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Active learning of reactive Bayesian force
fields applied to heterogeneous catalysis
dynamics of H/Pt

Jonathan Vandermause 1,2 , Yu Xie 2, Jin Soo Lim 3, Cameron J. Owen 3 &
Boris Kozinsky 2,4

Atomistic modeling of chemically reactive systems has so far relied on either
expensive ab initio methods or bond-order force fields requiring arduous
parametrization. Here, we describe a Bayesian active learning framework for
autonomous “on-the-fly” training of fast and accurate reactive many-body
force fields during molecular dynamics simulations. At each time-step, pre-
dictive uncertainties of a sparse Gaussian process are evaluated to auto-
matically determine whether additional ab initio training data are needed. We
introduce a general method for mapping trained kernel models onto equiva-
lent polynomialmodels whose prediction cost ismuch lower and independent
of the training set size. As a demonstration, we perform direct two-phase
simulations of heterogeneous H2 turnover on the Pt(111) catalyst surface at
chemical accuracy. The model trains itself in three days and performs at twice
the speed of a ReaxFF model, while maintaining much higher fidelity to DFT
and excellent agreement with experiment.

Accurate modeling of chemical reactions is a central challenge in
computational physics, chemistry, and biology, lying at the heart of in
silico design of covalent drugs1 and next-generation catalysts with
higher activity and selectivity2. Reactive molecular dynamics (MD)
simulation is an essential tool in advancing such rational design
efforts3. By directly simulating the motion of individual atoms without
fixing any chemical bonds, reactive MD enables unbiased discovery of
reaction mechanisms at atomic resolution as well as prediction of
reaction rates complementary to experimental studies4.

Reactive MD requires a flexible model of the potential energy
surface (PES) of the system that is both (i) chemically accurate in
describing bond breaking and formation, and (ii) computationally
affordable to be able to access long timescales necessary to capture
rare reactive events. Accurate evaluation of the PES at each time-step
can be achieved with ab initio methods such as density functional
theory (DFT) and post-Hartree-Fock techniques. However, these
methods are limited to small systems due to nonlinear scaling with the
number of electrons, precluding their use for dynamical simulation of

realistic systems beyond a few hundred atoms spanning tens of
picoseconds.

Formany nonreactive systems, a viable alternative to ab initioMD
is to parameterize a force field whose evaluation cost scales linearly
with the number of atoms and is often orders of magnitude cheaper
than ab initiomethods. However, many traditional force fields, such as
the AMBER and CHARMM models extensively used in biomolecular
simulations5,6, explicitly fix certain chemical bonds in the system,
making them unsuitable for describing chemical reactions. The more
flexible ReaxFF model is capable of describing bond breaking and
formation and as such has been applied to a wide range of reactive
systems in the past two decades3,7. However, ReaxFF models require
expert fine-tuning for each system and can significantly deviate from
the ab initio PES in many cases8 due to their limited parametric
functional form.

Machine-learned (ML) force fields have emerged in the past dec-
ade as a powerful tool for building linear-scaling models of the PES at
near-DFT accuracy9–12. These ML models map atomic configurations
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onto potential energies, atomic forces, and virial stress tensors, using
ab initio calculations as the ground truth for the regression. Typically,
training these models involves manual construction of the ab initio
database targeting the system of interest. This manual approach has
been used to describe a range of simple bulkmaterials8,13,14 and organic
molecules15–17. However, manual training often requires considerable
time, expertise, and computing resources, and is particularly challen-
ging for reactive systems where relevant transition state pathways and
their sampling requirement can be difficult to gauge in advance. As a
result, ML-driven MD simulations of reactive processes remain scarce
in the literature18–22.

A powerful emerging alternative is to generate the training set
autonomously using active learning23–28. In this approach,model errors
or uncertainties are used to decide if a candidate test structure is
reliably predicted or should be added to the training set, in which case
an ab initio calculation is performed and the model is updated. A
particularly promising approach involves training the model "on the
fly”during anMDsimulation,where theMLmodel is used topropagate
atomic motion and is updated only when the model uncertainties
exceed a chosen threshold29–32. Active learning has been applied suc-
cessfully in the past year to a range of nonreactive systems and phe-
nomena, including phase transitions in hybrid perovskites33, melting
points of solids34, superionic transport in silver iodide32, surface
restructuring of palladium deposited on silver35, the 2D-to-3D phase
transition of stanene36, and lithium-ion diffusion in solid electrolytes37.
It has also been extended recently to chemical reactions within the
Gaussian approximation potential (GAP) framework21. The kernel-
based GAP force field, although highly accurate, has a prediction cost
that scales linearly with the size of the sparse set, making it several
orders of magnitude more expensive than traditional force fields such
as ReaxFF38.

Chemically reactive systems pose a particular challenge for
machine-learned force fields. Owing to its central importance in
numerous catalytic processes such as selective hydrogenation39 and
hydrogen storage40, H2 reactivity on transition metal surfaces has
been a subject of extensive computational investigation, including
DFT calculations of H2 activation and diffusion41–43, as well as MD
simulations using DFT44 and parametric models such as ReaxFF45,
embedded-atom method46, tight-binding47, and low-dimensional
models48. We note that all previous models only consider either a
bare surface interacting with a single H2 molecule or H-covered
surface coupled to an implicit reservoir representing the gas phase.
These approaches do not explicitly treat the two interacting phases
due to either high cost or limited expressiveness insufficient for
capturing many-body interactions in a heterogeneous setting. This
limits their transferability to realistic systems involving multiple gas-
phase H2 molecules and chemisorbed H atoms.

Here, we develop an autonomous method for training reactive
many-body force fields on the fly and accelerating the resulting ML
models by over an order ofmagnitude. We apply our method to large-
scale reactive MD simulations of a prototypical system in the field of
heterogeneous catalysis: reactive turnover of H2 on the (111) surface of
platinum, including dissociative adsorption, diffusion, exchange, and
recombinative desorption. For the H/Pt system, our prediction speed
exceeds that of ReaxFF by more than a factor of two while achieving
much higher near-quantum accuracy. Importantly, the training pro-
cess takes only a few days compared to the months previously
required with manual approaches. We accomplish this by using Baye-
sian uncertainties of a sparse Gaussian process (SGP) model to auto-
matically decide which structures to include in the training set. Once
themodel is trained, the prediction speed is significantly increased via
lossless mapping of the SGP model onto an equivalent parametric
model whose cost is independent of the training set size. Our method
builds on the sparse Gaussian process force fields introduced in refs.
10,49, and the SGP-based on-the-fly training methods of refs. 33, 34,

extending these methods to a canonical chemically reactive system
and establishing their equivalence to a simpler class of polynomial
models. Our method also builds on our own previous active learning
workflow, which relied on a significantly more expensive exact Gaus-
sian process32 andwas limited to two- and three-body interactions that
are insufficiently descriptive for chemically reactive systems. Our
active learning approach overcomes these limitations through effi-
cient data-driven construction of the PES for the entire H/Pt system, at
highfidelity to the chosen ab initiomethod. Toour best knowledge,we
perform the first large-scale direct MD simulations of reactive H2

turnover on Pt(111), capturing the explicit two-phase boundary across
themolecular gas phase and fully thermalized substratewith varyingH
coverages. Importantly, the procedure requires no simplifications or
prior assumptions about the reaction mechanisms, proceeding
entirely autonomously and providing direct computational measure-
ment of the catalytic reaction kinetics. The resulting apparent activa-
tion energy for H2 turnover is found to be in excellent agreement with
surface science experiments.

Results
Active learning and acceleration of many-body force fields
Figure 1 shows an overview of our method for autonomous training
and acceleration of many-body Bayesian force fields. The on-the-fly
training loop (Fig. 1a) is driven by an SGP that provides Bayesian
uncertainties of model predictions. The objective is to automatically
construct both the training set of the SGP and the sparse set, which is a
collection of representative local atomic environments ρt that are
summed over at test time to make predictions and evaluate uncer-
tainties (seeMethods). The training loop begins with a DFT calculation
on an initial atomic structure, initializing the training set and serving as
the first frame of the MD simulation.

At each time-step of the MD simulation, the SGP predicts the
potential energy, forces, and stresses of the current structure and
assigns Bayesian uncertainties to local energy predictions ε. These
uncertainties take the form of a scaled predictive variance eV ε valued
between 0 and 1 and are defined to be independent of the hyper-
parameters of the SGP kernel function (see Eq. (17), Methods). This
formulation provides a robust measure of the distance between the
local atomic environments ρi observed in the training simulation
and the environments ρt stored in the sparse set of the SGP. If the
uncertainty is below a chosen "prediction threshold” ΔDFT, the pre-
dictions of the SGP are accepted and an MD step is taken using the
model forces.

When the uncertainty exceeds the prediction threshold, the
simulation is halted and a DFT calculation is performed on the current
structure. The computed DFT energy, forces, and stresses are then
added to the training set of the SGP, and local environments ρi with
uncertainty above an "update threshold”Δsparse≤ΔDFT are added to the
sparse set. This active selectionof sparsepoints reduces redundancy in
the model by ensuring that only sufficiently novel local environments
are added to the sparse set. It also helps to reduce the cost of SGP
prediction, which scales linearly with the size of the sparse set (see Eq.
(9), Methods). The training simulation is terminated when calls to DFT
become infrequent, typically after 3–10 ps of dynamics.

The accuracy of the learned force field is in large part determined
by the expressiveness of the descriptor vectors assigned to local
atomic environments. Our procedure formapping local environments
ρi onto symmetry-preserving many-body descriptors di draws on the
atomic cluster expansion (ACE) introduced byDrautz50 and is sketched
in Fig. 1b. A rotationally equivariant descriptor ci (see Eq. (4),Methods)
is first computed by passing interatomic distance vectors through a
basis set of radial functions and spherical harmonics and summing
over all neighboring atoms of a particular species. Rotationally invar-
iant contractions of the tensor product ci⊗ ci are then collected in an
array di of many-body invariants, which serves as input to the SGP
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model. The vector di corresponds to the B2 term in the multielement
atomic cluster expansion and is closely related to the SOAP
descriptor51. In each of these approaches, the number of elements of di

scales quadraticallywith the number of chemical species in the system.
Crucially, once sufficient training data have been collected, we

map the trained SGPmodel onto an equivalent andmuch faster model
whose prediction cost is independent of the size of the sparse set
(Fig. 1c). This mapping draws on the duality in machine learning
between kernel-based models on the one hand, which make compar-
isons with the training set at test time and are therefore “memory-
based,” and linear parametric models on the other, which are
polynomials of the features and do not depend explicitly on the
training set once the model is trained52.

As shown in the Methods section, mean predictions of an SGP
trainedwith a normalizeddot product kernel raised to an integer power
ξ can be evaluated as a polynomial of order ξ in the descriptor di. The
integer ξdetermines the body-order of the learned force field, whichwe
define following ref. 53 to be the smallest integer n at which the deri-
vative of the local energy with respect to the coordinates of any n
distinct neighboring atoms vanishes. The simplest case, ξ = 1, corre-
sponds to a model that is linear in di, and since the elements of di are

sumsof three-body contributions, the resultingmodel is formally three-
body. ξ = 2models are quadratic in di and thus five-body, with general ξ
corresponding to a (2ξ + 1)-body model when using the B2 term of ACE.

We evaluate the performance of kernels with different ξ values by
comparing the logmarginal likelihood Lðy∣ξÞ of SGPmodels trained on
the same structures. L quantifies the probability of the training labels y
given a particular choice of hyperparameters and can be used to iden-
tify hyperparameters that optimally balance model accuracy and com-
plexity (see Eq. (19), Methods). For H/Pt(111), we find that the likelihood
Lðy∣ξÞ for ξ = 2 is considerably higher than for ξ = 1 but nearly the same
as for ξ = 3, and decreases for ξ > 3 (Supplementary Fig. 1). We therefore
choose to train five-body ξ = 2 models, allowing local energies to be
evaluated as a simple vector-matrix-vector product ε(ρi) =diβdi that can
be rapidly computed (see Eq. (20) for the definition of β). We have
implemented this quadratic model as a custom pair-style in
the LAMMPS code, which exhibits a dramatic acceleration over stan-
dard SGP mean prediction (Supplementary Fig. 4). Remarkably, the `
resulting LAMMPS model is more than twice as fast as a recent H/
Pt ReaxFF model45, opening up pathways to accurate ML-driven
reactive MD simulations that are more efficient than their classical
counterparts.

Fig. 1 | On-the-fly training and acceleration of many-body Bayesian force fields
(BFF). aAt each time-step of theMD simulation, local energies, forces, and stresses
are computed with the SGPmodel. If the uncertainty on a local energy exceeds the
chosen threshold ΔDFT, a DFT calculation is performed and the model is updated.
b Mapping of local environments ρi onto multielement descriptors derived from
the atomic cluster expansion. The environment is first mapped onto an equivariant

descriptor ci, products of which are used to compute the rotationally invariant
descriptor di that serves as an input to the model. c Mapping of a ξ = 2 SGP force
field onto an equivalent quadratic model. The prediction cost of the SGP scales
linearly with the number of sparse environments NS, while the cost of the corre-
sponding polynomial model is independent of NS.
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On-the-fly training of a reactive H/Pt force field
Figure 2 presents our procedure for training a reactive H/Pt force field
on the fly. We performed four independent training simulations tar-
geting gas-phase H2, bulk and surface Pt, and H2 interaction with the
Pt(111) slab (Fig. 2a). Each training was performed from scratch, with-
out any data initially stored in the training set of the SGP. As reported
in Table 1, the single-element training simulations were each com-
pleted in less than two hours of wall time on 32 CPUs, with 24DFT calls

made during the gas-phase H2 simulation and only 4 and 6 calls made
during the surface and bulk Pt simulations, respectively. The majority
of DFT calls were made in the reactive H/Pt(111) simulation, with 216
calls made in total during the 3.7 ps simulation, resulting in nearly
50,000 training labels in total (consisting of the potential energy,
atomic forces, and six independent stress tensor components from
eachDFT calculation). The order-of-magnitude increase in the number
of accumulated sparse environments during the H/Pt training simula-
tion reflects the greater diversity of chemical environments present in
this two-phase simulation, encompassing gaseous H2, H surface and
sub-surface diffusion, and Pt surface and bulk dynamics. Potential
energy predictionsmade during the run are plotted in Fig. 2b, showing
excellent agreement between the SGP and DFT to within 1 meV/atom
(see Supplementary Fig. 2 for the corresponding plots of the single-
element training simulations).

The H/Pt(111) training was initialized with five randomly oriented
H2 molecules in the gas phase and with one side of the slab at full H
coverage. The temperature was set at 1500 K to facilitate sampling of
rare recombinative desorption events on the surface. The first
recombination event occurred at t ≈0.3ps, shown as a sequence ofMD
snapshots in Fig. 2c. Here, each atom is colored by the uncertainty of
its local energy, ranging from blue for negligible uncertainty to red
corresponding to uncertainty near the prediction threshold ΔDFT. The
formation of the H–H bond triggers two DFT calls (frames ii and iii),
demonstrating the model’s ability to automatically detect and

Fig. 2 | On-the-fly training of the reactive SGP force field forH/Pt. a Snapshots of
four independent training simulations (left to right): gas-phase H2; bulk Pt; (111)
facet of the Pt surface; andH2 interaction with the Pt(111) slab.b Energy versus time
during the H/Pt(111) training simulation, with the SGP predictions in green and DFT

evaluations shown as black dots. The inset is a zoom-in of the model predictions
during the first recombination event observed at t ≈0.3 ps. c Snapshots of the first
recombination event. Atoms are colored by the uncertainty of the local energy
prediction, with red corresponding to the prediction threshold ΔDFT.

Table 1 | Summary of on-the-fly training for the H/Pt system:
the simulation temperatureT (K); the total simulation time τsim
(ps); the total wall time of the simulation τwall (h); the number
of atoms in the simulation Natoms; the total number of struc-
tures added to the training setNstruc; the total number of local
environments in all training structuresNenvs; the total number
of local environments added to the sparse setNsparse; and the
total number of training labels Nlabels

System T τsim τwall Natoms Nstruc Nenvs Nsparse Nlabels

H2 1500 5.0 1.2 54 24 1296 124 4056

Pt(111) 300 4.0 1.2 54 4 216 87 676

Pt 1500 10.0 1.7 108 6 648 179 1986

H/Pt 1500 3.7 61.4 73 216 15 768 2034 48 816

Total - - 65.5 - 250 17 928 2424 55 534
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incorporate novel atomic environments into the training set without
any prior information about the nature of the reaction.

Force field model validation and comparisons with ReaxFF
Wepool together all the structures and sparse environments collected
in the four independent training simulations to construct the final SGP
model, which we validate extensively on a range of properties against
DFT. Our objective is to obtain a model that achieves accurate pre-
diction of not only energy, forces, and stresses during MD simulations
—quantities that the model was directly trained on—but also funda-
mental properties of Pt, H2, and H/Pt that were not explicitly included
in the training set. For bulk Pt, we predict the lattice constant to within
0.1% of theDFT value, as well as the bulkmodulus and elastic constants
to within 6% (see Table 2). The latter considerably improves on the
recent ReaxFF forcefield forH/Pt45, whichoverestimates theC44 elastic
constant by nearly 200%.

We also consider a more stringent test of model performance by
forcing the model to extrapolate on structures that are significantly

different from those encountered during training. In Fig. 3, we plot
model predictions of bulk Pt energies as a function of volume, gas-
phase H2 dissociation and dimer interaction profiles, surface energies
of several Pt facets, and H adsorption energies at different binding
sites. In each case, we present the 99% confidence region associated
with each prediction, which we compute under the Deterministic
Training Conditional approximation of the GP predictive variance (see
Methods).

In general, we observe low uncertainties and excellent agreement
with DFT for configurations that are well-represented in the training
set. For bulk Pt, the uncertainties nearly vanish close to the equilibrium
volume (Fig. 3a), which was extensively sampled in the 0GPa training
simulation of bulk Pt. The model also gives confident and accurate
predictions for H2 bond lengths between ~ 0.5 and 1.2Å (Fig. 3b) and
for dimer separations above 1.8Å (Fig. 3c). The confidence region
expectedly grows for extreme bond lengths and dimer separations
that were not encountered during training (see Supplementary Fig. 3
for the radial distribution function of the H2 training simulation aver-
aged over all frames). For surface energies and H adsorption energies
(Fig. 3d, e), themodel agrees well with DFT for Pt(111). Surprisingly, the
model is able to generalize and provide robust predictions for other
surface facets that have not been included in training. The largest
uncertainties are observed forH adsorption energies at (110) and (100)
hollow sites, most likely due to geometric differences from the (111)
binding site configurations.

Next, we validate model predictions of potential energies, atomic
forces, and virial stress tensor components against DFT and compare
with the ReaxFF model45 (see Supplementary Figs. 7–9 for the parity
plots). The models are tested on 50 regularly spaced frames from two
500-ps trajectories thatwere generated independently at 1200 K using
the SGP and ReaxFFmodels. The structurewas initializedwith one side
of the slab at full H coverage. We first highlight that qualitatively dif-
ferent behaviors aregeneratedby the two forcefieldmodels.Whileour

Table 2 | Properties of bulk Pt, compared with experimental
measurements and calculations using DFT, the SGP model,
and the ReaxFF model45: the lattice constant a (Å); the bulk
modulus B (GPa); and the elastic constants C11, C12, and
C44 (GPa)

Property Experiment DFT SGP ReaxFF

a 3.923 3.968 3.970 (0.1) 3.947 (0.6)

B 280.1 248.0 258.2 (4.1) 240.4 (−3.1)

C11 348.7 314.5 323.2 (2.8) 332.0 (5.6)

C12 245.8 214.8 225.7 (5.1) 194.6 (−9.4)

C44 73.4 64.9 68.9 (6.2) 194.6 (199.8)

Percent errors relative to DFT are reported in parentheses for the SGP and ReaxFF models.

Fig. 3 | Validationof theH/Pt SGP forcefield. In eachplot, shaded regions indicate
99% confidence regions of the SGP model. a Energy versus volume of bulk Pt.
b Energy versus H–H bond distance of a single H2 molecule. c Energy versus

intermolecular distance of two H2 molecules oriented perpendicular (blue) and
parallel (green) to each other. d Surface energies of Pt for (111), (110), (100), and
(211) facets. e H adsorption energies at different binding sites and Pt facets.
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SGP model displays only adsorption and desorption events, the
ReaxFF model gives rise to non-physical surface sublimation of iso-
lated Pt hydride species, even at temperatures as low as 600K (see
Supplementary Fig. 14). To assess the fidelity of both models to DFT,
we examine the accuracy of SGP and ReaxFF predictions on structures
drawn from both MD trajectories.

Supplementary Table 1 summarizes the mean absolute errors
(MAE) with respect to DFT for the three classes of properties. Overall,
the SGP predictions demonstrate significantly higher fidelity to DFT
than the ReaxFF predictions for both trajectories. In particular, even
though the surface-evaporated structures encountered in the ReaxFF
trajectory were not included in our training set, the SGP model is
capable of extrapolating on these structures closer to the DFT values
than the ReaxFF model. This improvement is most apparent in the
potential energypredictions on theReaxFF trajectory. ReaxFFpredicts
the high-energy evaporated structures to be low-energy (MAE = 93
meV/atom); the SGPmodel does so aswell, but to amuch lesser extent
(MAE = 26meV/atom), as evidenced by the cluster of data points being
closer to the parity line in Supplementary Fig. 8.

We now examine full transition state pathways for H2 dissociative
adsorption and atomic H diffusion on Pt(111) at the low-coverage limit
(Supplementary Fig. 11). BothDFT andour SGPmodel predict the three
binding sites (FCC hollow, HCP hollow, top) to be nearly isoenergetic
(within ~ 0.05 eV of each other), with the FCC hollow site being the
most stable (Table 3). In contrast, ReaxFF predicts the top site to be the
most stable (by0.16 eV compared to theHCPhollow site) and as such it
was precluded from the analysis here. According to the minimum
energy pathway obtained from DFT (Supplementary Fig. 10), gas-
phase H2 molecule first approaches the top site, followed by dis-
sociation into the nearest FCC hollow sites. Molecular adsorption is
not favored, and as such the structure spontaneously relaxes to the
fully dissociated state. The chemisorption process is barrierless and
overall exothermic by 1.02 eV. Subsequent diffusion from FCC to HCP
hollow site has the smallest energy barrier (0.07 eV), followed by HCP
hollow to top (0.09 eV) and FCC hollow to top (0.15 eV). As summar-
ized in Table 3, the SGP predictions of these barriers (and the asso-
ciated pathways; see Supplementary Fig. 10) are in excellent
agreement with DFT.

Lastly, we examine atomic H diffusion using SGP to perform MD
simulations in the temperature range of 300–900K (for details see
Supplementary Figs. 12–14 in SI). The Arrhenius analysis yields an
apparent activation energy of 92meV and a diffusion prefactor of
3.53 × 1013Å2/s (Supplementary Fig. 13), in good agreement with the
experimental values of 68 meV and 1 × 1013Å2/s from helium atom
scattering measurements54. This dynamical estimate of the diffusion
barrier is consistent with the static values from the transition state
pathways (Table 3), in the range of 50–150meV (SGP) and 65-149
meV (DFT).

Large-scale reactive MD simulations
The trained SGP model was mapped onto a fast polynomial model, as
described inMethods, and used to performexplicit two-phase reactive

MDsimulations ofH2 turnover on Pt(111). These large-scale simulations
allow for a direct estimation of the reaction rates of H2 dissociative
adsorption and recombinative desorption, resembling a realistic
experimentalmeasurement. The systemwas initializedwith both sides
of the slabat fullH coverage and80 randomlyorientedH2molecules in
the gasphase, giving 864 Pt atomsand 448H atoms in total (see Fig. 4a
for an exampleMD snapshot). The simulations were performed at four
temperatures—450, 600, 750, and 900K—with the vertical dimension
of the box frozen at 6.8 nm and with the pressure along the transverse
axes set to 0GPa. 500ps of dynamics were simulated in total with a
time-step of 0.1 fs. Reactive events were counted by monitoring the
coordination number of each H atom within a 1Å shell, which is zero
for atomic H adsorbed on the surface, and one for molecular H2 in the
gas phase.

During the first ~ 100–200ps, the recombination rate exceeds the
dissociation rate as the system approaches an equilibrium surface H
coverage. Higher temperatures are seen to be associated with lower
equilibrium coverage values (see Supplementary Fig. 5 for a plot of the
surface coverage as a function of time). Once the slab reaches an
equilibrium coverage, the rates of dissociation and recombination
become roughly equal (Fig. 4b). The reaction rates are estimated by
performing a linear fit of the cumulative number of reactive events for
the final 300 ps of each simulation. The Arrhenius plot of these rates
against inverse temperature provides an apparent activation energy of
0.25(2) eV (Fig. 4c). To check the effect of pressure, the simulations
were repeated with double the size of the vacuum, giving a consistent
estimate of 0.20(3)eV for the apparent activation energy (Supple-
mentary Fig. 6). Both estimates are in good agreement with the
experimental values reported in the range of 0.21–0.24 eV from sur-
face science experiments conducted at ultrahigh vacuum55, as well as
ambient pressures56.

Discussion
We have developed an active learning method for autonomous, on-
the-fly training of reactive force fields, achieving excellent accuracy
relative to DFT and computational efficiency surpassing that of the
primary traditional force field used for reactive simulations, ReaxFF.
Themethod presented here is intended to reduce the time, effort, and
expertise required to train accurate reactive force fields, making it
possible to obtain a high-quality model in a matter of days with mini-
mal human supervision. In particular, our method has enabled direct
and unbiased MD simulations of H2 turnover on Pt(111) including all
degrees of freedom with explicit molecular gas phase and chemi-
sorbed H atoms, thereby overcoming the limitations of previous stu-
dies constrained to either an implicit gasphase or a singleH2molecule.

Our method bridges two of the leading approaches to ML force
fields, combining the principled Bayesian uncertainties available in
kernel-based approaches like GAPwith the computational efficiency of
parametric force fields such as SNAP11, qSNAP57, and MTP12. By simpli-
fying the training procedure and reducing the computational cost of
reactive force fields at the same time, this unified approach will help
extend the range of applicability and predictive power of reactive MD
as a modeling tool, providing new insights into complex systems that
have so far remained out of reach. Identifying more compact
descriptors for many-element systems and distributing automated
training protocols across many processors are promising directions
that would help extend themethod presented here to systems of even
greater complexity. Of particular interest are applications to bio-
chemical reactions and more complex heterogeneous catalysis.

Methods
Here, we present our implementation of SGP force fields, our proce-
dure for mapping them onto accelerated polynomial models, and the
computational details of our training workflow, DFT calculations, MD
simulations, and transition state modeling.

Table 3 | H adsorption energies (Eads) and diffusion barriers
(Edif) on Pt(111), compared with DFT and the SGP model

Quantity Sites DFT SGP

Eads (eV) FCC hollow −0.52 −0.48

HCP hollow −0.47 −0.43

Top −0.49 −0.44

Edif (eV) FCC↔HCP 0.07 0.02 0.05 0.01

FCC↔ Top 0.15 0.12 0.15 0.10

HCP↔ Top 0.09 0.11 0.12 0.11

Forward and reverse barriers are listed for each diffusion pathway. See Supplementary Figs. 10
and 11 for the corresponding transition state pathways.
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Sparse Gaussian process (SGP) force fields
Our SGP force fields are defined in three key steps: (i) Fixing the
energy model, which involves expressing the total potential
energy as a sum over local energies assigned to local atomic
environments ρi, (ii) mapping these local environments onto
descriptor vectors di that serve as input to the model, and (iii)
choosing a kernel function k(di, dj) that quantifies the similarity
between two local environments. In this section, we summarize
these steps and then present our approach to making predictions,
evaluating Bayesian uncertainties, and optimizing hyperpara-
meters with the SGP.

Defining the energy model. As in the Gaussian Approximation
Potential formalism10, we express the total potential energy
E(r1,…, rN; s1,…sN) of a structure of N atoms as a sum over local ener-
gies ε assigned to atom-centered local environments,

Eðr1, . . . ,rN ; s1, . . . sNÞ= ∑
N

i
εðsi,ρiÞ: ð1Þ

The decomposition of the total energy into a sum over local, atom-
centered contributions gives the model the key property of scaling
linearly with the number of atoms in the system. Here ri is the position
of atom i, si is its chemical species, andwedefine the local environment
ρi of atom i to be the set of chemical species and interatomic distance
vectors connecting atom i to neighboring atoms j ≠ i within a cutoff
sphere of radius r

ðsi,sj Þ
cut ,

ρi = ðsj ,rijÞ∣rij < r
ðsi ,sj Þ
cut

n o
: ð2Þ

Note that we allow the cutoff radius r
ðsi,sj Þ
cut to depend on the central and

environment species si and sj. This additionalflexibilitywas found to be
important in the H/Pt system, with H–H and H–Pt interactions
requiring shorter cutoffs than Pt-Pt.

Describing local environments. To train an SGP model, local envir-
onments ρi must be mapped onto fixed-dimension descriptor vectors
di that respect the physical symmetries of the potential energy surface.
Different from SOAP descriptors used inGAP, we use themultielement
atomic cluster expansion of Drautz50,58 to efficiently compute many-
body descriptors that satisfy rotational, permutational, translational,
and mirror symmetry. To satisfy rotational invariance, the descriptors
are computed in a two-step process: the first step is to compute a
rotationally equivariant descriptor ci of atom i by looping over the
neighbors of i and passing each interatomic distance vector rij through
a basis set of radial basis functions multiplied by spherical harmonics,
and the second step is to transform ci into a rotationally invariant
descriptor di by forming a tensor product of ci with itself and keeping
only the rotationally invariant elements of the resulting tensor. In the
first step, the interatomic distance vectors rij are passed through basis
functions ϕnℓm of the form

ϕ
ðsi,sj Þ
n‘m ðrijÞ=Rnð~rijÞY ‘mðr̂ijÞc rij ,r

ðsi ,sj Þ
cut

� �
, ð3Þ

where ~rij =
rij

r
ðsi ,sj Þ
cut

is a scaled interatomic distance, Rn are radial basis

functions defined on the interval [0, 1], Yℓm are the real spherical har-
monics, and c is a cutoff function that smoothly goes to zero as the

interatomic distance rij approaches the cutoff radius r
ðsi,sj Þ
cut . The

equivariant descriptor ci (called the "atomic base” in ref. 50) is a tensor
indexed by species s, radial number n and angular numbers ℓ and m,
and is computed by summing the basis functions over all neighboring
atoms of a particular species s,

cisnlm = ∑
j2ρi

δs,sj
ϕ

ðsi ,sj Þ
n‘m ðrijÞ, ð4Þ

where δs,sj
= 1 if s = sj and 0 otherwise. Finally, in the second step, the

rotationally invariant vectordi is computedby invoking the sum rule of

Fig. 4 | Reactive MD simulation of H/Pt(111) with the mapped SGP force field.
a Snapshot from a 500ps simulation at 900K. The system is a six-layer slab model
of a 12 × 12 unit cell of Pt(111) with H2 reactive events occurring at both sides of the
slab. b Cumulative number of dissociation and recombination events observed at
450K (dark blue), 600K (light blue), 750K (orange), and 900K (red). The reaction

rate is estimated from the slope of each curve after an initial equilibration period of
200ps. c Arrhenius plot of the reaction rate versus inverse temperature. An
apparent activation energy of 0.25(2) eV is obtained, in good agreement with the
experimental values of 0.21–0.24 eV55,56.
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spherical harmonics,

dis1s2n1n2‘
= ∑

‘

m=�‘
cis1n1‘m

cis2n2‘m
: ð5Þ

To eliminate redundancy in the invariant descriptor, we notice that
interchanging the s and n indices leaves the descriptor unchanged,

dis1s2n1n2‘
=dis2s1n2n1‘

: ð6Þ

In practice we keep only the unique values, which can be visualized as
the upper- or lower-triangular portion of the matrix formed
from invariant contractions of the tensor product ci⊗ ci, as
shown schematically in Fig. 1(b). This gives a descriptor vector of
dimension

ndesc =
NspeciesNradðNspeciesNrad + 1Þð‘max + 1Þ

2
, ð7Þ

where Nspecies is the number of species, Nrad is the number of radial
functions, and ‘max is the maximum value of ℓ in the spherical har-
monics expansion. When computing descriptor values, we also com-
pute gradients with respect to the Cartesian coordinates of each
neighbor in the local environment,which are needed to evaluate forces
and stresses.

The cutoff radii r
ðsi ,sj Þ
cut and radial and angular basis set sizes Nrad

and ‘max are hyperparameters of the model that can be tuned to
improve accuracy. We chose the Chebyshev polynomials of the first
kind for the radial basis set and a simple quadratic for the cutoff,

c rij ,r
ðsi ,sj Þ
cut

� �
= r

ðsi ,sj Þ
cut � rij

� �2
: ð8Þ

We set the Pt-Pt cutoff to 4.25Å and theH–HandH–Pt cutoffs to 3.0Å,
and truncated the basis expansion at Nrad = 8, ‘max = 3. These
hyperparameters performed favorably on a restricted training set of
H/Pt structures, as determined by the log marginal likelihood of the
SGP (see Supplementary Fig. 1).

Making model predictions. The SGP prediction of the local energy ε
assigned to environment ρi is evaluated by performing a weighted sum
of kernels between ρi and a set of representative sparse environments S,

εðρiÞ= ∑
NS

t2S
kðdi,dtÞαt , ð9Þ

where NS is the number of sparse environments, k is a kernel function
quantifying the similarity of two local environments, and α is a vector
of training coefficients. For the kernel function, we use a normalized
dot product kernel raised to an integer power ξ, similar to the SOAP
kernel51:

kðd1,d2Þ= σ2 d1 � d2

d1d2

� �ξ

: ð10Þ

Here, d1 = ∥d1∥ and d2 = ∥d2∥. The hyperparameter σ quantifies varia-
tion in the learned local energy, and in our final trained model is set
to 3.84 eV.

The training coefficients α are given by

α =ΣKSFy, ð11Þ

where Σ = ðKSFΛ
�1KFS +KSSÞ

�1
, KSF is the matrix of kernel values

between the sparse set S and the training set F (withKFS =K
>
SF ),KSS is

the matrix of kernel values between the sparse set S and itself, Λ is a
diagonal matrix of noise values quantifying the expected error
associated with each training label, and y is the vector of training
labels consisting of potential energies, forces, and virial stresses.
For the noise values inΛ, we chose for the final trainedmodel a force
noise of σF = 0.1 eV/Å, an energy noise of σE = 50meV, and a stress
noise of σS = 0.1 GPa. In practice, we found that performing direct
matrix inversion to compute Σ in Eq. (11) was numerically unstable,
so we instead compute α with QR decomposition, as proposed in
ref. 59.

Evaluating uncertainties. To evaluate uncertainties on total potential
energies E, we compute the GP predictive variance VE under the
Deterministic Training Conditional (DTC) approximation60,

VE = kEE � kESK
�1
SSkES +kESΣkSE : ð12Þ

Here kEE is the GP covariance between E and itself, which is computed
as a sum of local energy kernels

kEE = hE,Ei= ∑
N

i,j = 1
hεi,εji= ∑

N

i,j = 1
kðdi,djÞ ð13Þ

with i and j ranging over all atoms in the structure. The row vector kES
stores the GP covariances between the potential energy E and the local
energies of the sparse environments, with kSE =k

>
ES.

Surface energies and binding energies are linear combinations of
potential energies, and their uncertainties can be obtained from a
straightforward generalization of Eq. (12). Consider a quantityQ of the
formQ = aE1 + bE2, where a and b are scalars and E1 and E2 are potential
energies. GP covariances are bilinear, so that for instance

hQ,Ei=ahE1,Ei+bhE2,Ei, ð14Þ

and as a consequence the GP predictive variance assigned to Q is
obtained by replacing kEE and kES in Eq. (12) with kQQ and kQS,
respectively, where

kQQ = hQ,Qi=a2kE1E1
+b2kE2E2

+ 2abkE1E2
ð15Þ

and

kQS =akE1S
+bkE2S

: ð16Þ

We use these expressions to assign confidence regions to the surface
and binding energies reported in Fig. 3.

To evaluate uncertainties on local energies ε, we first compute a
simplified predictive variance

V ε = kεε � kεSK
�1
SSkSε: ð17Þ

Formally, Vε is the predictive variance of an exact GP trained on the
local energies of the sparse environments, and it has two convenient
properties: (i) it is independent of the noise hyperparameters Λ, and
(ii) it is proportional to but otherwise independent of the signal var-
iance σ2. This allows us to rescale the variance to obtain a unitless
measure of uncertainty eV ε,

eV ε =
1
σ2 V ε: ð18Þ

Notice that eV ε lies between 0 and 1 and is independent of the kernel
hyperparameters, providing a robust uncertainty measure on local
environments that we use to guide our active learning protocol.
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Optimizing hyperparameters. To optimize the hyperparameters of
the SGP, we evaluate the DTC log marginal likelihood

L= � 1
2
log ∣KSFK

�1
SSKFS +Λ∣�

1
2
y>ðKSFK

�1
SSKFS +ΛÞ

�1
y� Nlabels

2
logð2πÞ,

ð19Þ

where Nlabels is the total number of lables in the training set. Eq. (19)
quantifies the likelihood of the training labels y given a particular
choice of hyperparameters. The first termpenalizesmodel complexity
while the second measures the quality of the fit, and hence hyper-
parameters that maximize L tend to achieve a favorable balance of
complexity and accuracy61. During on-the-fly runs, after each of the
first ten updates to the SGP, the kernel hyperparameters σ, σE, σF, and
σS are optimized with the L-BFGS algorithm by evaluating the gradient
of L. We also use the log marginal likelihood to evaluate different
descriptor hyperparameters Nrad, ‘max, and r

ðsi ,sj Þ
cut and the discrete

kernel hyperparameter ξ (see Supplementary Fig. 1 for a comparison).

Mapping to an equivalent polynomial model
Letting ~d i =

di
di
denote the normalized descriptor of local environment

ρi, weobserve thatwith the dot product kernel defined in Eq. (10), local
energy prediction can be rewritten as

εðρiÞ= σ2 ∑
t

� ~d i � ~dt

�ξ
αt

= σ2 ∑
t,m1 ,...,mξ

~dim1

~dtm1
� � � ~dimξ

~dtmξ
αt

= σ2 ∑
m1 ,...,mξ

~dim1
� � � ~dimξ

∑
t

~dtm1
� � � ~dtmξ

αt

� �

= ∑
m1 ,...,mξ

~dim1
� � � ~dimξ

βm1 ,...,mξ
,

ð20Þ

where in the final two lines we have gathered all terms involving the
sparse set into a symmetric tensor β of rank ξ. Once β is computed,
mean predictions of the SGP can be evaluated without performing a
loop over sparse points, which can considerably accelerate model
predictions for small ξ. For ξ = 1, corresponding to a simpledotproduct
kernel, mean predictions become linear in the descriptor,

εξ = 1ðρiÞ= ~d � β: ð21Þ

Evaluating the local energy with Eq. (21) requires a single dot product
rather than a dot product for each sparse environment, accelerating
local energy prediction with the SGP by a factor of NS. For ξ = 2, mean
predictions are quadratic in the descriptor and can be evaluatedwith a
vector-matrix-vector product,

εξ = 2ðρiÞ= ~d
>
β~d: ð22Þ

The cost of the matrix-vector product β~d scales quadratically with the
descriptor dimension ndesc and becomes the principal bottleneck
when the descriptor dimension is large, as shown in Supplementary
Figs. 15 and 16.

The mapping in Eq. (22) is exact and provides an acceleration of
SGP local energy prediction if the number of sparse environments
exceeds the descriptor dimension, NS > ndesc, with quadratic predic-

tion expected to be faster by a factor of NS
ndesc

. For general ξ, this ratio of

efficiencies is equal to NS

nξ
desc

and diminishes rapidly with ξ. In our H/Pt

models, for which NS = 2424 and ndesc = 544, we found ξ = 2 models to
give considerable improvement over ξ = 1, but found no benefit for
ξ ≥ 3 (see Supplementary Table I). We therefore selected ξ = 2 for our
final trained model and used quadratic prediction when performing

production MD simulations, giving a theoretical speed up over SGP

mean prediction of NS
ndesc

≈4:5. In practice we observe a speed up of

greater than 10x due to better optimization of the quadratic LAMMPS
model (see Supplementary Fig. 4).

Computational details
Training workflow. To calculate the ACE descriptors, train SGP mod-
els, and map SGPs onto accelerated quadratic models, we have
developed the FLARE++ code, available at https://github.com/mir-
group/flare_pp. On-the-fly training simulations were performed with
the FLARE code32, available at https://github.com/mir-group/flare,
which is coupled to the MD engine as implemented in the Atomic
Simulation Environment (ASE)62 and theDFT engine as implemented in
the Vienna Ab Initio Simulation Package (VASP)63.

Density functional theory (DFT). We perform DFT calculations using
plane-wave basis sets and the projector augmented-wave (PAW)
method as implemented in the Vienna Ab Initio Simulation Package
(VASP)63. The plane-wave kinetic energy cutoff is set at 450eV. The
Methfessel-Paxton smearing scheme is employed with a broadening
value of 0.2 eV. The total energy is converged to 10−5 eV. Gas-phase H2

is optimized in a 14 × 15 × 16Å3 cell at the Γ-point. The lattice constant
of bulk face-centered cubic Pt is optimized according to the third-
order Birch-Murnaghan equation of state, using a 19 × 19 × 19 k-point
grid. For training and benchmark, we use a six-layer slab model of a
3 × 3 unit cell of Pt(111). The slab is spaced with 16Å of vacuum along
the direction normal to the surface in order to avoid spurious inter-
actions between adjacent unit cells. The Brillouin zone is sampled
using a Γ-centered 7 × 7 × 1 k-point grid. For force field validation
(Supplementary Figs. 7–9), we use a slightly larger 5 × 5 unit cell with a
5 × 5 × 1 k-point grid.

We employ the Perdew-Burke-Ernzerhof (PBE) parametrization64

of the generalized gradient approximation (GGA) of the exchange-
correlation functional. PBE provides Pt lattice constant of 3.97Å, in
good agreement with the experimental benchmark of 3.92Å65. We also
examine the dissociative adsorption energy of H2, defined as the
change in energy from an isolated slab and a gas phase H2 to a com-
bined system of atomic H adsorbed on the slab:

Eads = EHðadsÞ=Ptð111Þ � EPtð111Þ �
1
2
EH2ðgÞ

: ð23Þ

PBE provides H adsorption energy of−0.52 eV at the dilute limit,
within 0.16 eV of the experimental benchmark of −0.36 eV66. Based on
these observations, we conclude that PBE is an appropriate reference
functional that can provide reasonable comparison with experiments
for H2 chemisorption on Pt(111)67.

Molecular dynamics (MD). We perform MD simulations using
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)68 with our custom pair-style for mapped SGP force fields
available in the FLARE++ repository. We also make various compar-
isons with an available H/Pt ReaxFF model45,69 for force field validation
(Supplementary Figs. 7–9 and 14). For simulations of H2 reactivity, we
use a six-layer slab model of a 12 × 12 unit cell of Pt(111). Periodic
boundary condition is enforced in all Cartesian directions. The box
dimension normal to the surface is fixed to retain the vacuum. A
velocity-Verlet integrator is usedwith a time-stepof δt =0.1 fs to evolve
the equations of motion. Production simulations are run for 500ps
within the isothermal-isobaric (NPT) ensemble at a temperature range
of 300–900K. Pressure and temperature are enforced on the system
using a Nos�e-Hoover barostat (1000 δt = 100 fs coupling) and ther-
mostat (100 δt = 10 fs coupling), respectively.

For Arrhenius analysis of atomic H diffusion (Supplementary
Figs. 12 and 13), we use a 10 × 10 unit cell of Pt(111). The bottommost
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layer is immobilized (velocities and forces set to zero) toprevent it from
acting as a surface. All simulations consist of 10 ps equilibration within
the isothermal-isobaric (NPT) ensemble, followed by 200ps produc-
tion within the canonical (NVT) ensemble at the same temperature
range of 300–900K. We take the second half of the production as a
linear diffusive regime, where the mean-squared displacement (MSD)
behaves linearly as a function of time. For each temperature, theMSD is
averaged over 30 parallel replicas to ensure sufficient noise reduction.

Transition state modeling. We perform ab initio transition state
modeling using the VASP Transition State Tools (VTST) (Supplemen-
tary Figs. 10 and 11). The bottom three layers are fixed at their bulk
positions to mimic bulk properties. All initial and final states are
optimized via ionic relaxation, with the total energy and forces con-
verged to 10−5 eV and 0.02 eV/Å, respectively. Transition state path-
ways are first optimized via the climbing-image nudged elastic band
(CI-NEB)method, using three intermediate images generated by linear
interpolation with a spring constant of 5 eV/Å2. The total forces,
defined as the sum of the spring force along the chain and the true
force orthogonal to the chain, are converged to 0.05 eV/Å. Then, the
image with the highest energy is fully optimized to a first-order saddle
point via the dimer method, this time converging the total energy and
forces to 10−7 eV and 0.01 eV/Å, respectively. We confirm that the
normal modes of all transition states contain only one imaginary fre-
quency by calculating the Hessian matrix within the harmonic
approximation, using central differences of 0.01Å at the same level of
accuracy as the dimer method.

For comparison against DFT, the transition state pathways are
also optimized with our SGP model via the CI-NEB method as imple-
mented in LAMMPS, this time using ten intermediate images gener-
ated by linear interpolation.

Data availability
Input and output files of the molecular dynamics simulations descri-
bed in this study are available at https://archive.materialscloud.org/
record/2022.92.

Code availability
An open-source implementation of the FLARE++ code is available at
https://github.com/mir-group/flare_pp.
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