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Time Constraints on a Humanoid Robot
Arturo Ribes, Jesús Cerquides, Yiannis Demiris, Ramón López de Mántaras

Abstract—In this paper we propose an active learning ap-
proach applied to a music performance imitation scenario. The
humanoid robot iCub listens to a human performance and then
incrementally learns to use a virtual musical instrument in order
to imitate the given sequence. This is achieved by first learning
a model of the instrument, needed to locate where the required
sounds are heard in a virtual keyboard layed out in a tactile
interface. Then, a model of its body capabilities is also learnt,
which serves to establish the likelihood of success of the actions
needed to imitate the sequence of sounds and to correct the errors
made by the underlying kinematic controller. It also uses self-
evaluation stages to provide feedback to the human instructor,
which can be used to guide its learning process.

Index Terms—active learning, humanoid robot, music perfor-
mance imitation, imitation learning, multimodal learning

I. INTRODUCTION

In recent years, active learning has gained a lot of interest

from the machine learning community. Active learning is

a technique where the learner is capable of interactively

querying an oracle for the label of a desired input in order

to obtain a labelled training sample [1]. Typically, an oracle

is a human with extensive knowledge of the domain at hand.

The aim is to reduce the number of needed training samples

by careful selection of the questions asked to the oracle.

This is particularly important for the robotics community, as

it endows robots with the ability of actively explore their

environment, given that robots can take decisions about their

own actions.

Also, in the developmental robotics field of research,

active learning methods are of paramount importance for the

incorporation of intrinsic motivation strategies, to drive the

learning process towards situations of increasing complexity

and to address the problem of exploration-exploitation

trade-off.

In traditional approaches to active learning, the learner

would ask the oracle the label for a particular query. However,

in robotics, it is in fact the robot who asks the environment,

given that the robot can decide which actions to execute. This
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ultimately helps in obtaining data which improves the knowl-

edge that the robot has about the environment by maximizing

some internal criteria.

With this mindset, interesting research experiments have

been conducted in order to solve a variety of tasks taking

advantage of active learning methods, like learning control

models for high-dimensional and redundant robotic arms

[2][3], grounding of relational symbols [4] or learning through

human-robot interaction [5], among others.

For this work, we focus in the more general kind of social

interaction, where the human supervisor provides an exemplar

set of goals for the learner to discover. Specifically, we

exemplify this problem in a music imitation scenario, where

the robot must learn how to use a virtual keyboard presented

in a tactile interface in order to imitate a sequence of musical

notes provided by the human, as can be seen in Figure 1. Those

sequences are given in the form of an ordered list of musical

notes and durations, e.g. G = {C0.5, F 0.5, D0.5, E1}, so the

robot needs to learn which actions will ultimately produce

such a sequence of sounds.

This problem is particularly interesting for two reasons. First,

it does not require the human to be able to use the musical

instrument given to the robot, as long as the robot has percep-

tual means for matching the sounds provided by the human

to those produced by the instrument. Second, the robot can

discover whether its inability to reproduce the given sequence

comes from lack of knowledge about the instrument itself or

about its own body motions, that is, the inability to move its

body in a timely fashion or with enough precision.

Fig. 1. iCub interacting with the virtual keyboard shown by the Reactable
tactile interface. The finger is used to control the virtual object, which is used
by our software to know which sound to play.

The time constraint posed by this kind of scenario justifies
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the use of active learning. This is because there is an interval

of time where the robot learner is able to perform inference

about which action to execute next, as the acquisition of new

samples is governed by an external process. But it also has

drawbacks, as the robot may not have enough time to decide on

a particularly useful command action nor have time to execute

it as planned, so this time constraint induces an interesting

trade-off.

Although in this work we approach the problem of learning

object properties using an active learning methodology, we

also tackle the problem of dealing with black-box control

dynamics uncertainties, namely, the uncertainties involved in

moving the hand to a desired location with a precise timing

of the movement.

For this particular problem, we used an architecture where the

residual error of the inverse kinematics algorithm, for which

we do not have any control, is fed into a model which learns to

make predictions that will be used later to provide corrections

to compensate for design or calibration errors.

Our contributions in this paper are as follows. First is to

show how a dexterous robot benefits from an active learning

strategy to explore an object’s properties in order to achieve

a sequence of goals proposed by a human supervisor in a

perceptual modality. Secondly, how the uncertainties in the

robot control algorithms can be modelled incrementally to

compensate for design or parametrization errors, avoiding the

need to fine-tune those control algorithms.

The robot is also capable of providing a self-evaluation of its

own capabilities in terms of how likely it is at succeeding in

the imitation task. This feedback is very useful for the human-

robot interaction, as it provides a hint about how difficult the

task may be for the robot for its current knowledge level.

The rest of the paper is organized as follows. The next

section presents related work in the areas of developmental

and active learning, and also relevant research for the purpose

of utilizing the robot arm control residual error to correct its

actions.

Then, we present our proposed architecture for the task at hand

and the active learning strategy applied. After the system is

described, we provide experimental results that support the use

of the presented approach in this kind of problems. Finally,

we present our concluding remarks and possible lines of future

work.

II. RELATED WORK

In the active learning literature, a distinction is made be-

tween the sampling strategies and the strategies used to select

one of the sampled candidate queries. Sampling refers to the

method of obtaining the instances to be queried, where we can

use a sequential sampling method by drawing samples from

some distribution, or pool-based sampling, where we have a

pool of samples, usually fixed, and then the learner ranks the

samples according to a selection criteria [1].

While the later is commonly found in video or image retrieval

tasks, where the learner has a huge unlabelled corpus of sam-

ples, the former seems to fit more into the robotics scenario,

where the robot can perform specific actions in order to get

samples containing an expected high value of information.

More emphasis is put in the sample selection strategy, that

is, which measures can be used to decide if a particular sample,

either coming from a predefined pool of instances or sampled

from some distribution, is worth asking the oracle for its label.

Particularly interesting among the different selection measures

are the expected error reduction and the expected variance

reduction. Although the latest objective is to have the lowest

prediction error possible, both criteria are related in the sense

that it is assumed that decreasing the predictive variance one

can expect that the expected error will also exhibit a decrease

[6].

Until now, we only talked about a learner that tries to

actively choose its own learning data, but we did not say any-

thing about the utility or purpose of the acquired knowledge.

This is a very important issue, because a robot, particularly a

humanoid robot with a high number of degrees of freedom,

can be used for a variety of tasks, yet only some of them will

be of particular utility.

In that case, social guidance comes in very handy, because

provides cues or starting points for the robot learner to boot-

strap its own learning process. Human interaction comes in

different forms and at different levels of supervision, ranging

from providing exemplar goals to achieve, to full-fledged

demonstrations using the body of the robot in the Learning-

from-Demonstration (LfD) scenario. In-between possibilities

are intermittent interventions to guide learning if the human

supervisor considers it appropriate.

The ability to imitate others starts at early years in develop-

ment, involving a series of mechanisms linking sensory per-

ceptions with particular motor configurations [7]. Results from

neuroscience suggest that perception and action are deeply

intertwined and also play a crucial role in the development of

the agent [8][9][10].

Our work focuses in the autonomous active exploration of

objects using a humanoid robot, while learning also about its

own body limitations. We take into consideration the effects of

the robot embodiment as a crucial part of the learning process,

given that the manipulation capabilities of the robot affect

directly the kind of sensory perceptions the robot will receive.

Recently many researchers have put much effort into the

development of cognitive architectures that support online

learning of object affordances. The concept of affordances,

coined originally by J.J. Gibson in [11], makes reference to

the relationship between perceptions and actions that an object

elicits. In this sense, many reasearch works focus on the

sensorimotor learning of those relationships at early stages of

development [12][13][14].

Often, the environments that the robots deal with or the

complexities in the robot body themselves make the au-

tonomous exploration process cumbersome. In this sense, LfD

[15] addresses this problem by providing the system with

solutions to a particular problem and allowing the robot to

map its internal models to conform to those demonstrations

[16][17][18]. However, while this approach is very successful

for certain tasks, it usually requires an explicit mapping

between the demonstrator and robot body schemas and a

definition beforehand of the task to be solved. Active learning

strategies have been also successfully applied to LfD in [5].
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From the perspective of developmental robotics, the task

itself is to learn from the environment a series of skills in an

autonomous way [19]. The drive to direct learning towards

certain areas of the space of skills comes from what is termed

as internal or intrinsic motivation [20][21]. It can be seen as a

form of active learning, where the robot explores those areas in

its sensorimotor space where some measure obtained from its

internal models is improved, and not by an extrinsic measure

coming from a task definition. [22].

Several works focus mainly in the action part of sensori-

motor models, that is, the exploration of behaviour parameters

that are expected to provide the robot with data containing high

information value [23][24][25]. On the other hand, exploration

can be focused in the perception part, also referred to as

goal exploration [26][3][22], because it uses goals encoded

as specific perceptions to choose actions that drive the system

towards obtaining such perceptions.

In the latter case, although usually is the robot who is able to

self-generate goals based on previous experience [26][3], there

is also space for human-robot interaction to provide candidate

goals. In those works, the goals provided by the human are

used by the robot in order to bootstrap the goal space [27], i.e.

as starting points to generate potentially useful goals, which

later can be used to aid or guide the self-generation of other

goals when the learning progresses to more mature stages.

Our work belongs to this latter category of problems, where

a human subject provides a set of goals the robot should

learn to reproduce with proficiency, guiding the exploration

of the object it is interacting with. The applied active explo-

ration strategy is similar to the one proposed by [4], where

a probabilistic model is exploited in order to provide an

estimate of expected reduction in the predictive distribution

entropy. However, our models are based on Gaussian Mixture

Models (GMM), which naturally support multi-modal and

multivariate predictive distributions, and also, in contrast to

the classification nature of [4], our problem is a regression

one. Similar in its modelization is the work by [28], as they

use GMMs to learn the sensorimotor maps. Despite of that,

they use an active learning exploration strategy based on the

modeling of the prediction error, rather than an information

based measurement.

From the perspective of kinematics control, the above

mentioned research obviates the errors coming from the action

execution comparing the desired with the obtained results,

modelling the system as a hole and treating this as system

noise. Another approach is the modeling of the residual error

after an analytical model has been applied [29].

The other contribution of our work is the integration of a

body model in order to provide corrections for the actions

of the robot based on the errors between its intentions and

the perceived results of its executed actions. To the best of

our knowledge there is little research done in this sense, with

a particularly similar works being [30][31], where they use a

Gaussian Process to model the system noise obtained from an

analytical model of the robotic system. The system proposed

in [32] introduces a recurrent loop which models the errors of

a fixed control element based in the internal motor commands.

However, in the control problem studied here, we do not have

access to these internal commands.

In our experiments, active exploration is performed with

an iCub interacting with a visuo-tactile interactive interface,

the Reactable, where a GUI is displayed showing a virtual

keyboard and emitting sounds at a rhythm defined by the

position of a tactile controlled virtual object. The experimental

combination of both systems, iCub and the Reactable, for HRI

or more generally, a multi-modal interface, has been explored

in active event recognition [33] and in task imitation based on

language descriptions [34].

III. COGNITIVE ARCHITECTURE

In this section we explain to the reader the proposed archi-

tecture, first at the sensorimotor level, and then we continue

with the cognitive level, where we detail the kind of models

that are involved in the system and how they are learnt.

The imitation of the musical sequence performed by the

human requires the robot to learn about two kinds of informa-

tion: goals and means, that is, the robot must know where to

find the musical notes in the keyboard and also judge how to

reach those positions from the point of view of its own body

capabilities. We can say that the main task of the robot is to

be able to imitate the note sequence, but also has an implicit

subtask, which is, to be able to judge from a subjective point of

view whether or not it can execute the given sequence due to

the time constraints it poses and the motor capabilities of the

robot, which may or may not allow it to perform fast enough

movements.

Besides the modules involved in perception and action exe-

cution, which will be described after introducing the musical

interface that we developed to be used in our experiments, we

divided the previously mentioned knowledge into two different

models: one containing information about how the instrument

works, and the other about how the robot body works. A

schematic layout of the architecture proposed is depicted in

Figure 2. The goals are fed into the model of the instrument

to obtain a set of goal actions XGOAL to be executed by

the robot controller, which is represented as a black box.

After the controller does its internal works, the hand ends

up in a position represented as XREAL, which is the one that

the instrument uses in order to produce the sound. Both the

sound and the end-effector position are fed into the model

through learning connections. Also, in order to learn the body

capabilities, the desired action XGOAL and its results XREAL

are fed into the model of the body, which is used later to

provide corrections to the actions the robot wants to execute.

A. Musical interface

Before describing the perceptual system, first we must

illustrate the experimental scenario so as to give the reader

a picture of how the information flows are interconnected and

the chain of events that generate them.

The interaction is produced between the iCub robot and

a musical instrument, which is implemented as a virtual

keyboard presented in the tactile interface of the Reactable,

shown in Figure 3. The underlying software produces musical

events with different notes and tempos, determined by the
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Fig. 2. General schema of the architecture proposed. The white boxes represent the models that are learnt by the robot, while the gray boxes represent closed
system where the robot is just an observer. The circles represent variables.

position of the object in the interface. This object is moved

by the iCub by dragging its finger over the tactile surface.

The musical events are sound samples from a real musical

instrument obtained from an online database1 and produced

at a given tempo. The row where the object is placed defines

the duration of the sound, and the note itself is given by the

column.

For example, if at the time of a musical event the object is

placed in the location depicted by Figure 3, the keyboard will

play the note D# for the duration corresponding to a quarter

note, which depends on the global tempo of the song. After this

duration, a new event will be produced and the software will

retrieve again where the object is positioned and play the corre-

sponding event accordingly. In Figure 4 we provide a temporal

representation of an example note sequence of five pairs note-

duration, S = {(A, 1), (D, 1), (E, 0.5), (D, 2), (A, 1)}.

Fig. 3. Virtual keyboard interface for music interaction. The object, shown
as a yellow circle, can be moved around by dragging it using the finger. Each
cell changes both the note produced and the tempo in which it is emitted.

B. Perception

The perceptual system of the robot is composed of two

modules, one for auditive perception and another for proprio-

ception. In terms of auditive information, the robot perceives

a vector description of the musical event. As stated before, an

1We used guitar and banjo samples from the UK Philharmonia Orchestra
website at http://www.philharmonia.co.uk/explore/make music

event is described by a note and its duration. We cannot use

directly the sound wave as is, so first we extract some features

using the YAAFE Library [35].

The selected features for sound representation are the Mel-

Frequency Cepstrum Coefficients (MFCC) due to their suc-

cessful application in many works concerning instrument and

music identification [36][37][38]. MFCCs are computed by

means of a non-linear transform of the logarithm of the power

spectrum, called cepstrum. This non-linear transform maps

the spectrum into a more perceptually suitable representation,

thus it has been widely used in many research papers. The

result is encoded using a Discrete Fourier Transform (DFT),

for which only the N first coefficients are retained. In our

experiments, we use the first 20 coefficients, which showed

enough representation power in our empirical evaluations.

Given that the musical events are single notes, we observed

that we can specify the duration of the event by the time

between the onset of two consecutive notes, known as the

Inter-Onset Interval (IOI). In order to compute this feature, first

of all we extract an ”onset feature” from the sound sequence

again, using the YAAFE library. This feature gives a time-

series which contains peaks where the power of the audio

signal has an abrupt increase, in our case corresponding to

the onset of a note. By detecting the local maxima of this

time-series, we obtain the approximated starting time of the

event. From that, we can compute the current tempo in beats-

per-minute (BPM) or the IOI, which is the temporal feature

used in our experiments to establish the duration of the current

event. This feature proved to be very useful, as the localisation

error of the computed IOI is lower than 15ms compared to

the usual IOIs used, ranging from 0.5s to 2s.

Having described the timbre and temporal features used in

sound perception, we faced two types of issues. First, the

MFCCs are sampled at 88Hz and computed over overlapping

windows of approximately 23ms of length. This has the

problem of a sample not carrying enough representative power

to distinguish between musical notes. In order to aggregate

the information of consecutive coefficient vectors, we project
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Fig. 4. Temporal representation of a sequence of musical events of the form S = {(s0, t0), (s1, t1), (s2, t2), (s3, t3), (s4, t4)}. The note is given by sn,
while the duration is given by tn.

each of the windows into a GMM to obtain a fixed-sized

vector. This approach has been used before in [39] for music

classification and is called Bag-of-Features representation,

similar to the widely known Bag-of-Words representation in

the document retrieval literature.

After we have the BoF vectors for the short-time windows, we

perform max-pooling over a longer time window, which cap-

tures the temporal variations of the timbre characteristics along

the duration of the sound event. The GMM used to project

the MFCC was learnt beforehand using the same incremental

learning techniques used in our experiments. Having exposed

it to a random sequence of musical notes we ended up with a

GMM containing 38 components, so the resulting max-pooled

BoF vector representation is 38-dimensional. Given that the

sliding windows are not aligned with the sound wave and that

the notes have different durations, we have some uncertainty

in the mapping of the MFCC to the BoF, but this is handled

by the probabilistic representation of the instrument model, as

will be explained in detail below.

The second issue comes from the fact that we cannot know

the duration of an event until the next event occurs, which

means that our incremental learning algorithms will be always

one step behind the current perceptions. Later it will be shown

that, given the incremental nature of our models, we can soon

provide estimates of the sound and duration of the event by

knowing only the position where the object is located at the

time when we predict the event will occur.

The proprioceptive information comes from the iCub en-

coders and the estimation of the fingertip position in robot-

centred coordinates. When moving the hand to a designated

position, we confront two sources of uncertainty, one given

by the movement itself, as neither the inverse kinematics

solver nor the motor actuators reach the desired position,

and the other source is the iCub hand being under-actuated

and controlled by cables, thus the uncertainty in the fingertip

position estimate is quite high. Both sources of uncertainty are

handled in the body model, which will be described in detail

later.

C. Actions

The iCub robot is placed at a fixed position in front of the

tactile interface. The actions that the robot is able to perform

are reaching movements by sliding its finger on the surface of

the table, which drags the virtual object that is shown in the

interface, viewed as a yellow circle in Figure 3. In order for

the visual interface to map the position of the robot hand to the

object, the robot must calibrate its body coordinates with the

local coordinates of the virtual keyboard. This process is done

at the beginning of the experiments and consists of placing the

virtual object in a set of predefined positions, corresponding to

the four corners of the keyboard, and then a series of random

positions which render the final calibration more robust. Using

a graphical interface to control the hand of the robot in task-

space, we direct the hand of the robot to the marked locations,

establishing a relationship from the set of obtained task-space

coordinates of the robot to the corresponding coordinates in

the virtual keyboard.

We define the actions commanded to the robot as reaching

a given position at a desired time, consisting of a 2-D position

vector xg in the task-space of the hand and a desired movement

time t. The orientation, pose and height of the hand is kept

constant. This action is given to a modified cartesian controller

of the iCub robot, which partitions the whole trajectory into

a series of way-points, thus making the motion smoother and

safer for the robot. The setup is shown in Figure 1, where

we see the iCub controlling the virtual object in the tactile

interface of the Reactable.

D. Musical Instrument Model

In order to be able to interact with the musical instrument,

the robot needs to acquire a model of it. We decided to use a

probabilistic distribution p(X,S), where we define X as the

position of the finger in the task-space of the robot and S

as the feature representation of a given musical event. That

model can be used to answer three kinds of questions:

• Which sound will I perceive if I touch position X?. This

corresponds to the forward model of the instrument, that

is, which is the output S for a given input X.

• In which positions can I find sound S?. This corresponds

to an inverse model of the instrument, that is, which

are the inputs X that give as output S. Consider that

the result is not a single point but a distribution over

inputs, potentially multi-modal, as different keys of the

instrument may produce an equivalent sound.

• How likely is that if I touch position X I will perceive

sound S?. In this case, we are asking the model to provide

estimates of the likelihood of a given position-sound pair.

This is particularly useful when evaluating candidates for

exploration, which may be in areas of relatively high
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entropy, thus, potentially leading to false positives when

estimating goal positions. It will become clearer when

explaining the active learning process.

By conditioning in either one of the variables, we obtain

answers for the first two questions from the list above, that

is, we may want to know the location distribution for sound

si using the conditional distribution p(X|S = si) or the most

likely sound vector to be perceived if we place the finger in

position xi using the other conditional distribution p(S|X =
xi).

Note that the distributions used in this paper are given in

a general way and therefore could be implemented by using

different models than the ones shown in the rest of this paper.

We chose to represent this model using a Gaussian Mixture

Model, as it can be incrementally and efficiently learnt from a

stream of samples and, more importantly, can represent multi-

modal distributions. Furthermore, being a generative model, it

can be easily turned into a conditional distribution, so the three

questions described in the previous list are parsimoniously

represented in one single model.

We can define the instrument model by the joint density

p(X,S), captured by a GMM as shown in the following

equation:

Mt
INST , p(X,S|Dt) =

N
∑

i

p(X,S|ci,D
t)P (ci|D

t) (1)

This corresponds to the likelihood of the pair (X,S) being

observed, as captured by the current state of the model

Mt
INST at time t, provided that the model is learnt incre-

mentally using dataset Dt.

In the case of the conditional distributions, for a GMM,

the location distribution for a goal sound is implemented by

Equation 2 and Equation 4 refers to the most likely sound at a

particular location. Note that we drop the term Dt from these

equations for readability purposes.

p(X|S = si) =

N
∑

i

p(X|S = si, ci)P (ci|S = si) (2)

p(S|X = xi) =
N
∑

i

p(S|X = xi, ci)P (ci|X = xi) (3)

ŝ(xi) = argmax
s

p(S = s|X = xi) (4)

Given the fact that the boundaries of keys are sharp, that is,

there is an abrupt change in the class of sound perceived in

the boundary of a key of the virtual keyboard, we are bound

to have errors by using a GMM to encode the distribution. We

could use another family of distributions which might better

approximate the kind of regions in this problem, but we did not

want to be conditioned by this restriction, therefore resulting

in an ad-hoc model which hinders the generalizability of the

methods used to other tasks. In fact, we can combine both

Equation 2 and Equation 4 to obtain a sample of positions

which are highly likely to produce the expected sound.

X(s) = {xi ∼ p(X|S = s) | err(s, ŝ(xi)) < ǫ} (5)

where err(s, ŝ(xi)) is just an error function which is

thresholded to establish how close the vector representations of

sound classes need to be in order to be considered equivalent.

In our experiments, this function is the Euclidean distance

between both vectors.

err(sa, sb) =‖ sa − sb ‖ (6)

E. Body Model

For any movement we command the robot to do, we are

likely to be affected by the pitfalls of robot control, that is,

uncertainties that we cannot or we do not want to control, like

kinematic solvers, PID controllers and mechanical properties

of the robot system itself. This problems cause that the final

position we would like to reach is, though very close, not the

same as we commanded. We have to deal with this uncertainty

in our system, and we do so by learning a probabilistic model

which learns these uncertainties and enables the system to

reason using this information.

Let us remember the definition of an action command,

which is to move from an initial position xi to a goal position

xg in t seconds. In practice, after the execution of an action,

given that the hand reaching controller is not perfect, there is

an error between the goal position xg and the actual reached

position xr, as well as between the commanded time t and

the actual time t̂ needed by the robot to reach xr. With that

definition at hand, we would like to model the uncertainty in

both variables, goal position and reaching time errors, that is

the difference between the commanded and the actual values

of these two variables. These differences are captured in the

variables ∆Xg = xr − xg and ∆t = t̂− t.

We thus decide to represent the body capabilities as the

distribution of the error variables ∆Xg,∆t, accounting for

the results of an action, and the action parameters Xi, Xg, T .

This is defined as the modelMt
BODY learnt up to time t from

dataset Dt.

Mt
BODY , p(∆Xg,∆t,Xi, Xg, T |Dt) (7)

As happens with the instrument model, this formulation

is rather general and, thus, can be represented with different

probabilistic models. However, for consistency with the model

used in our experiments, we provide the equations assuming

that we used a GMM.

Then we can infer, given the current position xi, a goal

position xg and a reaching time t, which is the distribution

of expected end positions by sampling from

x̂g = xg +∆xg

∆xg ∼ p(∆Xg|Xi = xi, Xg = xg, T = t) =
N
∑

m

p(∆Xg|cm)P (cm|X
i = xi, Xg = xg, T = t)

(8)
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Conversely, the expected reaching time is obtained as a

mixture of univariate normal distributions using the following

equation:

p(∆T |Xi = xi, Xg = xg, T = t) (9)

Such a distribution is used to compute the probability of

reaching the destination before the next event occurs. For

example, let us assume that the next event is due to happen

in Tmax = 1s, and the action is issued with a reaching time

of t = 0.7s. That leaves us with an error margin of 0.3s.

Now we can use the cumulative distribution function (CDF)

of the mixture of univariate normal distributions obtained from

Equation 11 to check the probability that the error in reaching

time is less than 0.3s as a measure of confidence of the robot

reaching on time the required location.

In our experiments, this model is implemented using a

GMM, so the equations for the goal position error and time

error are as follows:

p(∆Xg|Xi = xi, Xg = xg, T = t) =
N
∑

m

p(∆Xg|cm)P (cm|X
i = xi, Xg = xg, T = t)

(10)

p(∆T |Xi = xi, Xg = xg, T = t) =
N
∑

m

p(∆T |cm)P (cm|X
i = xi, Xg = xg, T = t)

(11)

F. Active learning strategy

In a typical active learning setup for classification, the

learner is most concerned about choosing a good learning

sample, so it has to decide using one or different strategies

which is the input vector and then ask the oracle to provide a

label for it.

This is particularly suited in applications where we do not

have a good dataset of the environment, usually because the

labelling costs are very high. In that case, it is beneficial to

invest some time in crafting a good question so the learner

gets a higher return in terms of the information contained in

the resulting training sample.

Many works from active learning literature use measures

of intrinsic motivation based on the uncertainty of the model

[40] or its prediction error [41]. However, in developmental

robotics those measures are often dismissed because they make

assumptions about the learnability of the underlying function,

sometimes leading to pathological behaviours like focusing on

unlearnable parts of the state space or exploring areas governed

by uncontrollable randomness.

For this reason, other measures based on the gradient or

progress of this quantities are proposed [20] [42]. This corre-

sponds to a decrease of the variance or learning progress.

Our approach is based on an information theoretic measure

for intrinsic motivation. We consider interesting learning about

areas which may result in a decrease of the predictive entropy.

Thus, the robot is endowed with a drive to explore positions

where it expects that will lower its predictive entropy after

learning about them. In contrast to approaches where the error

is considered, either empirical [3] or expected [42], we con-

sider that, in problems where the distribution of outcomes may

be multi-modal, an approach based in uncertainty reduction is

more suitable.

The approach presented in [4] also use the expected predictive

entropy reduction. However, the authors use a model which

relies on Gaussian Processes, so their posterior predictive dis-

tributions are inherently uni-modal. Our approach, by making

use of a GMM, overcomes this limitation as this kind of model

can represent multi-modal distributions.

Predictive entropy, as defined by the following equation:

H(X|S = s) =

∫

RD

P (X|S = s)log(P (X|S = s)) dx (12)

is a function related to the variance of the distribution,

although more suitable for multi-dimensional and multi-modal

predictive distributions like the one given by Equation 2. Thus,

a reduction in entropy can be seen that as a reduction in

variance.

Given that in our experiments our models are GMM, this

poses a problem, as there is no closed form for computing

its entropy without making some assumptions. Therefore,

we approximate it by using an upper-bound of the entropy,

which consists of a weighted sum of the entropies of the

individual Gaussian components [43]. This upper-bound is

formally defined by the following equation:

H(X|S = s) ≤

N
∑

i

ωi · (−log ωi +
1

2
log

(

(2πe)D|Ci|
)

(13)

where D is the dimensionality of the distribution, N is

the number of components in the mixture model, |Ci| is

the determinant of the covariance matrix of component i

and ωi = P (X|S = s, ci), ∀i ∈ 1..N is the weight of

the component i, equivalent to the probability that a sound

perception s is matched to mixture component i. This measure

is very fast to compute, as most of the terms can be cached

to speed up computation.

In order to overcome the complexity of computing the determi-

nants of the covariance matrices, we exploit the fact that each

training point only will update very few model components,

so we maintain a cache of inverse matrices and determinants

to accelerate computations.

For a distribution where there is no significant overlap between

the mixture components, the real entropy is very close to its

upper bound.

We consider the task to be dependent on a given set of goal

sounds G to be discovered, defined as a subset of the possible

sounds S that can be produced by the musical instrument, i.e.

G ⊂ S . Algorithm 1 provides the steps to retrieve a candidate

position, given the active learning strategy to follow, the set

of goals G and the current modelMt
INST , used to extract the

sampling distributions.

First, we obtain the entropy of the current predictive dis-

tribution H(X|S = G,Mt
INST ). Then, we sample a set
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Algorithm 1 Retrieve a candidate position

1: Input: strategy = {RAND, PRIOR, POST}, G,Mt
INST

2: Ht ← H(X|S = G,Mt
INST )

3: weights← []

4: if strategy = PRIOR then

5: candidates← sampleFrom(P (X))

6: else

7: candidates ∼ sampleFrom(P (X|S = G))

8: for all xi in candidates do

9: Mt+1

INST ← update(Mt
INST , {xi, ŝ(xi)})

10: weights(i)← Ht −H(X|S = G,Mt+1

INST )

11: c← SoftMax(weights)

12: Send action based on xc

of position candidates x
c, depending on the strategy used,

either from the prior distribution over positions P (X) or

from the distribution of positions conditioned on the goals

we must discover P (X|S = G). Once we have the set of

candidates, we have to compute, for each of the candidates,

the expected decrease in predictive entropy by simulating

the possible outcomes of executing an action based in the

candidate location. We approximate it by taking the most likely

sound for the candidate position being evaluated, thus, we have

that:

H(X|S = G, xi,M
t
INST ) =

H(X|S = G, update(Mt
INST , {x

c
i , ŝ(x

c
i )}))

(14)

where update(MINST , {x, s}) is an operation that in-

corporates the data sample {x, s} into the model MINST ,

returning the updated model. ŝ(xc
i ) computes the most likely

sound for a given position, and is obtained from Equation 4.

The expected decrease in predictive entropy for each of the

candidates, is used as a weight in order to stochastically select

a candidate by means of the softmax function [44]. In Figure

5 there is an schematic depiction of the whole process.

Then we compared a baseline method with two alternative

active learning methods. The baseline method consists of

just taking a random sample from Equation 2, which at the

beginning amounts to a uninformative flat prior distribution,

and constructing an action based on the sampled position.

The active learning methods are differenced by the way they

sample the potential candidates. One is to sample, as in the

baseline method, from the distribution over actions conditioned

on the goal perceptions we desire to obtain. The other is to

sample directly from the prior and let the weights based on

entropy reduction decide which candidate to take.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental setup used to

answer two main research questions, namely, the impact of

applying active learning strategies in the number of needed

training samples and how to improve the control of the robot

by means of learning an action correction model. Regarding

the first question, we are interested in situations where the

robot uses part of the time between the acquisition of two

consecutive data samples to infer a potentially good learning

candidate. Particularly, we focus in applying an active learning

strategy which helps in reducing the amount of training data

needed by the robot to reach a desired level of competence.

Our results showed a significant improvement of the presented

active learning strategy when compared with a random selec-

tion strategy.

The other research question deals with the physical nature of

the studied system. Given the complexity inherent in solving

the kinematic equations used to control the robot hand, it

is very difficult to tune the controllers in order to reach the

desired locations. This causes location errors that potentially

hinder the actual performance of the robot. A machine learning

methodology is applied to overcome these limitations and its

impact is assessed in the experiments proposed here, showing

that for complex predictive distributions where the choice of

action is not clear, taking advantage of a model about how the

its body behaves provides a benefit to the robot.

The cognitive architecture described above was imple-

mented in the iCub platform, a 53 degrees of freedom (DoF)

humanoid robot [45], using its upper torso and only one

of the arms. The motor control was done using a cartesian

controller, which given an action specified as desired end-

effector position and execution time, internally solves the

inverse kinematics problem [46]. Given the intricacies of

motor control over a flat surface, we used a modified finger

sliding controller built on top of the cartesian controller for

smoother and precise control of the fingertip.2

The robot frame of reference was calibrated to the Reactable,

a visuo-tactile interactive interface, in order to map the coor-

dinates of the robot end-effector to the coordinates received

from the tactile interface.

Due to the inherent difficulties in calibration using vision, we

decided to directly calibrate the hand of the robot to the local

system of reference of the experimental interface shown in

the Reactable screen, so we ended up with one calibration

matrix instead of two. In any case, there were calibration

errors which our system learnt effectively and minimized their

negative effects.

The software was implemented using the YARP middleware

[47] for tasks related to the iCub control and sensor data

acquisition. ROS [48] was used for the learning related tasks

and as integration tool for all the modules. Experiments shown

in Figure 6 were executed in the iCub Simulator [49] in order

to experiment with the parameters of the model and tune the

algorithms.

A. Learning the Instrument Model

First of all we evaluated how the robot finds the different

notes required to imitate the sequence given by the human.

We compared the learning performance of the active learning

strategy with a baseline, which is defined as reaching a random

location the current model expects to contain a goal sound.

2Thanks to Ugo Pattacini for providing the base code for the sliding
controller.
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Fig. 5. Schematic of the active learning strategy. Using the predictive distribution extracted from the current model Mt

INST
, we compute the predictive

entropy. Then, we sample a set of position candidates to explore. Each candidate is used to simulate an update of the model, so we can obtain the new
predictive distribution and compute its entropy, which is used to give a score to each candidate according to the decrease in predictive entropy. A candidate
is sampled stochastically according to these scores.

Due to the randomness inherent in the active learning

method, we performed a series of experiments in order

to track the performance over the whole learning process.

The evaluation measure used is the time, specified in

terms of number of samples needed, to reach a desired

average precision level. Then we performed a non-parametric

hypothesis test in order to assess the statistical significance

of our experimental results. In our experiments, precision

is defined as the proportion of predicted locations that are

expected to produce a specific goal sound. We computed it

by first sampling a set of 1000 locations from the model, and

then checking whether or not these locations were inside the

correct region producing the sound being evaluated.

Given that the model was learnt with very few exemplars

and with little prior knowledge, we observed that when

computing the sampling distribution for obtaining candidate

positions, we faced a problem of exaggerated differences in

the probabilities of some components generating the data, most

likely caused by the high-dimensionality of the perception

vector description compared with the size of the dataset Dt

used until time t and the components having used very few

training exemplars to learn their parameters.

In order to normalize the mixture component likelihoods

to obtain a distribution vector to sample from, we used a

transformation based in the one proposed in [50], which works

by mapping the normalized likelihood values to the range

[10−K , 1], where K is a prefixed value which basically states

the maximum difference in orders of magnitude between

the highest and lowest confidence measures the model can

provide. In our experiments this parameter was set to 10 after

an empirical evaluation. However, we did not observe a high

sensitivity on this parameter unless high values were chosen,

e.g. K > 50.

This was done by first transforming the likelihood values

to a logarithmic scale, then linearly mapping the lowest

and highest value to a range of [−K, 0]. After that, we just

mapped back and normalized the result.

As described in [50], this mapping does not exaggerate

the relative differences in belief, nor does alter the relative

ordering in mixture component likelihoods.

Our proposed entropy-based active learning uses two sam-

pling strategies which we also compared in our experiments.

In order to get the sample of candidates to be explored, we

could sample from the distribution conditioned on the set of

n goals G, using the following formula:

xi ∼ p(X|S = G) s.t. G = {g0, . . . , gN−1} (15)

or by uniform sampling from the prior distribution over
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positions:

xi ∼ p(X) (16)

This prior distribution is defined as a uniform distribution

over the range of positions that the robot is able to reach safely,

so it effectively corresponds to the robot arm working space.

We show the results in Figure 6, with the corresponding

histograms for the distribution of the number of samples

needed to reach a precision of 60%. It can be clearly seen

that the best strategy is to use active learning sampling from

the prior distribution, as the distribution conditioned on the

goals offers a bias, thus not very suitable particularly in early

stages of the learning process.

In order to observe how the model changes over time as

new regions of the instrument were explored, in Figures 7 and

8, we show two different examples of exploration sequences.

The one in Figure 7 corresponds to the unimodal case, while

the one in Figure 8 refers to the multimodal case. The scatter

plots show, for each of the four goal sounds given to the

robot, a sample of positions obtained from the model at three

different stages of learning. These stages correspond to the

robot having explored 20, 80 and 200 locations, respectively.

It has to be noted that the shown examples are selected for

illustrative purposes, and that the variability of the obtained

models in terms of the number of training samples, that are

needed to have a desired level of performance, can be seen in

Figure 6. The multimodal case corresponds to a more difficult

problem, where the goal sounds can be found in two separate

regions, thus making the predictive distribution inherently

multimodal. The specifics of this problem are explained in

Section IV-E.

It can be seen that at the early stages of learning, some of

the goals remained undiscovered, and the ones discovered

correspond to broad regions which expand beyond the sharp

boundaries of the virtual keys, while more mature stages

show that all goals have already been discovered, thus

corresponding to narrowing down the boundaries of the

discovered regions.

We also provide results for the precision estimated by the

model, that is, we use the model to judge whether or not the

expected perception belongs to the goal we desire to obtain.

The early stages were found to be over confident, due to

poor boundary definitions, which is normal given the Gaussian

nature of the underlying model. However, later stages proved

more accurate in judging whether a point sampled from the

posterior distribution over positions given the specific goals

will produce the expected perception.

B. Learning the Body Model

We also evaluated the performance of the body model.

In this case, we allowed the robot to perform reaching

movements associated with the goals that it needed to imitate.

This was done after the instrument model was learnt, so as

to guarantee that the robot was confident enough to retrieve

valid candidate positions.

After some data was acquired and a body model learnt,

we evaluated the accuracy of the error predictions made by

the model by comparing them with a series of test reaching

movements.

For each instrument model learnt from the evaluation of

Section IV-A, we obtained a body model by performing series

of imitative actions as described in the next experiment. Then

we performed the evaluation of the corrections using these

pairs of instrument and body models, obtaining the datasets

needed to empirically show how the spatial reaching error is

accurately predicted by the corresponding body model.

Fig. 9. Distribution of reaching errors with and without learning a body
model. It can be clearly seen that the body model predictions are accurate
enough to be used as corrections to enhance the performance of the reaching
actions.

In Figure 9 it can be clearly seen that the body model

predictions are accurate enough to be used as corrections

in order to alleviate the effects of the calibration error in

the inverse kinematics controller of the robot. Almost all the

predictions kept the reaching error below 5mm, which is the

lowest bound our robot controller used to consider a reaching

movement finished, so any improvement on that is considered

as pure chance. However, with no learning, a lot of errors were

above 1cm, so high that in many occasions the robot ends up

out of the region that produces the desired perception.

C. Imitation of the sequence

After learning both models, the robot was ready to try to

imitate the given sound sequence. We divided the sequence in

series of pairwise goal sounds. For example, if the goal sound

sequence was:

G = {C0.5, F 0.5, D0.5, E1}

provided that C,F,D and E are the musical notes and 0.5
and 1 are the tempos, expressed in seconds, we obtained the

following pairwise goal sequence:

GPW = {(C0.5, F 0.5), (F 0.5, D0.5), (D0.5, E1), (E1, C0.5)}

By using the model of the instrument to obtain the positions

and times from this sequence, we transformed the list GPW

into a list of action commands. However, the process of
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Fig. 6. Results for the three strategies aplied to discover goal sound regions. NO ACTIVE LEARNING consists in taking a random sample from the
distribution conditioned on the goals. The active learning strategies are UNIFORM-SAMPLING, which takes the sample candidates from the prior distribution
on locations, and COND-SAMPLING, which uses the distribution conditioned on the goals to obtain the candidates.

imitating the sequence was slightly different. We assumed

that if the robot failed to reach a desired goal position, it

had to start again from the beginning. This obviously induced

a bias on the first goal having a lot of trials, while the

latest one was only tried after the previous ones have been

correctly reached, but the resulting precision probabilities were

accordingly normalized taking into account this issue.

As explained in Section III-B, the perception of the robot in

terms of the sound was one step behind, meaning that when

the sound for event evtt started to be played, the robot actually

perceived the sound for event evtt−1.

For this reason, it used the current position of the hand at the

time of the new event to infer the sound ŝ that was expected

to be playing, using Equation 4, and the duration of that sound

in order to know the time t̂ for the next event.

Then the robot checked if the expected sound ŝ was any of

the goals in G. This was done by choosing the goal sound that

minimized a matching error function err(ŝ, gi):

î = argmin
i

err(ŝ, gi) s.t. i ∈ 1 . . .#G

The error function used in our experiments is the same

as Equation 6. Only matches below an error threshold were

considered good, so if err(ŝ, gî) < ǫ, the robot assumed that

the current sound was indeed the goal gî. If not, the robot

assumed it was in a wrong location and sent an action to go

back to the first goal G1.

Having identified the current goal, the robot extracted the next

goal sound from the corresponding pairwise goal GPW

î
.

Fig. 10. Action inference process carried on by the robot. The robot considers
a fixed action execution time. This, added to the expected temporal error of
considered actions, gives the maximum time allowed for action execution.
The remaining time is used for inference of the best action to execute.

Now the task was to find, for the next goal sound, a good

candidate action, defined as a position and a reaching time.

The process is illustrated in Figure 10. After computing the

maximum remaining time Tmax for the current sound being

played, we had to allocate two time segments, one for inferring

the action to be executed and another for actually executing

the selected action. However, the real action execution time

needs to take into consideration the uncertainty in the hand

controller, so we also accounted for this temporal error.

Let us say, for example, that Tmax = 1s, and that we set

the time for action execution to tc = 0.7s. It means that the

robot only had 0.3s to spend on inferring the action and also

to account for the temporal error that such action may have.

An example can be seen in Figure 11, were the resulting action
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Fig. 7. Evaluation of an instrument model (unimodal distributions) at three different stages of learning, namely, after 20, 80 and 200 learning samples have
been observed. Scatter plots for all 4 goals are shown, one per column, highlighting different stages in the learning process. Numbers on top of each plot
show the estimated and real precision for the corresponding goal at that stage. At early stages, some of the goals remain undiscovered, meaning that the robot
is still mainly exploring. As the interaction progresses, it can be seen that the learning focusses in discovered regions to better define the boundaries of the
discovered goal regions.

Fig. 8. Evaluation of an instrument model (multimodal distributions) at three different stages of learning, namely, after 20, 80 and 200 learning samples have
been observed. Scatter plots for all 4 goals are shown, one per column, highlighting different stages in the learning process. Numbers on top of each plot show
the estimated and real precision for the corresponding goal at that stage. In this case exploration is more difficult, as there are distant regions providing the
same goal sounds. In early stages, although almost all the goals are discovered, not all the regions have been found, meaning the exploration is still ongoing.
The later stages correspond to narrowing down and accurately defining the boundaries of the discovered regions.
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candidates are displayed as white dots in the interface. There

is also an online video showing the results of this experiment3.

Fig. 11. Close up of the robot performing the imitation of the sound sequence.
The virtual keys that were used to generate the sequence by the human are
labelled as 1, 2, 3, 4. White dots represent locations that are evaluated and
filtered to select a good candidate for reaching.

D. Evaluation of the Instrument Model

As the robot has internal probabilistic models of how

the instrument works, it can estimate how consistent its

predictions are.

For this purpose, in order to evaluate how good the robot is at

finding goal gi, first we extracted a sample using Equation 2

and then evaluated each point by guessing the most likely

sound ŝ that should be heard at that location using Equation 4.

The sounds were compared using err(ŝ, gi), and then we

computed the percentage of correct guesses.

In our experiments we observed that, although this evalu-

ation was usually too optimistic compared to the empirical

evaluation, it did show the same trends as the empirical

evaluation using the oracle, meaning that the derivative is very

similar. In this way, this measure can be used as an estimate of

its learning progress without the need of empirically assessing

it through a new sequence of movements. Detecting a plateau

in the learning progress is an indicative of convergence of

the instrument model to stable predictions, which is the point

where it should be confident enough to start performing the

imitation of the sound sequence. Results can be seen in Figure

12 for an example learning trajectory.

E. Correcting reaching commands with the Body Model

Once the instrument model converged, the imitation of the

sequence was tested. However, there are situations where the

uncertainty about the end position of the hand undermines the

performance of the robot.

In this case, the body model was used to keep track of this

errors in different areas of the task space and provide estimates

3There is a video showing a performance of iCub using the tactile interface
at https://www.youtube.com/watch?v=P1iWuzFfQn8
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Fig. 12. Plot of instrument model evaluation results for an example of training
sequence. The top plot shows the average precision for the four goals. We
show the real precision obtained using the oracle and the estimation using the
model at each time step. The bottom plot shows the derivative of the precision,
where it can be seen that the trend in the estimated learning progress, seen
as the change in estimated precision, follows more closely that of the empiric
evaluation.

of where the real position of the hand will be if a particular

action is executed. Then we used this in a feed-forward control

loop to correct the action sent to the robot controller and

minimize the impact of this error, as shown in Figure 13.

Fig. 13. Schematic of the action correction mechanism using the body model.
The desired action and the current position of the end-effector is fed into the
model, which provides corrections for the position, as well as an estimate of
the temporal error in reaching that position.

Our initial experimental setup did not prove challenging

enough to benefit from the corrections provided by the body

model. For this reason, we increased the difficulty to evidence

the two kinds of problems that our architecture is partic-

ularly suitable for. The change introduced was to increase

the number of virtual keys, effectively reducing their indi-

vidual size. The sounds produced were the same, but this

time could be found in two different regions. The initial

keyboard sequence of notes was A,B,C,D,E, F,G, with

each virtual key having a size of about 4cm, so it changed

to A,B,C,D,E, F,G,A,B,C,D,E, F,G, resulting in each
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virtual key decreasing its size to about 2cm.

Not only this smaller keys resulted in an evident difficulty

for the robot to find goal regions, as its reaching uncertainty

region was therefore bigger in relation to key size, but also the

predictive distribution of where each sound was found became

multi-modal, which is a major difficulty for some models but

not for the GMM used in our experiments.

However, the multi-modality present posed a decision problem

for the robot. If we did not take reaching time into account,

basically the robot tried to reach the location as fast as it

could, resulting in many of the actions ending in an undesired

location or simply not reaching them on time. Making use

of the learnt body capabilities we had an effective filter for

some of the candidates as the model considered them ”out

of reach” due to temporal constraints in the actions the robot

could make.

Depending on the maximum velocity of action execution of

robot actions and the distance of the different pairs of goals,

using the corrections given by the body model provided a

significant advantage over not using it. Figure 15 shows the

success rate in reaching each of the four pairwise goals in the

example demonstration, depicted in 14 using the numbers 1

to 4 to denote ordering.

Fig. 14. Screenshot of the virtual keyboard interface showing the extended
problem. It can be seen that goals marked with numbers 1 to 4 can be found
in two different locations (object is over goal 2). The most difficult actions
are movements from goal 2 to 3 and from goal 3 to 4.

V. CONCLUSIONS

In this work we proposed a system architecture which

enables a humanoid robot to actively explore an object and

obtain a model of how to use it for the purpose of achieving

a set of goals given by a human supervisor. This applies

to problems where goals are in the form of a sequence

of perceptions that need to be obtained after executing a

corresponding sequence of actions. In the proposed object

model, as currently presented, only considers atomic actions,

e.g. the end-points for a reaching behaviour. However, actions

can encode the parameters of a full motion trajectory. In

this way, the model should be extensible to more dynamic

problems, like the execution of dance movements by teaching

a series of goal body poses which serve as key frames for the

whole motion sequence.
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Fig. 15. Results for the evaluation of corrections using the Body GMM.
Reachings are represented as pairs A-B, meaning a movement from goal A to
goal B. It can be seen that for reachings 2-3 and 3-4, the corrections provide
a significant improvement, due to the filtering in reaching time and a more
accurate goal position estimation.

Event if a large set of goals can be accomplished by using

the same object, usually most of them are not required by the

task at hand, so the robot should not need to know everything

about the object. By making the problem goal-based, we

managed to allow the robot to focus exploration on a narrower

set of actions. This is particularly useful for problems where

the space of possible outcomes for actions is very big and we

want the robot to quickly specialize in a subset of skills.

Also, in many real world robotics applications, the data used

by the robot to learn using exploration behaviours arrives at

a frequency such that there is enough time to apply inference

techniques to actively choose actions based on current models.

The kind of problems where the frequency at which consecu-

tive data samples arrive is governed by an external process, as

is the case of the music problem presented in this paper, makes

our approach very suitable, given that the robot is able to use

the time between data samples to plan an adequate action.

We illustrated this with an experiment based in the imitation

of a sequence of musical notes played by a humanoid robot

in a virtual keyboard displayed in a visuo-tactile interface.

Our results indicate that, by using an active learning strategy

based in an information-theoretic measure, the robot was able

to acquire the required knowledge faster than if using a random

exploration strategy following only the predictions provided by

the current model.

Moreover, the embodiment of the robot affects the interac-

tion dynamics with the object it is exploring, in the sense of

the actions not resulting in exactly the desired perceptions.

In our experiments, the robot has a reaching error that depends

both on its physical body dynamics and also on the software

controller that guides its hand to the desired location. Time

constraints also play an important role, due to the fact that

higher movement speeds result in higher spatial error.

The proposed architecture, integrating a model of the body

constraints, takes advantage of such information to provide

an error correction control module which predicts the ex-

pected result of the desired action and corrects the action to

minimize that expected error. In problems where tuning the

action controller is very difficult or impractical, introducing a

model which learns control uncertainties and provides action

corrections addresses the problem of fine-calibration of robot
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controllers.

The robot can also give an estimate of the feasibility of the

actions needed to accomplish the required goals. This may

serve as a good indicator for the human supervisor about the

difficulty of the given sequence subjective to the robot. This

property not only alleviates the need to know exactly what

actions the robot can or can not perform, but also serves as

a communication tool because such subjective judgement is

given when the robot is confident enough about the knowledge

it has.

The evaluation of the correction module showed no signif-

icant improvement on a simple setup of the object, although

with a more complex setup, where the robot can obtain the

same goal in multiple locations, i.e. displaying multi-modal

predictive distributions, some of the actions could not be

performed under the desired time due to body constraints.

Our probabilistic model successfully filtered such unattainable

candidate actions, keeping the robot from executing unsafe

operations.
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