT model is quite sensitive to model parameters,
we now present a formal definition of active model parameter learning for the LT model
for influence maximization. Notations used in our problem definition are presented in
Table 1.

We assume that there is a true fixed threshold θi of each node ni in the social network
G(V, E). Our goal is to learn θ as accurately as possible. In order to make the problem
definition easier, we will actively construct the information diffusion data D over mul-
tiple iterations. In each iteration, we can use at most κ nodes to activate other nodes
in the network. After we acquire the activation sequences in each iteration, the model
parameters can be inferred. More specifically, we can infer the lower bound θlowbd and
the upper bound θupbd of the thresholds of some nodes according to the activation se-
quences D. The details of the inference will be introduced in Section 3. With more and
more iterations, we can get the thresholds θ more tightly bounded or even hit the ac-
curate threshold value. The activation sequences of different iterations are assumed to
be independent. That means at the beginning of each iteration, none of the nodes are
activated (influenced). The above process can be summarized into the following three
functions.
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Table 1. Notations

Symbol Meaning
G(V, E) the social network
κ the budget for learning in each iteration
θ the true thresholds of all nodes
θ̂ the estimated thresholds of all nodes
D the activation sequences
M(θ) the true Model
M(θ̂) the estimated Model
Strue the set of influential nodes found

by using the true model M(θ)
Sestimate the set of influential nodes

found by using the estimated model M(θ̂)
f(Strue, M(θ)) the influence spread

of the set Strue on M(θ)
f(Sestimate, M(θ)) the influence spread

of the set Sestimate on M(θ)

f(Sestimate, M(θ̂)) the influence spread
of the set Sestimate on M(θ̂)

f1 : (G, θ̂, θlowbd, θupbd) �→ S

s.t.|S| = κ (1)

f2 : (G, M(θ), S) �→ D (2)

f3 : (G, D, θ̂, θlowbd, θupbd) �→ {θ̂′, θ′lowbd, θ
′
upbd} (3)

Function (1) is the process of finding which set of nodes to target in each iteration.
Function (2) is the process of acquiring the activation sequences D. Function (3) is the
process of threshold inference based on the activation sequences and the old threshold
estimate. In each iteration these three functions are performed in sequence.

In this setting, there are two questions to ask: (1) How to select the set S in each
iteration so that the parameters learned are the most accurate; (2) When will the learned
model parameters θ̂ be good enough so that it is useful for the purpose of influence max-
imization? More specifically, when will the influential nodes found on the estimated
model provide a significantly higher influence spread than that found on a randomly
guessed model. Our solution is guided by these two questions (or interchangeably, ob-
jectives). However it is difficult to combine these two questions into one objective func-
tion. Since our final goal is to conduct influence maximization, we rephrase these two
objectives in the context of influence maximization as follows.

The first goal is that the influence spread of a set of nodes on the estimated model is
close to the influence spread of the same set of nodes on the true model. This goal is in
essence a prediction error. If they are close, it implies that the two models are close. The
second goal is that the influential nodes found by using the estimated model will give
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an influence spread very close to that found by using the true model. The second goal
measures the quality of the estimated model in the context of influence maximization.
We combine these two goals in the following equation.

Minimize|f(Strue, M(θ)) − f(Sestimate, M(θ))| +
|f(Sestimate, M(θ)) − f(Sestimate, M(θ̂))| (4)

s.t.iterations = t.

|f(Strue, M(θ)) − f(Sestimate, M(θ))| measures whether the set of influential nodes
determined by using the estimated model can give an influence spread close to the
influence spread of the set of influential nodes determined by using the true model.
|f(Sestimate, M(θ))−f(Sestimate, M(θ̂))| measures the difference of influence spreads
between the true model and the estimated model. It is an approximation to measure the
“model distance”, which we will define in section 4.

3 The Weighted Sampling Algorithm

In this section we will firstly show the difficulty of the active learning problem and then
present our algorithmic solution: the Weighted Sampling algorithm.

The difficulty of the above active learning problem is two-fold. The first difficulty is
that even learning the exact threshold of a single node is quite expensive if the edges of
a network are weighted.

Assume for each edge E in a social network G(V, E), there is an associated weight
w. For the simplicity of analysis, we assume ∀w, w ∈ Z+ . An edge e = {u, v} is
active if either u or v is active. What we can observe from the diffusion process is then
a sequence of node activations (ni, ti). In this setting, suppose that at time t the sum of
weights of the active edges of an inactive node ni is ct. At some future time tk, the node
ni becomes active and the sum of the weight of the active edge at time is ctk

. We use wi

to denote the sum of weights of all edges that connect to node ni. We can infer that the
threshold of node ni ∈ [ct/wi ctk

/wi]. More specially if ctk
= ct + 1, the threshold is

exactly ctk
/wi, and if this is the case, a binary search method can be used to determine

the threshold of a node ni deterministically, which is detailed as follows.
Assume that the set of edges connected to a node ni is Ei. There is a weight w

associated with each edge in Ei. S is the set of weights associated with Ei. Because
w ∈ Z+, this means that S is a set of integers. There is a response function F : T �→
{0, 1} based on a threshold θ, where T ⊆ S. Here θ′ = θ ∗ ∑

(S), and
∑

(S) means
the sum of elements of set S.

F (T ) =
{

1
∑

(T ) ≥ θ′

0
∑

(T ) < θ′ (5)

Given this response function, we can define θ′ in equation (6).

θ′ = min(
∑

(T ))

s.t. F (T ) = 1 (6)
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Therefore the actual threshold θ is defined in equation (7).

θ = min(
∑

(T ))/
∑

(S)

s.t. F (T ) = 1; (7)

Now we analyze the time and space complexity of this deterministic binary search. As-
sume that the set of possible values of

∑
(T ) is T. To find θ′, we can sort T firstly and

perform a binary search on the sorted list of T. The time complexity is O(log|T|). |T|
is O(2|S|). So the time complexity of binary search is O(log(|T|)) = O(log(2|S|)) =
O(|S|). However, sorting the set T will take O(|T|log|T|) steps. So the overall time
complexity is O(2|S| ∗ |S|). In addition, the space requirement is O(2|S|). In short, a
deterministic binary search algorithm to learn the threshold of just one node is expen-
sive. It will be infeasible to extend this approach to a large scale network with a large
number of nodes.

Next we will introduce the second difficulty. This difficulty comes from the perspec-
tive of active learning algorithm design. We define the following function.

Γ : (S, G, M(θ̂), M(θ)) �→ E(Red) (8)

This function maps the target set S, the graph G, the estimated model M(θ̂) and the
true model M(θ) to the expected reduction in threshold uncertainty E(Red) if we set
S as the initial active nodes. Γ (S, G, M(θ̂), M(θ)) measures the gain if we select S as
the initial target nodes. Since we do not know the true model parameters and therefore
we cannot possibly know the activation sequence of a target set S under the true model
parameters. It is therefore impossible to know the exact value of Γ (S, G, M(θ̂), M(θ)).
Γ (S, G, M(θ̂), M(θ)) is not a monotonically non-decreasing function with respect to
set S, which means even if we know the value of Γ (S, G, M(θ̂), M(θ)), a deterministic
greedy algorithm is not a good solution. However, we still want to choose the set S that
maximizes Γ (S, G, M(θ̂), M(θ)) in each learning iteration. We use weighted sampling
to approximate this goal. In each iteration we sample a set of κ nodes according to the
following three probabilities.

pi ∝
∑

j

I(i, j) (9)

pi ∝
∑

j

I(i, j) ∗ w(i, j) (10)

pi ∝
∑

j

I(i, j) ∗ (θ(j)upbd − θ(j)lowbd) (11)

I(i, j) is the indicator function. It is equal to 1 if there is an edge between i and j and the
threshold of node j is unknown, otherwise it is 0. Essentially we are trying to sample κ
nodes that connect to the most number of nodes with the most uncertainty of thresholds.
There are different ways to measure the uncertainty of the threshold of a node. Formula
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(11) measures the uncertainty by how tight the bounds of the threshold are. In formula
(9) the uncertainty value is 1 if the threshold is unknown and 0 otherwise. Formula
(10) differs from formula 9 in that weights of edges w(i, j) are added. We perform
weighted sampling on the nodes without replacement. The hope is that the sampled set
S can yield a high value of Γ (S, G, M(θ̂), M(θ)). The pseudo code of our weighted
sampling algorithm is summarized in Algorithm 1.

Algorithm 1. Active Learning based on Weighted Sampling
Input: A social network G, the budget κ of each iteration, and the number of learning iterations
t.
Output: The estimated threshold θ̂
Method:

1: Let pi=the number of nodes with unknown thresholds that node i connects to.
2: normalize p to 1.
3: set θ̂ to be 0.5 for all nodes.
4: set θlowbd to be 1 for all nodes.
5: set θupbd to be the number of edges that each node connects to.
6: for i = 1 to t do
7: set all nodes in G to be inactive.
8: let S=sample κ nodes according to p without replacement.
9: set S as the initial nodes and start the diffusion process on the true model M(θ).

10: let (n, t) be the observed activation sequence.
11: update θ̂, θlowbd, and θupbd according to the activation sequence (ni, ti).
12: update the sampling probability p and normalize p.
13: end for
14: return θ̂

Steps 5 to 13 show the learning process. We sample κ nodes in each iteration accord-
ing to the sampling probability p. We then set the κ nodes as the initial active nodes
and simulate the diffusion process on the true model M(θ). After that we can observe a
series of activation sequences (ni, ti). We can update the threshold estimation θ̂, θlowbd

and θupbd accordingly. After that we update the sampling probability and the iteration
ends.

4 Experimental Evaluation

In this section, we present the network datasets, the experimental setup and experimen-
tal results.

4.1 Network Datasets

Table 2 lists the datasets that we use. NetHEPT is from [3]. NETSCI, GEOM, LEDERB
and ZEWAIL are from Pajek’s network collections.
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Table 2. Network datasets

Dataset Name n(# nodes) m(# edges)
NETHEPT the High Energy Physics Theory Collaboration network 15233 58891
GEOM the Computational Geometry Collaboration network 7343 11898
NETSCI the Network Science Collaboration network 1589 2742
ZEWAIL the Zewail Citation network 6752 54253
LEDERB the Lederberg Citation network 8843 41609

4.2 Experimental Setting

Even though [13] deals with a very similar problem to the problem in this paper, the
methods in [13] is not directly usable in our problem setting. [13] assumes the diffusion
data is available and the diffusion model is the IC model. In this paper we actively select
seeds to obtain the diffusion data and we focus on the LT model. Methods in [13] can be
used after we obtained the diffusion data. However that is not the focus here. Therefore
we do not compare our methods to methods in [13].

For the simplicity of experiments, we treat all the networks as undirected. In the
collaboration networks, the weight of an edge is set to be the number of times that two
authors collaborated. For the citation network, the weights of all edges are randomly
chosen from 1 up to 5. In the experiments we draw the thresholds of all nodes from a
truncated normal distribution with mean 0.5 and standard deviation of 0.25, where all
the thresholds are between 0 and 1.0. The number of iterations of learning is set to be
3000. The budget for each iteration is set to be 50, which means in each iteration 50
nodes are set as the initial seeds. In order to evaluate the objective function, the budget
for influence maximization is also set to be 50 nodes.

Results of two versions of the weighted sampling are reported. The first version,
denoted as mctut, uses the weighting scheme in formula (9). The second version, de-
noted as metut, uses the weighting scheme in formula (10). Experiments were also
conducted on the weighting scheme according to formula (11). The results were slightly
worse than the former two weighting schemes. The reason why the weighting scheme
according to formula (11) is worse than (9) and (10) is because formula (11) biases
towards learning the thresholds of the high degree nodes. The thresholds of the high
degree nodes are more difficult to learn. It costs more iterations to infer the thresh-
olds of the high degree nodes. However, in the distance calculation, the high degree
nodes are treated the same as the low degree nodes. Therefore given the same itera-
tions, the weighting schemes by formulas (9) and (10) would infer more thresholds
than the weighting scheme by formula (11). In addition to these two schemes, we use
un-weighted random sampling as a baseline, and denote it as random.

4.3 Experimental Results

To evaluate the effectiveness of our algorithm, we use two performance metrics: the
objective function (equation 4) and model accuracy. First we define model distance
as the average threshold difference between the true model and the estimated model.
Model accuracy is basically the inverse of model distance. So if the model distance is
low, model accuracy is high and vice versa.
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Figures 2(a),2(b),2(c),2(d),and 2(e) show that both metut and mctut are better than
random on all the networks in terms of model accuracy. There is little difference
between metut and mctut in all these figures. The difference between metut and
random is more noticeable in Figures 2(a),2(d) and 2(e). In Figure 2(b), the differ-
ence become noticeable when the number of learning iteration approaches 3000. In
Figure 2(c) the difference is the largest between iterations 200 and 1000. After that the
difference between metut and random decreases over iterations. The difference be-
comes quite small when the number of learning iterations approaches 3000. To sum up,
we can see that both metut and mctut perform well. They are better than the baseline
method and the model distance decreases with iterations.

Figures 3(a),3(b),3(c),3(d) and 3(e) show that metut beats random on all the net-
works in terms of objective function. mctut outperforms random in Figures 3(a),
3(b),3(c) and 3(d). In Figure 3(e), mctut is worse than random at iteration 500. But
after that mctut is better random. metut is more stable than mctut in a sense. The
absolute value of difference of the objective function is actually very large. In Figure
3(d) we can see that the largest difference between metut and random is about 500.
So far we can assume that metut is the best of the three in terms of objective function
and model distance.

Finally we devise a way to measure the quality of the estimated model. If the influ-
ence spread of the solution found on the estimated model is very close to that found
on the true model, we can say the estimated model has good quality, otherwise the es-
timated model has low quality. Figure 4(a) shows the quality of the estimated model
found by metut in learning iterations of 0 and 3000. We can see that the initial guessed
model at iteration 0 has extremely low quality. The influence spread of influential nodes
obtained by using the greedy algorithm on the estimated model at iteration 0 is notice-
ably less than that obtained by using the greedy algorithm on the true model. However
after 3000 iterations of learning, this gap is narrowed sharply. The influence spread of
influential nodes obtained by using the greedy algorithm on the estimated model at it-
eration 3000 is very close to that obtained by the using the greedy algorithm on the true
model. This shows that the proposed algorithm can indeed narrow the gap between the
influence spread of the influential nodes on the estimated model and the true model.
Figures 4(b) and 4(c) show the quality of the estimated model found by mutut and
random in learning iterations 0 and 3000.

From Figures 4(a), 4(b) and 4(c) we can also observe that the estimated models found
by metut and mutut have higher quality than the estimated model found by random
at iteration 3000. We can notice that the influence spread of the solution found by using
the estimated models of metut and mutut is larger than the influence spread of the
solution using the estimated model of random at iteration 3000. It indirectly shows
that metut and mutut learn models more accurately than random. Similar patterns
can be observed in Figures 4(d), 4(e), 4(f), 4(j), 5(a), 5(b), 5(c), 5(d) and 5(e). Although
the differences between metut, mutut and random are not as obvious as the case of
Figures 4(a), 4(b) and 4(c). Figures 4(g), 4(h) and 4(i) are exceptions. Figures 4(g),
4(h) and 4(i) show that the learned models of random, metut and mctut have almost
identical quality. This is probably because the dataset NETSCI is a small dataset.
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Fig. 2. Comparison of metut,mctut and random in terms of model distance in different datasets
(the lower the better)

To this end, we have shown two points. Firstly, the learning process can indeed help
narrow the gap between an estimated model and the true model. Secondly, metut per-
forms better than random because of the fact that the solution found by using metut’s
estimated model produces influence spread larger than the influence spread of the solu-
tion found by using random’s estimated model.
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Fig. 3. Comparison of metut,mctut and random in terms of objective function in different datasets
(the lower the better)

5 Related Work

We review related works on influence maximization and learning information diffusion
models in this section.



292 T. Cao et al.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

number of initial seeds

in
flu

en
ce

 s
pr

ea
d

 

 

true model
0 iterations
3000 iterations

(a) metut on GEOM

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

number of initial seeds

in
flu

en
ce

 s
pr

ea
d

 

 

true model
0 iterations
3000 iterations

(b) mutut on GEOM

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

number of initial seeds

in
flu

en
ce

 s
pr

ea
d

 

 

true model
0 iterations
3000 iterations

(c) random on GEOM

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

number of initial seeds

in
flu

en
ce

 s
pr

ea
d

 

 

true model
0 iterations
3000 iterations

(d) metut on NetHEPT

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

number of initial seeds

in
flu

en
ce

 s
pr

ea
d

 

 

true model
0 iterations
3000 iterations

(e) mutut on NetHEPT

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

number of initial seeds

in
flu

en
ce

 s
pr

ea
d

 

 

true model
0 iterations
3000 iterations

(f) random on NetHEPT

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

number of initial seeds

in
flu

en
ce

 s
pr

ea
d

 

 

true model
0 iterations
3000 iterations
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Fig. 4. Comparison of metut, metut and random on the improvement of influence spread over a
guessed model on different networks
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(c) metut on ZEWAIL
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Fig. 5. Comparison of metut, metut and random on the improvement of influence spread over a
guessed model on different networks

First we review works on influence maximization. [9] proved that the influence max-
imization problem is an NP-hard problem under both the IC model and the LT model.
[9] defined an influence function f(A), which maps a set of active nodes A to the ex-
pected number of nodes that A activates. They proved that f(A) is submodular under
both models. Based on the submodularity of the function f(A), they proposed a greedy
algorithm which iteratively selects a node that gives the maximal margin on the func-
tion f(A). The greedy algorithm gives a good approximation to the optimal solution in
terms of diffusion size. Follow-up works mostly focus on either improving the running
time of the greedy algorithm [10, 3] or providing faster heuristics that can give influence
spread that is close to the greedy algorithm [3, 2, 4, 1, 14]. [3] used a Cost-Effective
Lazy Forward method to optimize the greedy algorithm to save some time. [3] proposed
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degree discount heuristics that reduce computational time significantly. [4] and [2] pro-
posed heuristics based on a most likely propagation path. The heuristics in these two
papers are tunable with respect to influence spread and computational time. [1, 14] used
a community structure to partition the network into different communities, find the in-
fluential nodes in each community, and combine them together. In [9], the problem of
calculating the influence function f(A) was left as an open problem. Later [2] and [4]
proved that it is �P hard to calculate the influence function f(A) under both the IC and
models. [10] performed the bound percolation process on graphs and used strongly con-
nected component decomposition to save some time on the calculation of the influence
function f(A). All these works assume that the model parameters are given.

Then we review research efforts on learning information diffusion models. [7] pro-
posed both static and time dependent models for capturing influence from propagation
logs. [13] used the EM algorithm to learn the diffusion probabilities of IC model. [12]
proposed asynchronous time delayed IC and LT models. After that they used maximum
likelihood estimation to learn the models and evaluated the models on real world blog
networks. Interestingly, [6] focused on a different problem, i.e., learning the network
topology which information diffusion relies on. [6] used maximum likelihood estima-
tion to approximate the most probable network topology.

6 Conclusions

In this paper, we have studied the influence maximization problem under unknown
model parameters, specifically, under the linear threshold model. To this end, we first
showed that the influence maximization problem is sensitive to model parameters un-
der the LT model. Then we defined the problem of finding the model parameters as
an active learning problem for influence maximization. We showed that a deterministic
algorithm is costly for model parameter learning. We then proposed a weighted sam-
pling algorithm to solve the active learning problem. We conducted experiments on five
datasets and compared the weighted sampling algorithm with a naive solution: pure
random sampling. Experimental results showed that the weighted sampling achieves
better results than the naive method in terms of both the objective function and model
accuracy we defined. Finally we showed that by using the learned model parameters
from the weighted sampling algorithm, we can find the influential nodes that give an
influence spread very close to the influence spread of influential nodes found on the true
model, which further justifies the effectiveness of our proposed approach. In the future,
we will investigate on how to learn the model parameters under the IC model.

Acknowledgments. The research is supported by the US National Science Foundation
(NSF) under grants CCF-0905337 and NSF CCF 0905291.

References

[1] Cao, T., Wu, X., Wang, S., Hu, X.: Oasnet: an optimal allocation approach to influence
maximization in modular social networks. In: SAC, pp. 1088–1094 (2010)

[2] Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral market-
ing in large-scale social networks. In: KDD, pp. 1029–1038 (2010)



Active Learning of Model Parameters for Influence Maximization 295

[3] Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In:
KDD, pp. 199–208 (2009)

[4] Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under
the linear threshold model. In: ICDM, pp. 88–97 (2010)

[5] Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD, pp. 57–66
(2001)

[6] Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influ-
ence. In: KDD, pp. 1019–1028 (2010)

[7] Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social net-
works. In: WSDM, pp. 241–250 (2010)

[8] Granovetter, M.: Threshold models of collective behavior. The American Journal of Soci-
ology 83(6), 1420–1443 (1978)
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