
ACTIVE LEARNING: THEORY AND APPLICATIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Simon Tong

August 2001

c Copyright by Simon Tong 2001

All Rights Reserved

ii

I certify that I have read this dissertation and that in my opin-

ion it is fully adequate, in scope and quality, as a dissertation

for the degree of Doctor of Philosophy.

Daphne Koller
Computer Science Department

Stanford University

(Principal Advisor)

I certify that I have read this dissertation and that in my opin-

ion it is fully adequate, in scope and quality, as a dissertation

for the degree of Doctor of Philosophy.

David Heckerman
Microsoft Research

I certify that I have read this dissertation and that in my opin-

ion it is fully adequate, in scope and quality, as a dissertation

for the degree of Doctor of Philosophy.

Christopher Manning
Computer Science Department

Stanford University

Approved for the University Committee on Graduate Stud-

ies:

iii

To my parents and sister.

iv

Abstract

In many machine learning and statistical tasks, gathering data is time-consuming and costly;

thus, finding ways to minimize the number of data instances is beneficial. In many cases,

active learning can be employed. Here, we are permitted to actively choose future training

data based upon the data that we have previously seen. When we are given this extra flex-

ibility, we demonstrate that we can often reduce the need for large quantities of data. We

explore active learning for three central areas of machine learning: classification, parameter

estimation and causal discovery.

Support vector machine classifiers have met with significant success in numerous real-

world classification tasks. However, they are typically used with a randomly selected train-

ing set. We present theoretical motivation and an algorithm for performing active learning

with support vector machines. We apply our algorithm to text categorization and image

retrieval and show that our method can significantly reduce the need for training data.

In the field of artificial intelligence, Bayesian networks have become the framework of

choice for modeling uncertainty. Their parameters are often learned from data, which can

be expensive to collect. The standard approach is to data that is randomly sampled from

the underlying distribution. We show that the alternative approach of actively targeting data

instances to collect is, in many cases, considerably better.

Our final direction is the fundamental scientific task of causal structure discovery from

empirical data. Experimental data is crucial for accomplishing this task. Such data is often

expensive and must be chosen with great care. We use active learning to determine the

experiments to perform. We formalize the causal learning task as that of learning the struc-

ture of a causal Bayesian network and show that active learning can substantially reduce the

number of experiments required to determine the underlying causal structure of a domain.

v

Acknowledgments

My time at Stanford has been influenced and guided by a number of people to whom I am

deeply indebted. Without their help, friendship and support, this thesis would likely never

have seen the light of day.

I would first like to thank the members of my thesis committee, Daphne Koller, David

Heckerman and Chris Manning for their insights and guidance. I feel most fortunate to

have had the opportunity to receive their support.

My advisor, Daphne Koller, has had the greatest impact on my academic development

during my time at graduate school. She had been a tremendous mentor, collaborator and

friend, providing me with invaluable insights about research, teaching and academic skills

in general. I feel exceedingly privileged to have had her guidance and I owe her a great

many heartfelt thanks.

I would also like to thank the past and present members of Daphne’s research group that

I have had the great fortune of knowing: Eric Bauer, Xavier Boyen, Urszula Chajewska,

Lise Getoor, Raya Fratkina, Nir Friedman, Carlos Guestrin, Uri Lerner, Brian Milch, Uri

Nodelman, Dirk Ormoneit, Ron Parr, Avi Pfeffer, Andres Rodriguez, Merhan Sahami, Eran

Segal, Ken Takusagawa and Ben Taskar. They have been great to knock around ideas with,

to learn from, as well as being good friends.

My appreciation also goes to Edward Chang. It was a privilege to have had the oppor-

tunity to work with Edward. He was instrumental in enabling the image retrieval system to

be realized. I truly look forward to the chance of working with him again in the future.

I also owe a great deal of thanks to friends in Europe who helped keep me sane and

happy during the past four years: Shamim Akhtar, Jaime Brandwood, Kaya Busch, Sami

Busch, Kris Cudmore, James Devenish, Andrew Dodd, Fabienne Kwan, Andrew Murray

vi

and too many others – you know who you are!

My deepest gratitude and appreciation is reserved for my parents and sister. Without

their constant love, support and encouragement and without their stories and down-to-earth

banter to keep my feet firmly on the ground, I would never have been able to produce this

thesis. I dedicate this thesis to them.

vii

Contents

Abstract v

Acknowledgments vi

I Preliminaries 1

1 Introduction 2

1.1 What is Active Learning? . 2

1.1.1 Active Learners . 4

1.1.2 Selective Setting . 5

1.1.3 Interventional Setting . 5

1.2 General Approach to Active Learning . 6

1.3 Thesis Overview . 7

2 Related Work 9

II Support Vector Machines 12

3 Classification 13

3.1 Introduction . 13

3.2 Classification Task . 14

3.2.1 Induction . 14

3.2.2 Transduction . 15

viii

3.3 Active Learning for Classification . 15

3.4 Support Vector Machines . 17

3.4.1 SVMs for Induction . 17

3.4.2 SVMs for Transduction . 19

3.5 Version Space . 20

3.6 Active Learning with SVMs . 24

3.6.1 Introduction . 24

3.6.2 Model and Loss . 24

3.6.3 Querying Algorithms . 27

3.7 Comment on Multiclass Classification . 31

4 SVM Experiments 36

4.1 Text Classification Experiments . 36

4.1.1 Text Classification . 36

4.1.2 Reuters Data Collection Experiments 37

4.1.3 Newsgroups Data Collection Experiments 43

4.1.4 Comparision with Other Active Learning Systems 46

4.2 Image Retrieval Experiments . 47

4.2.1 Introduction . 47

4.2.2 The SVMActive Relevance Feedback Algorithm for Image Retrieval . 48

4.2.3 Image Characterization . 49

4.2.4 Experiments . 52

4.3 Multiclass SVM Experiments . 59

III Bayesian Networks 64

5 Bayesian Networks 65

5.1 Introduction . 65

5.2 Notation . 66

5.3 Definition of Bayesian Networks . 67

5.4 D-Separation and Markov Equivalence . 68

ix

5.5 Types of CPDs . 70

5.6 Bayesian Networks as Models of Causality 70

5.7 Inference in Bayesian Networks . 73

5.7.1 Variable Elimination Method . 73

5.7.2 The Join Tree Algorithm . 80

6 Parameter Estimation 86

6.1 Introduction . 86

6.2 Maximum Likelihood Parameter Estimation 87

6.3 Bayesian Parameter Estimation . 89

6.3.1 Motivation . 89

6.3.2 Approach . 89

6.3.3 Bayesian One-Step Prediction . 92

6.3.4 Bayesian Point Estimation . 94

7 Active Learning for Parameter Estimation 97

7.1 Introduction . 97

7.2 Active Learning for Parameter Estimation 98

7.2.1 Updating Using an Actively Sampled Instance 99

7.2.2 Applying the General Framework for Active Learning 100

7.3 Active Learning Algorithm . 101

7.3.1 The Risk Function for KL-Divergence 102

7.3.2 Analysis for Single CPDs . 103

7.3.3 Analysis for General BNs . 105

7.4 Algorithm Summary and Properties . 106

7.5 Active Parameter Experiments . 108

8 Structure Learning 114

8.1 Introduction . 114

8.2 Structure Learning in Bayesian Networks 115

8.3 Bayesian approach to Structure Learning 116

8.3.1 Updating using Observational Data 118

x

8.3.2 Updating using Experimental Data 119

8.4 Computational Issues . 121

9 Active Learning for Structure Learning 122

9.1 Introduction . 122

9.2 General Framework . 123

9.3 Loss Function . 125

9.4 Candidate Parents . 126

9.5 Analysis for a Fixed Ordering . 127

9.6 Analysis for Unrestricted Orderings . 130

9.7 Algorithm Summary and Properties . 133

9.8 Comment on Consistency . 135

9.9 Structure Experiments . 137

IV Conclusions and Future Work 144

10 Contributions and Discussion 145

10.1 Classification with Support Vector Machines 146

10.2 Parameter Estimation and Causal Discovery 149

10.2.1 Augmentations . 150

10.2.2 Scaling Up . 151

10.2.3 Temporal Domains . 152

10.2.4 Other Tasks and Domains . 153

10.3 Epilogue . 155

A Proofs 156

A.1 Preliminaries . 156

A.2 Parameter Estimation Proofs . 157

A.2.1 Using KL Divergence Parameter Loss 157

A.2.2 Using Log Loss . 164

A.3 Structure Estimation Proofs . 166

xi

List of Tables

4.1 Average test set accuracy over the top 10 most frequently occurring topics

(most frequent topic first) when trained with ten labeled documents. Bold-

face indicates first place. 39

4.2 Average test set precision/recall breakeven point over the top ten most fre-

quently occurring topics (most frequent topic first) when trained with ten

labeled documents. Boldface indicates first place. 40

4.3 Typical run times in seconds for the Active methods on the Newsgroups
dataset . 46

4.4 Multi-resolution Color Features. 50

4.5 Average top-50 accuracy over the four-category data set using a regular

SVM trained on 30 images. Texture spatial features were omitted. 57

4.6 Accuracy on four-category data set after three querying rounds using vari-

ous kernels. Bold type indicates statistically significant results. 57

4.7 Average run times in seconds . 57

xii

List of Figures

1.1 General schema for a passive learner. 4

1.2 General schema for an active learner. 4

1.3 General schema for active learning. Here we ask totalQueries queries and

then return the model. 7

3.1 (a) A simple linear support vector machine. (b) A SVM (dotted line) and a

transductive SVM (solid line). Solid circles represent unlabeled instances. . 18

3.2 A support vector machine using a polynomial kernel of degree 5. 20

3.3 (a) Version space duality. The surface of the hypersphere represents unit

weight vectors. Each of the two hyperplanes corresponds to a labeled

training instance. Each hyperplane restricts the area on the hypersphere

in which consistent hypotheses can lie. Here version space is the surface

segment of the hypersphere closest to the camera. (b) An SVM classifier

in a version space. The dark embedded sphere is the largest radius sphere

whose center lies in version space and whose surface does not intersect

with the hyperplanes. The center of the embedded sphere corresponds to

the SVM, its radius is proportional to the margin of the SVM in F and

the training points corresponding to the hyperplanes that it touches are the

support vectors. 21

3.4 (a) Simple Margin will query b. (b) Simple Margin will query a. 27

3.5 (a) MaxMin Margin will query b. The two SVMs with margins m� andm+ for b are shown. (b) MaxRatio Margin will query e. The two SVMs

with marginsm� andm+ for e are shown. 27

3.6 Multiclass classification . 33

xiii

3.7 A version space. 34

4.1 (a) Average test set accuracy over the ten most frequently occurring top-

ics when using a pool size of 1000. (b) Average test set precision/recall

breakeven point over the ten most frequently occurring topics when using

a pool size of 1000. 38

4.2 (a) Average test set accuracy over the ten most frequently occurring top-

ics when using a pool size of 1000. (b) Average test set precision/recall

breakeven point over the ten most frequently occurring topics when using

a pool size of 1000. 41

4.3 (a) Average test set accuracy over the ten most frequently occurring topics

when using a pool sizes of 500 and 1000. (b) Average breakeven point over

the ten most frequently occurring topics when using a pool sizes of 500 and

1000. 42

4.4 Average pool set precision/recall breakeven point over the ten most fre-

quently occurring topics when using a pool size of 1000. 43

4.5 (a) Average test set accuracy over the five omp:� topics when using a pool

size of 500. (b) Average test set accuracy for omp:sys:ibm:p:hardware
with a 500 pool size. 44

4.6 (a) A simple example of querying unlabeled clusters. (b) Macro average

test set accuracy for omp:os:ms-windows:mis and omp:sys:ibm:p:hardware
where Hybrid uses the MaxRatio method for the first ten queries and Simple
for the rest. 45

4.7 (a) Average breakeven point performance over the Corn, Trade and AcqReuters-21578 categories. (b) Average test set accuracy over the top tenReuters-21578 categories. 46

4.8 Multi-resolution texture features. 51

4.9 (a) Average top-k accuracy over the four-category dataset. (b) Average

top-k accuracy over the ten-category dataset. (c) Average top-k accuracy

over the fifteen-category dataset. Standard error bars are smaller than the

curves’ symbol size. Legend order reflects order of curves. 55

xiv

4.10 (a) Active and regular passive learning on the fifteen-category dataset after

three rounds of querying. (b) Active and regular passive learning on the

fifteen-category dataset after five rounds of querying. Standard error bars

are smaller than the curves’ symbol size. Legend order reflects order of

curves. 56

4.11 (a) Top-100 precision of the landscape topic in the four-category dataset as

we vary the number of examples seen. (b) Top-100 precision of the land-

scape topic in the four-category dataset as we vary the number of querying

rounds. (c) Comparison between asking ten images per pool-query round

and twenty images per pool-querying round on the fifteen-category dataset.

Legend order reflects order of curves. 56

4.12 (a) Average top-k accuracy over the ten-category dataset. (b) Average top-k
accuracy over the fifteen-category dataset. 58

4.13 Searching for architecture images. SVMActive Feedback phase. 61

4.14 Searching for architecture images. SVMActive Retrieval phase. 62

4.15 (a) Iris dataset. (b) Vehicle dataset. (c) Wine dataset. (d) Image dataset

(Active version space vs. Random). (e) Image dataset (Active version

space vs. uncertainty sampling). Axes are zoomed for resolution. Legend

order reflects order of curves. 63

5.1 Cancer Bayesian network modeling a simple cancer domain. “Cancer” de-

notes whether the subject has secondary, or metastatic, cancer. “Calcium

increase” denotes if there is an increase of calcium level in the blood. “Pa-

pilledema” is a swelling of the optical disc. 66

5.2 The entire Markov equivalence class for the Cancer network 71

5.3 Mutilated Cancer Bayesian network after we have forced Cal := cal1. . . . 72

5.4 The variable elimination algorithm for computing marginal distributions. . . 78

5.5 The Variable Elimination Algorithm. 80

5.6 Initial join tree for the Cancer network constructed using the elimination

ordering Can; Pap; Cal; Tum. 81

xv

5.7 Processing the node XYZ during the upward pass. (a) Before processing

the node. (b) After processing the node. 83

5.8 Processing the node XYZ during the downward pass. (a) Before processing

the node. (b) After processing the node. 84

6.1 Smoking Bayesian network with its parameters. 87

6.2 An example data set for the Smoking network 88

6.3 Examples of the Dirichlet distribution. � is on the horizontal axis, and p(�)
is on the vertical axis. 91

6.4 Bayesian point estimate for a Dirichlet(6; 2) parameter density using KL

divergence loss: ~� = 0:75. 94

7.1 Algorithm for updating p0 based on query Q := q and response x. 100

7.2 Single family. U1; : : : ; Uk are query nodes. 103

7.3 Active learning algorithm for parameter estimation in Bayesian networks. . 107

7.4 (a) Alarm network with three controllable root nodes. (b) Asia network

with two controllable root nodes. The axes are zoomed for resolution. . . . 109

7.5 (a) Cancer network with one controllable root node. (b) Cancer network

with two controllable non-root nodes using selective querying. The axes

are zoomed for resolution. 110

7.6 (a) Asia network with � = 0:3. (b) Asia network with � = 0:9. The axes

are zoomed for resolution. 112

7.7 (a) Cancer network with a “good” prior. (b) Cancer network with a “bad”

prior. The axes are zoomed for resolution. 112

8.1 A distribution over networks and parameters. 116

9.1 Active learning algorithm for structure learning in Bayesian networks. . . . 134

9.2 (a) Cancer with one root query node. (b) Car with four root query nodes.

(c) Car with three root query nodes and weighted edge importance. Leg-

ends reflect order in which curves appear. The axes are zoomed for resolution.138

9.3 Asia with any pairs or single or no nodes as queries. Legends reflect order

in which curves appear. The axes are zoomed for resolution. 140

xvi

9.4 (a) Cancer with any pairs or single or no nodes as queries. (b) Cancer

edge entropy. (c) Car with any pairs or single or no nodes as queries. (d)

Car edge entropy. Legends reflect order in which curves appear. The axes

are zoomed for resolution. 141

9.5 (a) Original Cancer network. (b) Cancer network after 70 observations.

(c) Cancer network after 20 observations and 50 uniform experiments.

(d) Cancer network after 20 observations and 50 active experiments. The

darker the edges the higher the probability of edges existing. Edges with

less than 15% probability are omitted to reduce clutter. 143

10.1 Three time-slices of a Dynamic Bayesian network. 153

10.2 A hidden variable H makes X and Y appear correlated in observational

data, but independent in experimental data. 154

xvii

Part I

Preliminaries

1

Chapter 1

Introduction

“Computers are useless. They can only give answers.”

— Pablo Picasso, (1881-1973).

1.1 What is Active Learning?

The primary goal of machine learning is to derive general patterns from a limited amount

of data. The majority of machine learning scenarios generally fall into one of two learning

tasks: supervised learning or unsupervised learning.

The supervised learning task is to predict some additional aspect of an input object.

Examples of such a task are the simple problem of trying to predict a person’s weight

given their height and the more complex task of trying to predict the topic of an image

given the raw pixel values. One core area of supervised learning is the classification task.

Classification is a supervised learning task where the additional aspect of an object that we

wish to predict takes discrete values. We call the additional aspect the label. The goal in

classification is to then create a mapping from input objects to labels. A typical example

of a classification task is document categorization, in which we wish to automatically label

a new text document with one of several predetermined topics (e.g., “sports”, “politics”,

“business”). The machine learning approach to tackling this task is to gather a training set

by manually labeling some number of documents. Next we use a learner together with the

2

CHAPTER 1. INTRODUCTION 3

labeled training set to generate a mapping from documents to topics. We call this mapping

a classifier. We can then use the classifier to label new, unseen documents.

The other major area of machine learning is the unsupervised learning task. The dis-

tinction between supervised and unsupervised learning is not entirely sharp, however the

essence of unsupervised learning is that we are not given any concrete information as to

how well we are performing. This is in contrast to, say, classification where we are given

manually labeled training data. Unsupervised learning encompasses clustering (where we

try to find groups of data instances that are similar to each other) and model building (where

we try to build a model of our domain from our data). One major area of model building

in machine learning, and one which is central to statistics, is parameter estimation . Here,

we have a statistical model of a domain which contains a number of parameters that need

estimating. By collecting a number of data instances we can use a learner to estimate these

parameters. Yet another, more recent, area of model building is the discovery of correla-

tions and causal structure within a domain . The task of causal structure discovery from

empirical data is a fundamental problem, central to scientific endeavors in many areas.

Gathering experimental data is crucial for accomplishing this task.

For all of these supervised and unsupervised learning tasks, usually we first gather

a significant quantity of data that is randomly sampled from the underlying population

distribution and we then induce a classifier or model. This methodology is called passive

learning . A passive learner (Fig. 1.1) receives a random data set from the world and then

outputs a classifier or model.

Often the most time-consuming and costly task in these applications is the gathering

of data. In many cases we have limited resources for collecting such data. Hence, it is

particularly valuable to determine ways in which we can make use of these resources as

much as possible. In virtually all settings we assume that we randomly gather data instances

that are independent and identically distributed. However, in many situations we may have

a way of guiding the sampling process. For example, in the document classification task

it is often easy to gather a large pool of unlabeled documents. Now, instead of randomly

picking documents to be manually labeled for our training set, we have the option of more

carefully choosing (or querying) documents from the pool that are to be labeled. In the

parameter estimation and structure discovery tasks, we may be studying lung cancer in a

CHAPTER 1. INTRODUCTION 4

Figure 1.1: General schema for a passive learner.

Figure 1.2: General schema for an active learner.

medical setting. We may have a preliminary list of the ages and smoking habits of possible

candidates that we have the option of further examining. We have the ability to give only a

few people a thorough examination. Instead of randomly choosing a subset of the candidate

population to examine we may query for candidates that fit certain profiles (e.g., “We want

to examine someone who is over fifty and who smokes”).

Furthermore, we need not set out our desired queries in advance. Instead, we can choose

our next query based upon the answers to our previous queries. This process of guiding the

sampling process by querying for certain types of instances based upon the data that we

have seen so far is called active learning.

1.1.1 Active Learners

An active learner (Fig. 1.2) gathers information about the world by asking queries and

receiving responses. It then outputs a classifier or model depending upon the task that it

is being used for. An active learner differs from a passive learner which simply receives a

random data set from the world and then outputs a classifier or model. One analogy is that

a standard passive learner is a student that gathers information by sitting and listening to

a teacher while an active learner is a student that asks the teacher questions, listens to the

answers and asks further questions based upon the teacher’s response. It is plausible that

CHAPTER 1. INTRODUCTION 5

this extra ability to adaptively query the world based upon past responses would allow an

active learner to perform better than a passive learner, and indeed we shall later demonstrate

that, in many situations, this is indeed the case.

Querying Component

The core difference between an active learner and a passive learner is the ability to ask

queries about the world based upon the past queries and responses. The notion of what

exactly a query is and what response it receives will depend upon the exact task at hand.

As we have briefly mentioned before, the possibility of using active learning can arise

naturally in a variety of domains, in several variants.

1.1.2 Selective Setting

In the selective setting we are given the ability to ask for data instances that fit a certain

profile; i.e., if each instance has several attributes, we can ask for a full instance where

some of the attributes take on requested values. The selective scenario generally arises in

the pool-based setting (Lewis & Gale, 1994). Here, we have a pool of instances that are

only partially labeled. Two examples of this setting were presented earlier – the first was

the document classification example where we had a pool of documents, each of which

has not been labeled with its topic; the second was the lung cancer study where we had a

preliminary list of candidates’ ages and smoking habits. A query for the active learner in

this setting is the choice of a partially labeled instance in the pool. The response is the rest

of the labeling for that instance.

1.1.3 Interventional Setting

A very different form of active learning arises when the learner can ask for experiments

involving interventions to be performed. This type of active learning, which we call in-

terventional, is the norm in scientific studies: we can ask for a rat to be fed one sort of

food or another. In this case, the experiment causes certain probabilistic dependencies in

the model to be replaced by our intervention (Pearl, 2000) – the rat no longer eats what it

CHAPTER 1. INTRODUCTION 6

would normally eat, but what we choose it to eat. In this setting a query is a experiment

that forces particular variables in the domain to be set to certain values. The response is the

values of the untouched variables.

1.2 General Approach to Active Learning

We now outline our general approach to active learning. The key step in our approach

is to define a notion of a modelM and its model quality (or equivalently, model loss,

Loss(M)) . As we shall see, the definition of a model and the associated model loss can be

tailored to suit the particular task at hand.

Now, given this notion of the loss of a model, we choose the next query that will result

in the future model with the lowest model loss. Note that this approach is myopic in the

sense that we are attempting to greedily ask the single next best query. In other words the

learner will take the attitude: “If I am permitted to ask just one more query, what should

it be?” It is straightforward to extend this framework so as to optimally choose the next

query given that we know that we can ask, say, ten queries in total. However, in many

situations this type of active learning is computationally infeasible. Thus we shall just be

considering the myopic schema. We also note that myopia is a standard approximation

used in sequential decision making problems (Horvitz & Rutledge, 1991; Latombe, 1991;

Heckerman et al., 1994) .

When we are considering asking a potential query, q, we need to assess the loss of the

subsequent model,M0. The posterior modelM0 is the original modelM updated with

query q and response x. Since we do not know what the true response x to the potential

query will be, we have to perform some type of averaging or aggregation. One natural

approach is to maintain a distribution over the possible responses to each query. We can

then compute the expected model loss after asking a query where we take the expectation

over the possible responses to the query:

Loss(q) = ExLoss(M0): (1.1)

If we use this definition in our active learning algorithm we would then be choosing the

CHAPTER 1. INTRODUCTION 7

For i := 1 to totalQueries

ForEach q in potentialQueries

Evaluate Loss(q)
End ForEach

Ask query q for which Loss(q) is lowest

Update modelM with query q and response x
End For

Return modelM
Figure 1.3: General schema for active learning. Here we ask totalQueries queries and then

return the model.

query that results in the minimum expected model loss.

In statistics, a standard alternative to minimizing the expected loss is to minimize the

maximum loss (Wald, 1950) . In other words, we assume the worst case scenario: for us,

this means that the response x will always be the response that gives the highest model

loss.

Loss(q) = maxx Loss(M0): (1.2)

If we use this alternative definition of the loss of a query in our active learning algorithm

we would be choosing the query that results in the minimax model loss.

Both of these averaging or aggregation schema are useful. As we shall see later, it may

be more natural to use one rather than the other in different learning tasks.

To summarize, our general approach for active learning is as follows. We first choose a

model and model loss function appropriate for our learning task. We also choose a method

for computing the potential model loss given a potential query. For each potential query

we then evaluate the potential loss incurred and we then chose to ask the query which gives

the lowest potential model loss. This general schema is outlined in Fig. 1.2.

1.3 Thesis Overview

We use our general approach to active learning to develop theoretical foundations, sup-

ported by empirical results, for scenarios in each of the three previously mentioned machine

CHAPTER 1. INTRODUCTION 8

learning tasks: classification, parameter estimation, and structure discovery. We tackle each

of these three tasks by focusing on two particular methods prevalent in machine learning:

support vector machines (Vapnik, 1982) and Bayesian networks (Pearl, 1988).

For the classification task, support vector machines have strong theoretical foundations

and excellent empirical successes. They have been successfully applied to tasks such as

handwritten digit recognition, object recognition, and text classification. However, like

most machine learning algorithms, they are generally applied using a randomly selected

training set classified in advance. In many classification settings, we also have the option

of using pool-based active learning. We develop a framework for performing pool-based

active learning with support vector machines and demonstrate that active learning can sig-

nificantly improve the performance of this already strong classifier.

Bayesian networks (Pearl, 1988) (also called directed acyclic graphical models or belief

networks) are a core technology in density estimation and structure discovery. They permit

a compact representation of complex domains by means of a graphical representation of a

joint probability distribution over the domain. Furthermore, under certain conditions, they

can also be viewed as providing a causal model of a domain (Pearl, 2000) and, indeed, they

are one of the primary representations for causal reasoning. In virtually all of the existing

work on learning these networks, an assumption is made that we are presented with a data

set consisting of randomly generated instances from the underlying distribution. For each

of the two learning problems of parameter estimation and structure discovery, we provide

a theoretical framework for the active learning problem, and an algorithm that actively

chooses the queries to ask. We present experimental results which confirm that active

learning provides significant advantages over standard passive learning.

Much of the work presented here has appeared in previously published journal and

conference papers. The chapters on active learning with support vector machines is based

on (Tong & Koller, 2001c; Tong & Chang, 2001) and work on active learning with Bayesian

networks is based on (Tong & Koller, 2001a; Tong & Koller, 2001b).

Chapter 2

Related Work

There have been several studies of active learning in the supervised learning setting. Algo-

rithms have been developed for classification, regression and function optimization.

For classification, there are a number of active learning algorithms. the Query by Com-

mittee algorithm (Seung et al., 1992; Freund et al., 1997) uses a prior distribution over

hypotheses. The method samples a set of classifiers from this distribution and queries an

example based upon the degree of disagreement between the committee of classifiers. This

general algorithm has been applied in domains and with classifiers for which specifying

and sampling from a prior distribution is natural. They have been used with probabilis-

tic models (Dagan & Engelson, 1995) and specifically with the naive Bayes model for

text classification in a Bayesian learning setting (McCallum & Nigam, 1998). The naive

Bayes classifier provides an interpretable model and principled ways to incorporate prior

knowledge and data with missing values. However, it typically does not perform as well as

discriminative methods such as support vector machines, particularly in the text classifica-

tion domain (Joachims, 1998; Dumais et al., 1998). Liere and Tadepalli (1997) tackled the

task of active learning for text classification by using a committee-like approach with Win-

now learners. In Chapter 4, our experimental results show that our support vector machine

active learning algorithm significantly outperforms these committee-based alternatives.

Lewis and Gale (1994) introduced uncertainty sampling where they choose the instance

that the current classifier is most uncertain about. They applied it to a text domain using

logistic regression and, in a companion paper, using decision trees (Lewis & Catlett, 1994).

9

CHAPTER 2. RELATED WORK 10

In the binary classification case, one of our methods for support vector machine active

learning is essentially the same as their uncertainty sampling method, however they pro-

vided substantially less justification as to why the algorithm should be effective.

In the regression setting, active learning has been investigated by Cohn et al. (Cohn

et al., 1996). They use squared error loss of the model as their measure of quality and

approximate this loss function by choosing queries that reduce the statistical variance of

a learner. More recently it has been shown that choosing queries that minimize the sta-

tistical bias can also be an effective approximation to the squared error loss criteria in

regression (Cohn, 1997). MacKay (MacKay, 1992) also explores the effects of different

information-based loss functions for active learning in a regression setting, including the

use of KL-divergence.

Active learning has also been used for function optimization. Here the goal is to find

regions in a space X for which an unknown function f takes on high values. An example

of such an optimization problem is finding the best setting for factory machine dials so as

to maximize output. There is a large body of work that explores this task both in machine

learning and statistics. The favored method in statistics for this task is the response surface

technique (Box & Draper, 1987) which design queries so as to hill-climb in the space X .

More recently, in the field of machine learning, Moore et al. (Moore et al., 1998) have

introduced the Q2 algorithm which approximates the unknown function f by a quadratic

surface and chooses to query “promising” points that are furthest away from the previously

asked points.

To our best knowledge, there is considerably less published work on active learning

in unsupervised settings. Active learning is currently being investigated in the context of

refining theories found with ILP (Bryant et al., 1999). Such a system has been proposed

to drive robots that will perform queries whose results would be fed back into the active

learning system.

There is also a significant body of work on the design of experiments in the field of

optimal experimental design (Atkinson & Bailey, 2001); there, the focus is not on learning

the causal structure of a domain, and the experiment design is typically fixed in advanced,

rather than selected actively.

One other major area of machine learning is reinforcement learning (Kaebling et al.,

CHAPTER 2. RELATED WORK 11

1996). This does not fall neatly into either a supervised learning task, or an unsupervised

learning task. In reinforcement learning, we imagine that we can perform some series of

actions in a domain. For example, we could be playing a game of poker. Each action moves

us to a different part (or state) of the domain. Before we choose each action we receive

some (possibly noisy) observation that indicates the current state that we are in. The domain

may be stochastic and so performing the same action in the same state will not guarentee

that we will end up in the same resulting state. Unlike supervised learning, we are often

never told how good each action for each state is. However, unlike in unsupervised learning,

we are usually told how good a sequence of actions is (although we still may not know

exactly which states we were in when we performed them) by way of receiving a reward.

Our goal is find a way of performing actions so as to maximize the reward. There exists

a classical trade-off in reinforcement learning called the exploration/exploitation trade-off:

if we have already found a way to act in the domain that gives us a reasonable reward, then

should we continue exploiting what we know by continuing to act the way we are now, or

should we try to explore some other part of the domain or way to act in the hope that it

may improve our reward. One approach to tackling the reinforcement problem is to build

a model of the domain. Furthermore, there are model based algorithms that explicitly have

two modes of operation: an explore mode that tries to estimate and refine the parameters of

the whole model and an exploit mode that tries to maximize the reward given the current

model (Kearns & Singh, 1998; Kearns & Koller, 1999). The explore mode can be regarded

as being an active learner; it tries to learn as much about the domain as possible, in the

shortest possible time.

Another related area to active learning is the notion of value of information in deci-

sion theory. The value of information of a variable is the expected increase in utility that

we would gain if we were to know its value. For example, in a printer troubleshooting

task (Heckerman et al., 1994), where the goal is to successful diagnose the problem, we

may have the option of observing certain domain variables (such as “ink warning light on”)

by asking the user questions. We can use a value of information computation to determine

which questions are most useful to ask.

Although we do not tackle the reinforcement or value of information problems directly

in this thesis, we shall re-visit them in the concluding chapter.

Part II

Support Vector Machines

12

Chapter 3

Classification

“When you have eliminated the impossible,

whatever remains, however improbable, must be the truth.”

— Sherlock Holmes,

The Sign of the Four.

3.1 Introduction

Classification is a well established area in engineering and statistics. It is a task that humans

perform well, and effortlessly. This observation is hardly surprising given the numerous

times in which the task of classification arises in everyday life: reading the time on one’s

alarm clock in the morning, detecting whether milk has gone bad merely by smell or taste,

recognizing a friend’s face or voice (even in a crowded or noisy environment), locating

one’s own car in a parking lot full or other vehicles.

Classification also arises frequently in scientific and engineering endeavors: for ex-

ample, handwritten character recognition (LeCun et al., 1995), object detection (LeCun

et al., 1999), interstellar object detection (Odewahn et al., 1992), fraudulent credit card

transaction detection (Chan & Stolfo, 1998) and identifying abnormal cells in cervical

smears (Raab & Elton, 1993). The goal of classification is to induce or learn a classi-

fier that automatically categorizes input data instances. For example, in the handwritten

13

CHAPTER 3. CLASSIFICATION 14

digit task, we would like the learned classifier to classify scanned handwritten digit image

data into one of the ten possible digits.

We now come to the issue of how to learn such classifiers. Notice that we ourselves

are very good at recognizing the gender of a person’s face. However, if we are asked to

manually list the set of rules that a computer could use to perform such a task we find

it particularly hard. Rather than being manually encoded by humans, classifiers can be

learned by analyzing statistical patterns in data. To learn a classifier that distinguishes

between male and female faces we could gather a number of photographs of people’s faces,

manually label each photograph with the person’s gender and use the statistical patterns

present in the photographs together with their labels to induce a classifier. One could argue

that, for many tasks, this process mimics how humans learn to classify objects too – we are

often not given a precise set of rules to discriminate between two sets of objects; instead

we are given a set of positive instances and negative instances and we learn to detect the

differences between them ourselves.

3.2 Classification Task

3.2.1 Induction

By far the most standard and general classification task is the inductive classification task.

This task is broken into two phases. The first phase is the training phase:� Input: independent and identically distributed data from some underlying popula-

tion: fx1 : : :xng where each data instance resides in some space X . We are also

given their labels fy1 : : : yng where the set of possible labels Y , is discrete. We call

this labeled data the training set.� Output: a classifier. This is a function: f : X ! Y .

Once we have a classifier, we can then use it to automatically classify new, unlabeled

data instances in the testing phase:

CHAPTER 3. CLASSIFICATION 15� We are presented with independent and identically distributed data from the same

underlying population as in the training phase: fx01 : : :x0n0g. This previously unseen,

unlabeled data is called the test set.� We use our classifier f to label each of the instances in turn.

We measure performance of our classifier by seeing how well it performs on the test

set.

3.2.2 Transduction

An alternative classification task is the transductive task. In contrast to the inductive setting

where the test set was unknown, in the transductive setting we know our test set before we

start learning anything at all. The test set is still unlabeled, but we know fx01 : : :x0n0g. Our

goal is to simply provide a labeling for the test set. Thus, our task now consists of just one

phase:� Input: independent and identically distributed data from some underlying popula-

tion: fx1 : : :xng where each data instance resides in some space X . We are also

given their labels fy1 : : : yng where the set of possible labels Y , is discrete. We are

also given unlabeled i.i.d. data fx01 : : :x0n0g.� Output: a labeling fy01 : : : y0n0g for the unlabeled data instances.

Notice that we can simply treat the transductive task as an inductive task by pretending

that we do not know the unlabeled test data and then proceeding wit the standard inductive

training and testing phases. However, there are a number of algorithms (Dempster et al.,

1977; Vapnik, 1998; Joachims, 1998) that can take advantage of the unlabeled test data

to improve performance over standard learning algorithms which just treat the task as a

standard inductive problem.

3.3 Active Learning for Classification

In many supervised learning tasks, labeling instances to create a training set is time-consuming

and costly; thus, finding ways to minimize the number of labeled instances is beneficial.

CHAPTER 3. CLASSIFICATION 16

Usually, the training set is chosen to be a random sampling of instances. However, in many

cases active learning can be employed. Here, the learner can actively choose the training

data. It is hoped that allowing the learner this extra flexibility will reduce the learner’s need

for large quantities of labeled data.

Pool-based active learning was introduced by Lewis and Gale (1994). The learner has

access to a pool of unlabeled data and can request the true class label for a certain number of

instances in the pool. In many domains this is a reasonable approach since a large quantity

of unlabeled data is readily available. The main issue with active learning in this setting is

finding a way to choose good queries from the pool.

Examples of situations in which pool-based active learning can be employed are:� Web searching. A Web based company wishes to gather particular types of pages

(e.g., pages containing lists of people’s publications). It employs a number of people

to hand-label some web pages so as to create a training set for an automatic clas-

sifier that will eventually be used to classify and extract pages from the rest of the

web. Since human expertise is a limited resource, the company wishes to reduce the

number of pages the employees have to label. Rather than labeling pages randomly

drawn from the web, the computer uses active learning to request targeted pages that

it believes will be most informative to label.� Email filtering. The user wishes to create a personalized automatic junk email filter.

In the learning phase the automatic learner has access to the user’s past email files.

Using active learning, it interactively brings up a past email and asks the user whether

the displayed email is junk mail or not. Based on the user’s answer it brings up

another email and queries the user. The process is repeated some number of times

and the result is an email filter tailored to that specific person.� Relevance feedback. The user wishes to sort through a database/website for items

(images, articles, etc.) that are of personal interest; an “I’ll know it when I see it” type

of search. The computer displays an item and the user tells the learner whether the

item is interesting or not. Based on the user’s answer the learner brings up another

item from the database. After some number of queries the learner then returns a

number of items in the database that it believes will be of interest to the user.

CHAPTER 3. CLASSIFICATION 17

The first two examples involve induction. The goal is to create a classifier that works

well on unseen future instances. The third example is an example of transduction. The

learner’s performance is assessed on the remaining instances in the database rather than a

totally independent test set.

We present a new algorithm that performs pool-based active learning with support vec-

tor machines (SVMs). We provide theoretical motivations for our approach to choosing

the queries, together with experimental results showing that active learning with SVMs can

significantly reduce the need for labeled training instances.

The remainder of this chapter is structured as follows. Section 3.4 discusses the use of

SVMs both in terms of induction and transduction. Section 3.5 then introduces the notion

of a version space. Section 3.6 provides theoretical motivation for using the version space

as our model and its size as the measure of model quality leading us to three methods

for performing active learning with SVMs. In the following chapter, Sections 4.1 and 4.2

present experimental results for text classification and image retrieval domains that indicate

that active learning can provide substantial benefit in practice.

3.4 Support Vector Machines

3.4.1 SVMs for Induction

Support vector machines (Vapnik, 1982) have strong theoretical foundations and excellent

empirical successes. They have been applied to tasks such as handwritten digit recogni-

tion (LeCun et al., 1995), object recognition (Nakajima et al., 2000), and text classifica-

tion (Joachims, 1998; Dumais et al., 1998).

We consider SVMs in the binary classification setting. We are given training datafx1 : : :xng that are vectors in some spaceX � Rd. We are also given their labels fy1 : : : yng
where yi 2 f�1; 1g. In their simplest form, SVMs are hyperplanes that separate the train-

ing data by a maximal margin (see Fig. 3.1(a)). All vectors lying on one side of the hy-

perplane are labeled as �1, and all vectors lying on the other side are labeled as 1. The

training instances that lie closest to the hyperplane are called support vectors.

More generally, SVMs allow one to project the original training data in space X to a

CHAPTER 3. CLASSIFICATION 18

(a) (b)

Figure 3.1: (a) A simple linear support vector machine. (b) A SVM (dotted line) and a

transductive SVM (solid line). Solid circles represent unlabeled instances.

higher dimensional feature space F via a Mercer kernel operator K . In other words, we

consider the set of classifiers of the form: 1f(x) = nXi=1 �iK(xi;x)! : (3.1)

When K satisfies Mercer’s condition (Burges, 1998) we can write: K(u;v) = �(u) ��(v)
where � : X ! F and “�” denotes an inner product. We can then rewrite f as:f(x) = w � �(x); where w = nXi=1 �i�(xi): (3.2)

Thus, by using K we are implicitly projecting the training data into a different (often

higher dimensional) feature space F . It can be shown that the maximal margin hyperplane

in F is of the form of Eq. (3.1).2 The SVM then computes the �is that correspond to the

maximal margin hyperplane inF . By choosing different kernel functions we can implicitly

project the training data from X into spaces F for which hyperplanes in F correspond to

more complex decision boundaries in the original space X .

Two commonly used kernels are the polynomial kernel given by K(u;v) = (u �v+1)p
1Note that, as we define them, SVMs are functions that map data instances x into the real line (�1;+1),

rather than to the set of classes f�1;+1g. To obtain a class label as an output, we typically threshold the

SVM output at zero so that any point x that the SVM maps to (�1; 0℄ is given a class of �1, and any pointx that the SVM maps to (0;+1℄ is given a class of +1.
2In our description of SVMs we are only considering hyperplanes that pass through the origin. In other

words, we are asuming that there is no bias weight. If a bias weight is desired, one can alter the kernel or

input space to accomodate it.

CHAPTER 3. CLASSIFICATION 19

which induces polynomial boundaries of degree p in the original input space3 X , and the

radial basis function kernel K(u;v) = (e�(u�v)�(u�v)) which induces boundaries by plac-

ing weighted Gaussians upon key training instances. Fig. 3.2 shows the decision boundary

in the input spaceX of an SVM using a polynomial kernel of degree 5. The curved decision

boundary in X corresponds to the maximal margin hyperplane in feature set F .

Algorithmically, the �i parameters that specify the SVM can be found in polynomial

time by solving a convex optimization problem (Vapnik, 1995):

maximize� Pi �i � 12 Pi;j �i�jyiyjK(xi;x)
subject to: �i > 0 i = 1 : : : n:

For the majority of this chapter we assume that the modulus of the training data feature

vectors are constant , i.e., for all training instances xi, k�(xi)k = � for some fixed �. The

quantity k�(xi)k is always constant for radial basis function kernels, and so the assumption

has no effect for this kernel. For k�(xi)k to be constant with the polynomial kernels we

require that kxik be constant. It is possible to relax this constraint on �(xi) and we discuss

this possibility at the end of Section 3.6.

We also assume linear separability of the training data in the feature space. This restric-

tion is much less harsh than it might at first seem. First, the feature space often has a very

high dimension and so in many cases it results in the data set being linearly separable. Sec-

ond, as noted by Shawe-Taylor and Cristianini (1999), it is possible to modify any kernel

so that the data in the new induced feature space is linearly separable.4

3.4.2 SVMs for Transduction

The previous section discusses SVMs within the framework of induction. It assumes a la-

beled training set of data and the task is to create a classifier that has good performance on

3Note that, unlike the simple Euclidean inner product, a polynomial kernel of degree one induces a hy-

perplane in X that does not need to pass through the origin.
4This modification is done by redefining for all training instances xi: K(xi;xi) := K(xi;xi) + � where� is a positive regularization constant. This transformation essentially achieves the same effect as the soft

margin error function (Cortes & Vapnik, 1995) commonly used in SVMs. It permits the training data to be

linearly non-separable in the original feature space.

CHAPTER 3. CLASSIFICATION 20

Figure 3.2: A support vector machine using a polynomial kernel of degree 5.

unseen test data. In addition to regular induction, SVMs can also be used for transduction.

Here, we are first given a set of both labeled and unlabeled data. The learning task is to

assign labels to the unlabeled data as accurately as possible. SVMs can perform transduc-

tion by finding the hyperplane that maximizes the margin relative to both the labeled and

unlabeled data. See Figure 3.1(b) for an example. Recently, transductive SVMs (TSVMs)

have been used for text classification (Joachims, 1999), attaining some improvements in

precision/recall breakeven performance over regular inductive SVMs.

Unlike an SVM, which has polynomial time complexity, the cost of finding the global

solution for a TSVM grows exponentially with the number of unlabeled instances. Intu-

itively, we have to consider all possible labelings of the unlabeled data, and for each la-

beling, find the maximal margin hyperplane. Therefore one generally uses an approximate

algorithm instead. For example, Joachims (Joachims, 1999) uses a form of local search to

label and relabel the unlabeled instances in order to improve the size of the margin.

3.5 Version Space

Given a set of labeled training data and a Mercer kernelK, there is a set of hyperplanes that

separate the data in the induced feature space F . We call this set of consistent hypotheses

the version space (Mitchell, 1982) . In other words, hypothesis f is in the version space if

for every training instance xi with label yi we have that f(xi) > 0 if yi = 1 and f(xi) < 0
if yi = �1. More formally:

CHAPTER 3. CLASSIFICATION 21

(a) (b)

Figure 3.3: (a) Version space duality. The surface of the hypersphere represents unit weight

vectors. Each of the two hyperplanes corresponds to a labeled training instance. Each

hyperplane restricts the area on the hypersphere in which consistent hypotheses can lie.

Here version space is the surface segment of the hypersphere closest to the camera. (b)

An SVM classifier in a version space. The dark embedded sphere is the largest radius

sphere whose center lies in version space and whose surface does not intersect with the

hyperplanes. The center of the embedded sphere corresponds to the SVM, its radius is

proportional to the margin of the SVM in F and the training points corresponding to the

hyperplanes that it touches are the support vectors.

CHAPTER 3. CLASSIFICATION 22

Definition 3.5.1 Our set of possible hypotheses is given as:H = (f j f(x) = w � �(x)kwk where w 2 W) ;
where our parameter space W is simply equal to F . The version space, V is then defined

as: V = ff 2 H j 8i 2 f1 : : : ng yif(xi) > 0g:
Notice that since H is a set of hyperplanes, there is a bijection between unit vectors w and

hypotheses f in H. Thus we will redefine V as:V = fw 2 W j kwk = 1; yi(w � �(xi)) > 0; i = 1 : : : ng:
Definition 3.5.2 The size or area of a version space, Area(V) is the surface area that it

occupies on the hypersphere kwk = 1.

Note that a version space only exists if the training data are linearly separable in the

feature space. As we mentioned in Section 3.4.1, this restriction is not as limiting as it first

may seem.

There exists a duality between the feature space F and the parameter space W (Vapnik,

1998; Herbrich et al., 1999) which we shall take advantage of in the next section: points inF correspond to hyperplanes in W and vice versa.

By definition points in W correspond to hyperplanes in F . The intuition behind the

converse is that observing a training instance xi in the feature space restricts the set of

separating hyperplanes to ones that classify xi correctly. In fact, we can show that the set

of allowable points w in W is restricted to lie on one side of a hyperplane in W . More

formally, to show that points in F correspond to hyperplanes in W , suppose we are given

a new training instance xi with label yi. Then any separating hyperplane must satisfyyi(w � �(xi)) > 0. Now, instead of viewing w as the normal vector of a hyperplane in F ,

think of �(xi) as being the normal vector of a hyperplane in W . Thus yi(w � �(xi)) > 0
defines a half space in W . Furthermore w � �(xi) = 0 defines a hyperplane in W that acts

as one of the boundaries to version space V . Notice that version space is a connected region

on the surface of a hypersphere in parameter space. See Figure 3.3(a) for an example.

CHAPTER 3. CLASSIFICATION 23

SVMs find the hyperplane that maximizes the margin in the feature space F . One way

to pose this optimization task is as follows:

maximizew2F minifyi(w � �(xi))g
subject to: kwk = 1yi(w � �(xi)) > 0 i = 1 : : : n:

By having the conditions kwk = 1 and yi(w � �(xi)) > 0 we cause the solution to lie

in the version space. Now, we can view the above problem as finding the point w in the

version space that maximizes the distance: minifyi(w ��(xi))g. From the duality between

feature and parameter space, and since k�(xi)k = � , each
�(xi)� is a unit normal vector of

a hyperplane in parameter space. Because of the constraints yi(w � �(xi)) > 0 i = 1 : : : n
each of these hyperplanes delimit the version space. The expression yi(w � �(xi)) can be

regarded as:�� the distance between the pointw and the hyperplane with normal vector �(xi):
Thus, we want to find the point w� in the version space that maximizes the minimum

distance to any of the delineating hyperplanes. That is, SVMs find the center of the largest

radius hypersphere whose center can be placed in the version space and whose surface

does not intersect with the hyperplanes corresponding to the labeled instances, as in Fig-

ure 3.3(b).

The normals of the hyperplanes that are touched by the maximal radius hypersphere

are the �(xi) for which the distance yi(w� � �(xi)) is minimal. Now, taking the original

rather than dual view, and regardingw� as the unit normal vector of the SVM and �(xi) as

points in features space we see that the hyperplanes that are touched by the maximal radius

hypersphere correspond to the support vectors (i.e., the labeled points that are closest to the

SVM hyperplane boundary).

The radius of the sphere is the distance from the center of the sphere to one of the

touching hyperplanes and is given by yi(w� � �(xi)�) where �(xi) is a support vector. Now,

viewing w� as a unit normal vector of the SVM and �(xi) as points in feature space, we

CHAPTER 3. CLASSIFICATION 24

have that the distance yi(w� � �(xi)�) is:1� � the distance between the support vector �(xi) and the hyperplane with normal vectorw;
which is the margin of the SVM divided by �. Thus, the radius of the sphere is proportional

to the margin of the SVM.

3.6 Active Learning with SVMs

3.6.1 Introduction

In pool-based active learning we have a pool of unlabeled instances. It is assumed that

the instances x are independently and identically distributed and their labels are distributed

according to some conditional distribution P (Y j x).
Given an unlabeled pool U , an SVM active learner ` has three components: (f; q;X).

The first component is an SVM classifier, f : X ! [�1; 1℄, trained on the current set of

labeled data X (and possibly unlabeled instances in U too). The second component q(X)
is the querying function that, given a current labeled set X , decides which instance in U to

query next. The active learner can return a classifier f after each query (online learning) or

after some fixed number of queries.

The main difference between an active learner and a passive learner is the querying

component q. This component tells us which unlabeled pool instance to query next, which

brings us to the issue of how to design such a function. We will use our general approach for

active learning presented in Section 1.2. We shall first define a model and model quality

or, equivalently, its model loss. We shall then choose the pool instance that improves the

model quality the most.

3.6.2 Model and Loss

We choose to use the version space as our model , and the size of version space as the

model loss . Thus, we shall choose to query pool instances that attempt to reduce the size

of the version space as much as possible. Why should this be a good choice of model and

CHAPTER 3. CLASSIFICATION 25

model loss? Suppose w� 2 W is the unit parameter vector corresponding to the SVM that

we would have obtained had we known the actual labels of all of the data in the pool. We

know that w� must lie in each of the version spaces V1 � V2 � V3 : : :, where Vi denotes

the version space after i queries. Thus, by shrinking the size of the version space as much

as possible with each query, we are reducing as fast as possible the space in which w� can

lie. Hence, the SVM that we learn from our limited number of queries will lie close to w�.
We need one more definition before we can proceed:

Definition 3.6.1 Given an active learner `, let Vi denote the version space of ` after i
queries have been made. Now, given the (i+ 1)th query xi+1, define:V�i = Vi \ fw 2 W j �(w � �(xi+1)) > 0g;V+i = Vi \ fw 2 W j +(w � �(xi+1)) > 0g:
So V�i and V+i denote the resulting version spaces when the next query xi+1 is labeled as�1 and 1 respectively.

We wish to reduce the version space as fast as possible. Intuitively, one good way of

doing this is to choose a query that halves the version space. More formally, we can use

the following lemma to motivate which instances to query:

Lemma 3.6.2 Suppose we have an input space X , finite dimensional feature space F (in-

duced via a kernel K), and parameter space W . Suppose active learner `� always queries

instances whose corresponding hyperplanes in parameter space W halves the area of the

current version space. Let ` be any other active learner. Denote the version spaces of `�
and ` after i queries as V�i and Vi respectively. Let P denote the set of all conditional

distributions of y given x. Then,8i 2 N+ supP2P EP [Area(V�i)℄ � supP2P EP [Area(Vi)℄;
with strict inequality whenever there exists a query j 2 f1 : : : ig by ` that does not halve

version space Vj�1.

CHAPTER 3. CLASSIFICATION 26

Proof. The proof is straightforward. The learner `� always chooses to query instances

that halve the version space. Thus Area(V�i+1) = 12Area(V�i) no matter what the labeling

of the query points are. Let r denote the dimension of feature space F . Then r is also the

dimension of the parameter spaceW . Let Sr denote the surface area of the unit hypersphere

of dimension r. Then, under any conditional distribution P , Area(V�i) = Sr2i .

Now, suppose ` does not always query an instance that halves the area of the version

space. Then after some number, k, of queries, ` first chooses to query a point xk+1 that

does not halve the current version space Vk. Let yk+1 2 f�1; 1g correspond to the labeling

of xk+1 that will cause the larger half of the version space to be chosen.

Without loss of generality assume Area(V�k) > Area(V+k) and so yk+1 = �1. Note that

Area(V�k) + Area(V+k) = Sr2k , so we have that Area(V�k) > Sr2k+1 .

Now consider the conditional distribution P0:P0(�1 j x) = 8<: 12 if x 6= xk+11 if x = xk+1
Then under this distribution, 8i > k,EP0[Area(Vi)℄ = 12i�k�1Area(V�k) > Sr2i :
Hence, 8i > k, supP2P EP [Area(V�i)℄ > supP2P EP [Area(Vi)℄: 2

This lemma says that, for any given number of queries, `� minimizes the maximum

expected size of the version space, where the maximum is taken over all conditional distri-

butions of y given x. In other words `� will be choosing queries that reduce the minimax

loss of the model.

Seung et al. (Seung et al., 1992) also use an approach that queries points so as to attempt

to reduce the size of the version space as much as possible. If one is willing to assume that

there is a hypothesis lying within H that generates the data and that the generating hypoth-

esis is deterministic and that the data are noise free, then strong generalization performance

CHAPTER 3. CLASSIFICATION 27

(a) (b)

Figure 3.4: (a) Simple Margin will query b. (b) Simple Margin will query a.

(a) (b)

Figure 3.5: (a) MaxMin Margin will query b. The two SVMs with marginsm� andm+ forb are shown. (b) MaxRatio Margin will query e. The two SVMs with marginsm� andm+
for e are shown.

properties of an algorithm that halves version space can also be shown (Freund et al., 1997).

For example one can show that the generalization error decreases exponentially with the

number of queries.

3.6.3 Querying Algorithms

The previous discussion provides motivation for an approach where we query instances

that split the current version space into two equal parts as much as possible. Given an

unlabeled instance x from the pool, it is not practical to explicitly compute the sizes of the

new version spaces V� and V+ (i.e., the version spaces obtained when x is labeled as �1
and +1 respectively). We next present three ways of approximating this procedure.

CHAPTER 3. CLASSIFICATION 28� Simple Margin. Recall from Section 3.5 that, given some data fx1 : : :xig and labelsfy1 : : : yig, the SVM unit vectorwi obtained from this data is the center of the largest

hypersphere that can fit inside the current version space Vi. The position of wi in

the version space Vi clearly depends on the shape of the region Vi; however, it is

often approximately in the center of the version space. Now, we can test each of the

unlabeled instances x in the pool to see how close their corresponding hyperplanes inW come to the centrally placed wi. The closer a hyperplane in W is to the point wi,
the more centrally it is placed in the version space, and the more it bisects the version

space. Thus we can pick the unlabeled instance in the pool whose hyperplane in W
comes closest to the vector wi. For each unlabeled instance x, the shortest distance

between its hyperplane in W and the vector wi is simply the distance between the

feature vector �(x) and the hyperplane wi in F ,. This distance is easily computed

by: jwi ��(x)j. This results in the natural rule: learn an SVM on the existing labeled

data and choose as the next instance to query the instance that comes closest to the

hyperplane in F .

Figure 3.4(a) presents an illustration. In the stylized picture we have flattened out the

surface of the unit weight vector hypersphere that appears in Figure 3.3(a). The white

area is version space Vi which is bounded by solid lines corresponding to labeled

instances. The five dotted lines represent unlabeled instances in the pool. The circle

represents the largest radius hypersphere that can fit in the version space. Note that

the edges of the circle do not touch the solid lines – just as the dark sphere in 3.3(b)

does not meet the hyperplanes on the surface of the larger hypersphere (they meet

somewhere under the surface). The instance b is closest to the SVM wi and so we

will choose to query b.

Two other studies (Campbell et al., 2000; Schohn & Cohn, 2000) independently

developed our Simple method for active learning with support vector machines and

provided different formal analyses. Campbell, Cristianini and Smola extend their

analysis for the Simple method to cover the use of soft margin SVMs (Cortes &

Vapnik, 1995) with linearly non-separable data. Schohn and Cohn note interesting

behaviors of the active learning curves in the presence of outliers and both suggest

CHAPTER 3. CLASSIFICATION 29

the heuristic optimal stopping criterion of “stop querying when there are no more

pool instances within the margin of the current hyperplane”. Also, as we mentioned

in Chapter 2, Lewis and Gale’s (1994) uncertainty sampling is essentially the same

as the Simple method.� MaxMin Margin. The Simple Margin method can be a rather rough approximation.

It relies on the assumption that the version space is fairly symmetric and that wi
is centrally placed. It has been demonstrated, both in theory and practice, that these

assumptions can fail significantly (Herbrich et al., 1999). Indeed, if we are not careful

we may actually query an instance whose hyperplane does not even intersect the

version space. The MaxMin approximation is designed to somewhat overcome these

problems. Given some data fx1 : : :xig and labels fy1 : : : yig the SVM unit vectorwi is the center of the largest hypersphere that can fit inside the current version

space Vi and the radius mi of the hypersphere is proportional5 to the size of the

margin of wi. We can use the radius mi as an indication of the size of the version

space (Vapnik, 1998). Suppose we have a candidate unlabeled instance x in the pool.

We can estimate the relative size of the resulting version space V� by labeling x
as �1, finding the SVM obtained from adding x to our labeled training data and

looking at the size of its margin m�. We can perform a similar calculation for V+ by

relabeling x as class +1 and finding the resulting SVM to obtain margin m+.

Since we want an equal split of the version space, we wish Area(V�) and Area(V+)
to be similar. Now, consider min(Area(V�);Area(V+)). It will be small if Area(V�)
and Area(V+) are very different. Thus we will consider min(m�; m+) as an ap-

proximation and we will choose to query the x for which this quantity is largest.

Hence, the MaxMin query algorithm is as follows: for each unlabeled instance x
compute the margins m� and m+ of the SVMs obtained when we label x as �1 and+1 respectively; then choose to query the unlabeled instance for which the quantitymin(m�; m+) is greatest.

Figures 3.4(b) and 3.5(a) show an example comparing the Simple Margin andMaxMin
5To ease notation, without loss of generality we shall assume the the constant of proportionality is 1, i.e.,

the radius is equal to the margin.

CHAPTER 3. CLASSIFICATION 30

Margin methods.� Ratio Margin. This method is similar in spirit to the MaxMin Margin method. We

use m� and m+ as indications of the sizes of V� and V+. However, we shall try to

take into account the fact that the current version space Vi may be quite elongated

and for some x in the pool both m� and m+ may be small simply because of the

shape of version space. Thus we will instead look at the relative sizes of m� and m+
and choose to query the x for which min(m�m+ ; m+m�) is largest (see Figure 3.5(b)).

The above three methods are approximations to the querying component that always

halves version space. After performing some number of queries we then return a classifier

by learning a SVM with the labeled instances. The Simple method is significantly less

computationally intensive than the other two methods since it needs to learn only one SVM

per querying round, while the MaxRatio and MaxMin methods need to learn two SVMs

for each pool instance during each querying round. Notice that we are not forced to stay

with just one of these querying methods for all of our rounds of queries. For computational

reasons, it may be beneficial to swap between the different methods after a number of

queries have been asked: we call this type of querying method a Hybrid method.

We now address the assumption of having training feature vectors with constant mod-

uli. The notions of a version space and of the size of version space still hold without the

assumption. Furthermore, the margin of an SVM can be used as an indication of a version

space size irrespective of whether the feature vectors have constant moduli (see (Vapnik,

1998) for further details). Thus the explanation for the MaxMin and MaxRatio methods

still holds even without the constraint on the modulus of the training feature vectors.

The constant moduli assumption was necessary for our geometric view of version space

to hold. The Simple method can still be used when the training feature vectors do not have

constant modulus, but the motivating explanation no longer holds since the SVM can no

longer be viewed as the center of the largest allowable sphere. However, for the Simple
method, alternative motivations have recently been proposed by Campbell, Cristianini and

Smola (2000) that do not require the constraint on the modulus.

For inductive learning, after performing some number of queries we then return a classi-

fier by learning a SVM with the labeled instances. For transductive learning, after querying

CHAPTER 3. CLASSIFICATION 31

some number of instances we then return a classifier by learning a Transductive SVM with

the labeled and unlabeled instances.

3.7 Comment on Multiclass Classification

A number of scenarios are inherently multiclass classification problems. For example,

detecting which of several topics a particular document or image is about. Furthermore,

there are two different types of multiclass settings. One multiclass setting is the overlapping

classes setting where each data instance can belong to multiple classes at the same time

(for example, a news article could belong to multiple different topics). The second type

of multiclass setting is the non-overlapping , or mutually exclusive setting where each data

instance belongs to exactly one of several classes.

A basic SVM is a binary classifier. SVMs can be easily extended to the overlapping

multiclass setting by using the one-vs-all technique. For an k-class problem we learn k
classifiers f1; : : : ; fk where classifier fi determines if an instance is in class i or not.

There are a number of techniques for extending SVMs to the more complicated mutually-

exculsive multiclass case (Vapnik, 1998; Platt et al., 2000; Friedman, 1996). In this sce-

nario the one-vs-all technique is one of the best performing and more common, albeit

perhaps not the most computationally efficient, strategies. A difficulty arises because the

outputs of the k different SVMs are uncalibrated reals values.6 For example, it could be

the case that f1(x) = 2 means that f1 is very confident about x’s label whereas f2(x) = 2
may mean that f2 is only marginally confident about x’s label. So, for the specific purpose

of measuring an SVM’s confidence in its prediction relative to other SVMs’ predictions,

the output of an SVM is uncalibrated. There have been a number of studies (Hastie & Tib-

shirani, 1998; Vapnik, 1998; Platt, 1999; Sollich, 1999) that explore ways of transforming

each SVM’s output into a calibrated conditional probability P (i j x). Nevertheless, for

mutually exclusive multiclass classification, uncalibrated values are typically used as mea-

sures of each fi classifier’s confidence, and the approximation of taking the predicted class

6Although still uncalibrated, the output of an SVM fi(x) is typically normalized by the margin, so that

all of the support vectors are distance 1 from the hyperplane.

CHAPTER 3. CLASSIFICATION 32

label to be: y = argmaxifi(x);
appears to work well in practice (Vapnik, 1998; Platt et al., 2000).

In both of these settings, we focus on the one-vs-all algorithm. Designing active learn-

ing algorithms for the alternative ways of performing multiclass classification is left as

future work. With the one-vs-all approach we have k version spaces, one for each classi-

fier. If we wish to use active learning we need to determine the model loss. In the binary

classification task we used the area of the version space as our model loss. The area of

the version space Area(V) can be regarded as being proportional to the probability that a

hypothesis chosen at random will correctly classify the current training data. Extending

this notion to the multiclass case, our hypothesis is now a set of i hyperplanes and if we

sample a hypothesis uniformly at random, the probability that we will have a hypothesis

that correctly labels every point in our training set is proportional to:Yi Area(V(i)): (3.3)

Thus, perhaps one possible measure of model loss is the product of the version space areas.

Fig. 3.6 shows why, intuitively, this measure of model loss is better than, say, the sum of

areas. Class 3 is easily separated from the other two classes and so the version space off3 is much larger than that of f1 and f2. Querying points between classes 1 and 2 would

intuitively be most useful since they will narrow down where f1 and f2 should lie. The

product of version spaces criterion will query these points since they tend to halve the

version spaces for f1 and f2. The sum of version spaces loss criterion will be distracted

by the unlabeled points near class 3 since, although they do not halve the version space of3, knowing their labels will remove a large area of the total sum of version space simply

because f3’s version space is naturally large.

Eq. (3.3) is our model loss . Recall from Section 1.2 that we want to choose the unla-

beled pool instance x that minimizes the maximum model loss:

Loss(x) = maxy Yi Area(V(i)x;y); (3.4)

CHAPTER 3. CLASSIFICATION 33

Figure 3.6: Multiclass classification

where V(i)x;y is the version space after having asked x and received the label y. Note that,

unlike in the binary classification case, this method no longer reduces to finding the pool

instance bisects each of the k version spaces.

Now, evaluating the volumes of these versions spaces is intractable. To obtain an effi-

cient algorithm we need to use an approximation to enable us to compute the model loss.

The above definition of model loss allows us to extend the MaxRatio and MaxMin approxi-

mation methods to the multiclass case in the obvious manner. Extending the Simple method

is more subtle.

For the Simple method, recall that the margin is proportional to the radius of the largest

sphere that we can embed in the version space. Thus, unlike in the task of measuring an

SVM’s confidence in its own prediction, here the quantity fi(x) (where we normalize the

output so that support vectors are distance one from the hyperplane) is actually a calibrated

approximation of the extent to which x splits the version space. It is calibrated for this

purpose since the scale of each fi(x) distance is measured relative to the radius of the

sphere for that fi.
Given the SVMs learned on the current labeled data, f1; : : : ; fk, and a pool instancex, we wish to approximate the quantities Area(V(i)x;y) for each i and each possible label y.

In Fig. 3.7 we have the version space for one of the fis. Imagine we are looking at pool

instance x and we are considering the case where x is labeled as class i. Thus we wish to

approximately find the area of the region A+.

Notice that if fi(x) = 0 then we are approximately halving the version space. If fi(x)
is close to 1 then x is a hyperplane that nearly touches the edge of the sphere and, so the

CHAPTER 3. CLASSIFICATION 34

Figure 3.7: A version space.

area of the new version space will be close to the area of the original version space. If fi(x)
is close to�1 then x is also a hyperplane that nearly touches the edge of the sphere, but this

time the new version space lies on the side of the hyperplane furthest from the center of the

sphere7 and so the area of the new version space will be close to 0. In Fig. 3.7, fi(x) = 0:5
and the area of A+ is approximately 0.75 of the old version space. When we look at the

case where x is not labeled as class i, then we will wish to approximate the region A�. In

this case, fi(x) = 0:5 still, and the area of A� is approximately 0.25 of the old version

space.

These observations prompt the following mapping from fi(x) distances to sizes of ver-

sion spaces:� If the label y for pool instance x is class i, then:

Area(V(i)x;y) � fi(x) + 12 !
Area(V(i)): (3.5)� If the label y for pool instance x is not class i, then:

Area(V(i)x;y) � 1� fi(x)2 !
Area(V(i)): (3.6)

7One way to see this is because the center of the sphere is the current SVM, and it does not classify x
correctly, so is cannot be in the new version space.

CHAPTER 3. CLASSIFICATION 35

Notice that this approximation breaks down if jfi(x)j > 1. However, we are performing

a minimax computation, and so these outlier x instances will either be discarded at the

“max” step if they cause Area(V(i)x;y) to be too large and negative, or they will get rejected

at the “min” step if they cause Area(V(i)x;y) to be too large and positive.

Thus, by viewing the distance fi(x) as an approximate to how much the current version

space is split, we get the following extension to the Simple algorithm:

Learn k classifiers, f1; : : : ; fk, one for each class.

For each unlabeled pool instance x
For each possible label y for x

For each classifier fi
Compute approximation to Area(V(i)x;y) using either Eq. (3.5) or Eq. (3.6)

End For

End For

Loss(x) = maxy Qi Area(V(i)x;y)
End For

Query pool instance x for which Loss(x) is lowest

Receive true label y0
Repeat

This multiclass Simple approximation is still very efficient: for each querying round we

need to only learn k SVMs (one for each class), and we need to only sweep through the

pool once for each classifier (to compute fi(x) for all x).

Chapter 4

SVM Experiments

4.1 Text Classification Experiments

Text classification is the task of determining to which pre-defined topic a given text docu-

ment belongs. Text classification has an important role to play, especially with the recent

explosion of readily available text data. There have been many approaches to providing

effective, automatic classification systems (Rocchio, 1971; Dumais et al., 1998). Further-

more, it is also a domain in which SVMs have shown notable success (Joachims, 1998;

Dumais et al., 1998) and it is of interest to see whether active learning can offer further

improvement over this already highly effective method.

For our empirical evaluation of the above methods we used two real-world text classi-

fication domains: the Reuters-21578 data set and the Newsgroups data set.

4.1.1 Text Classification

Rather than working directly with the raw text, learners typically work with features that are

extracted from the document. The “bag-of-words” representation is particularly common:

the ordering of the words within each document is ignored and the features are chosen to

be particular words.

Sometimes some preprocessing of the documents is done. Common words on a stop list

(such as “to”, “it”, “and”) are ignored since they provide little discriminative information.

36

CHAPTER 4. SVM EXPERIMENTS 37

Also, words in the documents are stemmed so that, for example, “acquire”, “acquiring”,

“acquired” all get mapped to the same stem (Porter, 1980). One other form of preprocessing

is similar to stop list removal, but more extreme. One can perform feature selection and

remove all words that are not “informative” with respect to the particular set of pre-defined

topics (Yang & Pedersen, 1997). In our experiments we only consider stop word removal

and stemming.

Given a set of n documents, a typical representation for documents is via TFIDF

weighting (Salton & Buckley, 1988). There are a number of different variants of the TFIDF

weighting scheme (Manning & Schütze, 1999). We describe one of the commonly used ver-

sions. Each document is represented by a fixed length unit vector xi of dimension d. Each

one of the d features, wj , corresponds to a particular word (for example w1 may correspond

to the word “dog”). The vocabulary of d words is often chosen to be the words occurring in

the entire set of (preprocessed) documents. Given a document, we construct the value for

the j-th component of its corresponding vector xi as follows: let TF (wj) be the number

of times the word wj occurs in the document. Let IDF (wj) = log(n=Nj) where Nj is the

number of documents that contain the word wj. Then give the j-th component of xi a value

of TF (wj):IDF (wj). Intuitively, wj is given a large value for a particular document if that

word occurs many times in the document and very rarely in the other documents.

4.1.2 Reuters Data Collection Experiments

The Reuters-21578 data set1 is a commonly used collection of newswire stories categorized

into hand labeled topics. Each news story has been hand-labeled with some number of

topic labels such as “corn”, “wheat” and “corporate acquisitions”. Note that some of the

topics overlap and so some articles belong to more than one category. We used the 12902

articles from the “ModApte” split of the data and we considered the top ten most frequently

occurring topics. We learned ten different binary classifiers, one to distinguish each topic.

Each document was represented as a stemmed, TFIDF weighted word frequency vector.2

Each vector had unit modulus. A stop list of common words was used and words occurring

in less than three documents were also ignored. Using this representation, the document

1Obtained from www.research.att.com/˜lewis.
2We used Rainbow (www.cs.cmu.edu/˜mccallum/bow) for text processing.

CHAPTER 4. SVM EXPERIMENTS 38

Random

Simple

MaxMin

Ratio

0 20 40 60 80 100

Labeled Training Set Size

70.0

80.0

90.0

100.0

T
e

s
t

S
e

t
A

c
c
u

ra
c
y

Full

Ratio

MaxMin

Simple

Random

Random

Simple

MaxMin

Ratio

0 20 40 60 80 100

Labeled Training Set Size

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
re

c
is

io
n

/R
e

c
a

ll
B

re
a

k
e

v
e

n
 P

o
in

t

Full

Ratio

MaxMin

Simple

Random

(a) (b)

Figure 4.1: (a) Average test set accuracy over the ten most frequently occurring topics when

using a pool size of 1000. (b) Average test set precision/recall breakeven point over the ten

most frequently occurring topics when using a pool size of 1000.

vectors had around 10000 dimensions.

We first compared the three querying methods in the inductive learning setting. Our

test set consisted of 3299 documents.

For each of the ten topics we performed the following. We created a pool of unlabeled

data by sampling 1000 documents from the remaining data and removing their labels. We

then randomly selected two documents in the pool to give as the initial labeled training

set. One document was about the desired topic, and the other document was not about

the topic. Thus we gave each learner 998 unlabeled documents and 2 labeled documents.

After a fixed number of queries we asked each learner to return a classifier (an SVM with

a polynomial kernel of degree one3 learned on the labeled training documents). We then

tested the classifier on the independent test set.

The above procedure was repeated thirty times for each topic and the results were aver-

aged. We considered the Simple Margin, MaxMin Margin and MaxRatio Margin querying

methods as well as a Random Sample method. The Random Sample method simply ran-

domly chooses the next query point from the unlabeled pool. This last method reflects what

3For SVM and transductive SVM learning we used T. Joachims’ SVMlight:

ais.gmd.de/˜thorsten/svm light/.

CHAPTER 4. SVM EXPERIMENTS 39

Table 4.1: Average test set accuracy over the top 10 most frequently occurring topics (most

frequent topic first) when trained with ten labeled documents. Boldface indicates first place.

Topic Simple MaxMin MaxRatio EquivalentRandom size

Earn 86:39� 1:65 87:75� 1:40 90:24� 2:31 34
Acq 77:04� 1:17 77:08� 2:00 80:42� 1:50 > 100
Money-fx 93:82� 0:35 94:80� 0:14 94:83� 0:13 50
Grain 95:53� 0:09 95:29� 0:38 95:55� 1:22 13
Crude 95:26� 0:38 95:26� 0:15 95:35� 0:21 > 100
Trade 96:31� 0:28 96:64� 0:10 96:60� 0:15 > 100
Interest 96:15� 0:21 96:55� 0:09 96:43� 0:09 > 100
Ship 97:75� 0:11 97:81� 0:09 97:66� 0:12 > 100
Wheat 98:10� 0:24 98:48� 0:09 98:13� 0:20 > 100
Corn 98:31� 0:19 98:56� 0:05 98:30� 0:19 15

happens in the regular passive learning setting – the training set is a random sampling of

the data.

To measure performance we used two metrics: test set classification error and, to stay

compatible with previous Reuters corpus results, the precision/recall breakeven point (Joachims,

1998). Precision is the percentage of documents a classifier labels as relevant that are truly

labeled as relevant.4 Recall is the percentage of truly relevant documents that are labeled as

relevant by the classifier. By altering the decision threshold on the SVM we can trade pre-

cision for recall and can obtain a precision/recall curve for the test set. The precision/recall

breakeven point is a one-number summary of this graph: it is the point at which precision

equals recall.

Figures 4.1(a) and 4.1(b) present the average test set accuracy and precision/recall

breakeven points over the ten topics as we vary the number of queries permitted. The hori-

zontal line is the performance level achieved when the SVM is trained on all 1000 labeled

documents comprising the pool. Over the Reuters corpus, the three active learning methods

perform almost identically with little notable difference to distinguish between them. All

three methods also appreciably outperforms random sampling. Tables 4.1 and 4.2 show the

test set accuracy and breakeven performance of the active methods after they have asked

4For example, if our goal is to detect documents about corporate acquisitions, then articles about corpo-

rate acquisitions would be truly labeled as relevant and every other document would have a true label of

irrelevant.

CHAPTER 4. SVM EXPERIMENTS 40

Table 4.2: Average test set precision/recall breakeven point over the top ten most frequently

occurring topics (most frequent topic first) when trained with ten labeled documents. Bold-

face indicates first place.

Topic Simple MaxMin MaxRatio EquivalentRandom size

Earn 86:05� 0:61 89:03� 0:53 88:95� 0:74 12
Acq 54:14� 1:31 56:43� 1:40 57:25� 1:61 12
Money-fx 35:62� 2:34 38:83� 2:78 38:27� 2:44 52
Grain 50:25� 2:72 58:19� 2:04 60:34� 1:61 51
Crude 58:22� 3:15 55:52� 2:42 58:41� 2:39 55
Trade 50:71� 2:61 48:78� 2:61 50:57� 1:95 85
Interest 40:61� 2:42 45:95� 2:61 43:71� 2:07 60
Ship 53:93� 2:63 52:73� 2:95 53:75� 2:85 > 100
Wheat 64:13� 2:10 66:71� 1:65 66:57� 1:37 > 100
Corn 49:52� 2:12 48:04� 2:01 46:25� 2:18 > 100

for just eight labeled instances (so, together with the initial two random instances, they

have seen ten labeled instances). The tables demonstrate that the three active methods per-

form similarly on this data set after eight queries, with the MaxMin and MaxRatio methods

showing a very slight edge in performance. The last columns in each table are of more

interest. They show approximately how many instances would be needed if we were to useRandom to achieve the same level of performance as the MaxRatio active learning method.

In this instance, passive learning on average requires over six times as much data to achieve

comparable levels of performance as the active learning methods. The tables indicate that

active learning provides more benefit with the infrequent classes, particularly when mea-

suring performance by the precision/recall breakeven point. This last observation has also

been noted before in previous empirical tests (McCallum & Nigam, 1998).

We noticed that approximately half of the queries that the active learning methods asked

tended to turn out to be positively labeled, regardless of the true overall proportion of pos-

itive instances in the domain. We investigated whether the gains that the active learning

methods had over regular Random sampling were due to this biased sampling. We created

a new querying method called BalanedRandom which would randomly sample an equal

number of positive and negative instances from the pool. Obviously in practice the ability

to randomly sample an equal number of positive and negative instances without having to

label an entire pool of instances first may or may not be reasonable depending upon the

CHAPTER 4. SVM EXPERIMENTS 41

0 20 40 60 80 100

Labeled Training Set Size

70.0

80.0

90.0

100.0

T
e

s
t

S
e

t
A

c
c
u

ra
c
y

Full

Ratio

Random Balanced

Random

Random

Simple

Ratio

0 20 40 60 80 100

Labeled Training Set Size

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
re

c
is

io
n

/R
e

c
a

ll
B

re
a

k
e

v
e

n
 P

o
in

t

Full

Ratio

Random Balanced

Random

(a) (b)

Figure 4.2: (a) Average test set accuracy over the ten most frequently occurring topics when

using a pool size of 1000. (b) Average test set precision/recall breakeven point over the ten

most frequently occurring topics when using a pool size of 1000.

domain in question. Figures 4.2(a) and 4.2(b) show the average accuracy and breakeven

point of the BalanedRandom method compared with the MaxRatio active method and reg-

ular Random method on the Reuters dataset with a pool of 1000 unlabeled instances. TheMaxRatio and Random curves are the same as those shown in Figures 4.1(a) and 4.1(b). TheMaxMin and Simple curves are omitted to ease legibility. The BalanedRandom method has

a much better precision/recall breakeven performance than the regular Random method, al-

though it is still matched and then significantly outperformed by the active method. For

classification accuracy, the BalanedRandom method initially has extremely poor perfor-

mance (less than 50% which is even worse than pure random guessing) and is always

consistently and significantly outperformed by the active method. This behavior indicates

that the performance gains of the active methods are not merely due to their ability to bias

the class of the instances they query. The active methods are choosing special targeted

instances and approximately half of these instances happen to have positive labels.

Figures 4.3(a) and 4.3(b) show the average accuracy and breakeven point of the MaxRatio
method with two different pool sizes. Clearly the Random sampling method’s performance

will not be affected by the pool size. However, the graphs indicate that increasing the pool

of unlabeled data will improve both the accuracy and breakeven performance of active

CHAPTER 4. SVM EXPERIMENTS 42

0 20 40 60 80 100

Labeled Training Set Size

85.0

87.5

90.0

92.5

95.0

97.5

100.0

T
e

s
t

S
e

t
A

c
c
u

ra
c
y

Active 1000 Pool

Active 500 Pool

Random

0 20 40 60 80 100

Labeled Training Set Size

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
re

c
is

io
n

/R
e

c
a

ll
B

re
a

k
e

v
e

n
 P

o
in

t

Active 1000 Pool

Active 500 Pool

Random

(a) (b)

Figure 4.3: (a) Average test set accuracy over the ten most frequently occurring topics

when using a pool sizes of 500 and 1000. (b) Average breakeven point over the ten most

frequently occurring topics when using a pool sizes of 500 and 1000.

learning. This behavior is quite intuitive since a good active method should be able to take

advantage of a larger pool of potential queries and ask more targeted questions.

We also investigated active learning in a transductive setting. Here we queried the

points as usual except now each method (Simple and Random) returned a transductive SVM

trained on both the labeled and remaining unlabeled data in the pool. The breakeven point

for a TSVM was computed by gradually altering the number of unlabeled instances that

we wished the TSVM to label as positive. This approach involves re-learning the TSVM

multiple times and was computationally intensive. Since our setting was transduction, the

performance of each classifier was measured on the pool of data rather than a separate

test set. This experiment reflects the relevance feedback transductive inference example

presented in the introduction.

Figure 4.4 shows that using a TSVM provides a slight advantage over a regular SVM in

both querying methods (Random and Simple) when comparing breakeven points. However,

the graph also shows that active learning provides notably more benefit than transduction.

Indeed, using a TSVM with a Random querying method needs over 100 queries to achieve

CHAPTER 4. SVM EXPERIMENTS 43

Inductive Passive

Transductive Passive

Inductive Active

Transductive Active

20 40 60 80 100

Labeled Training Set Size

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
re

c
is

io
n

/R
e

c
a

ll
B

re
a

k
e

v
e

n
 P

o
in

t

Transductive Active

Inductive Active

Transductive Passive

Inductive Passive

Figure 4.4: Average pool set precision/recall breakeven point over the ten most frequently

occurring topics when using a pool size of 1000.

the same breakeven performance as a regular SVM with a Simple method that has only seen

20 labeled instances.

4.1.3 Newsgroups Data Collection Experiments

Our second data collection was Ken Lang’s Newsgroups collection.5 We used the fiveomp:� groups, discarding the Usenet headers and subject lines. We processed the text

documents exactly as before resulting in vectors of around 10000 dimensions.

We placed half of the 5000 documents aside to use as an independent test set, and

repeatedly, randomly chose a pool of 500 documents from the remaining instances. We

performed twenty runs for each of the five topics and averaged the results. We used test

set accuracy to measure performance. Figure 4.5(a) contains the learning curve (averaged

over all of the results for the five omp:� topics) for the three active learning methods andRandom sampling. Again, the horizontal line indicates the performance of an SVM that has

been trained on the entire pool. There is no appreciable difference between the MaxMin
and MaxRatio methods but, in two of the five newsgroups (omp:sys:ibm:p:hardware

5Obtained from www.cs.cmu.edu/˜textlearning.

CHAPTER 4. SVM EXPERIMENTS 44

Random

Simple

MaxMin

Ratio

0 20 40 60 80 100

Labeled Training Set Size

40.0

50.0

60.0

70.0

80.0

90.0

100.0

T
e

s
t

S
e

t
A

c
c
u

ra
c
y

Full

Ratio

MaxMin

Simple

Random

Ratio

MaxMin

Simple

Random

0 20 40 60 80 100

Labeled Training Set Size

40.0

50.0

60.0

70.0

80.0

90.0

100.0

T
e

s
t

S
e

t
A

c
c
u

ra
c
y

Full

Ratio

MaxMin

Simple

Random

(a) (b)

Figure 4.5: (a) Average test set accuracy over the five omp:� topics when using a pool size

of 500. (b) Average test set accuracy for omp:sys:ibm:p:hardware with a 500 pool size.

and omp:os:ms-windows:mis) the Simple active learning method performs notably worse

than the MaxMin and MaxRatio methods. Figure 4.5(b) shows the average learning curve

for the omp:sys:ibm:p:hardware topic. In around ten to fifteen per cent of the runs for

both of the two newsgroups the Simple method was misled and performed extremely poorly

(for instance, achieving only 25% accuracy even with fifty training instances, which is

worse than random guessing!). This experiment indicates that the Simple querying method

may be more unstable than the other two methods. Lewis and Gale (1994) also noted that

the performance of the uncertainty sampling method (which is our Simple method) can be

variable, performing quite poorly on occasions.

One reason for this instability could be that the Simple method tends not to explore the

feature space as aggressively as the other active methods, and can end up ignoring entire

clusters of unlabeled instances. In Figure 4.6(a) the Simple method takes several queries

before it even considers an instance in the unlabeled cluster while both the MaxMin andMaxRatio query a point in the unlabeled cluster immediately.

While MaxMin and MaxRatio appear more stable they are much more computationally

intensive. With a large pool of s instances, they require around 2s SVMs to be learned

for each query. Most of the computational cost is incurred when the number of queries

that have already been asked is large. The reason is that the cost of training an SVM

CHAPTER 4. SVM EXPERIMENTS 45

Ratio

Hybrid

Simple

0 20 40 60 80 100

Labeled Training Set Size

40.0

50.0

60.0

70.0

80.0

90.0

100.0

T
e

s
t

S
e

t
A

c
c
u

ra
c
y

Ratio

Hybrid

Simple

(a) (b)

Figure 4.6: (a) A simple example of querying unlabeled clusters. (b) Macro average test

set accuracy for omp:os:ms-windows:mis and omp:sys:ibm:p:hardware where Hybrid
uses the MaxRatio method for the first ten queries and Simple for the rest.

grows polynomially with the size of the labeled training set and so now training each SVM

is costly (taking around a minute to generate the 50th query on a Sun Ultra 60 450Mhz

workstation with a pool of 1000 documents). However, when the quantity of labeled data

is small, even with a large pool size, MaxMin and MaxRatio are fairly fast (taking a few

seconds per query) since now training each SVM is fairly cheap. Interestingly, it is in

the first ten queries that the Simple method seems to suffer the most through its lack of

aggressive exploration. This observation prompts us to consider a Hybrid method. We

can use MaxMin or MaxRatio for the first few queries and then use the Simple method

for the rest. Experiments with the Hybrid method show that it maintains the stability of

the MaxMin and MaxRatio methods while allowing the scalability of the Simple method.

Figure 4.6(b) compares the Hybrid method with the MaxRatio and Simple methods on the

two newsgroups for which the Simple method performed poorly. The test set accuracy of

the Hybrid method is virtually identical to that of the MaxRatio method while the Hybrid
method’s run time was about the same as the Simple method, as indicated by Table 4.3.

CHAPTER 4. SVM EXPERIMENTS 46

Table 4.3: Typical run times in seconds for the Active methods on the Newsgroups dataset

Query Simple MaxMin MaxRatio Hybrid
1 0.008 3.7 3.7 3.7

5 0.018 4.1 5.2 5.2

10 0.025 12.5 8.5 8.5

20 0.045 13.6 19.9 0.045

30 0.068 22.5 23.9 0.073

50 0.110 23.2 23.3 0.115

100 0.188 42.8 43.2 0.2

0 50 100 150 200

Labeled Training Set Size

20

40

60

80

100

P
re

c
is

io
n

/R
e

c
a

ll
B

re
a

k
e

v
e

n
 p

o
in

t

SVM Simple Active

MN−Algorithm

150 300 450 600 750 900

Labeled Training Set Size

60

70

80

90

100

T
e

s
t

S
e

t
A

c
c
u

ra
c
y

SVM Simple Active

SVM Passive

LT−Algorithm Winnow Active

LT−Algorthm Winnow Passive

(a) (b)

Figure 4.7: (a) Average breakeven point performance over the Corn, Trade and AcqReuters-21578 categories. (b) Average test set accuracy over the top ten Reuters-21578

categories.

4.1.4 Comparision with Other Active Learning Systems

There have been a number of alternative approaches to active learning for text classifica-

tion. McCallum and Nigam used a general purpose active learning algorithm called Query

by Committee (Seung et al., 1992; Freund et al., 1997) together with a naive Bayes (Duda

& Hart, 1973) model. They also used the Expectation Maximization (EM) (Dempster et al.,

1977) algorithm to take further advantage of the unlabeled instances. We re-created Mc-

Callum and Nigam’s (1998) experimental setup on the Reuters-21578 corpus and compared

the reported results from their algorithm (MN-algorithm hereafter) with ours. In line with

their experimental setup, queries were asked five at a time, and this was achieved by picking

CHAPTER 4. SVM EXPERIMENTS 47

the five instances closest to the current hyperplane. Figure 4.7(a) compares McCallum and

Nigam’s reported results with ours. The graph indicates that the Active SVM performance

is significantly better than the MN-algorithm.

An alternative committee approach to Query by Committee was explored by Liere and

Tadepalli (1997, 2000). Although their algorithm (LT-algorithm hereafter) lacks the the-

oretical justifications of the Query by Committee algorithm, they successfully used their

committee based active learning method with Winnow classifiers in the text domain. Fig-

ure 4.7(b) was produced by emulating their experimental setup on the Reuters-21578 data

set and it compares their reported results with ours. Their algorithm does not require a posi-

tive and negative instance to seed their classifier. Rather than seeding our Active SVM with

a positive and negative instance (which would give the Active SVM an unfair advantage)

the Active SVM randomly sampled 150 documents for its first 150 queries. This process

virtually guaranteed that the training set contained at least one positive instance. The Ac-

tive SVM then proceeded to query instances actively using the Simple method. Despite the

very naive initialization policy for the Active SVM, the graph shows that the Active SVM

accuracy is significantly better than that of the LT-algorithm.

SVM active learning outperforms the other systems for two main reasons. First, SVMs

are already a highly competative method for text classification (Joachims, 1998; Dumais

et al., 1998). Second, our active method boosts the SVM performance so as to maintain

the performance advantage over other classifiers when they use their own active learning

methods.

4.2 Image Retrieval Experiments

4.2.1 Introduction

One key design task, when constructing image databases, is the creation of an effective

browsing and searching component. While it is sometimes possible to arrange images

within an image database by creating a hierarchy, or by hand-labeling each image with de-

scriptive words, it is often time-consuming, costly and subjective. Alternatively, requiring

the end-user to specify an image query in terms of low level features (such as color and

CHAPTER 4. SVM EXPERIMENTS 48

texture) is challenging to the end-user, because an image query is hard to articulate, and

articulation can again be subjective.

Thus, there is a need for a way to allow a user to implicitly inform a database of his

or her desired output or query concept . To address this requirement, relevance feedback

can be used as a query refinement scheme to derive or learn a user’s query concept. To

solicit feedback, the refinement scheme displays a few image instances and the user labels

each image as relevant or irrelevant. Based on the answers, another set of images from

the database are brought up to the user for labeling. After some number of such querying

rounds, the refinement scheme returns a number of items in the database that it believes

will be of interest to the user.

A query refinement scheme that uses relevance feedback can be regarded as a pool-

based active learning task. In pool-based active learning the learner has access to a pool

of unlabeled data and can request the user’s label for a certain number of instances in the

pool. In the image retrieval domain, the unlabeled pool would be the entire database of

images. An instance would be an image, and the two possible labelings of an image would

be relevant and not relevant. The goal for the learner is to learn the user’s query concept.

In other words, the goal is to give a label to each image within the database such that for

any image, the learner’s labeling and the user’s labeling will agree.

In general, and for the image retrieval task in particular, such a learner must meet two

critical design goals. First, the learner must learn target concepts accurately, with only a

small number of labeled instances. Second, the learner must ask queries quickly since most

users do not wish to wait around.

4.2.2 The SVMActive Relevance Feedback Algorithm for Image Retrieval

Given the interactive nature of image retrieval, we used the Simple querying method only.

The other querying methods proved too computationally costly in this domain.

For the image retrieval domain, we also have a need for performing multiple queries at

the same time. It is not practical to present one image at a time for the user to label because

the user is likely to quickly lose patience after a few rounds of querying. Hence, we would

like to present the user with multiple images (say, twenty) at each round of querying. Thus,

CHAPTER 4. SVM EXPERIMENTS 49

for each round, the active learner has to choose not just one image to be labeled but twenty.

Theoretically it would be possible to consider the size of the resulting version spaces for

each possible labeling of each possible set of twenty queries but clearly this approach is

impractical. Instead our system takes the simple approach of choosing the queries to be the

twenty images closest to its separating hyperplane.

In our text experiments, we noted that the Simple querying algorithm used by SVMActive

can sometimes be unstable during the first few queries. To address this issue, SVMActive

always randomly chooses twenty images for the first relevance feedback round. Then it

uses the Simple active querying method on the second and subsequent rounds.

To summarize, our SVMActive system performs the following:

1. Initialize with one relvant and one irrelevant image.

2. For the first round of querying, ask the user to label twenty randomly selected images.

3. Learn an SVM on the current labeled data

4. Ask the user to label the twenty pool images closest to the SVM boundary.

5. Perform additional querying rounds by going to step 3.

After the relevance feedback rounds have been performed SVMActive retrieves the top-k
most relevant images:

1. Learn a final SVM on the labeled data.

2. The final SVM boundary separates relevant images from irrelevant ones. Display

the k relevant images that are farthest from the SVM boundary.

The follow section describes the features that we used for our SVMActive image retrieval

system.

4.2.3 Image Characterization

In order to be able to perform relevance feedback we first need to decide how to represent

an image. We extract two key types of features from each image: its color and texture.

CHAPTER 4. SVM EXPERIMENTS 50

Filter Name Resolution Representation

Color Masks Coarse Appearance of culture colors

Color Spread Coarse Spatial concentration of a color

Color Elongation Coarse Shape of a color

Color Histograms Medium Distribution of colors

Color Average Medium Similarity comparison within

the same culture color

Color Variance Fine Similarity comparison within

the same culture color

Table 4.4: Multi-resolution Color Features.

Clearly a great deal of additional information is lost when using these simple types of

features. However, just as document classifiers that ignore word ordering are still very

effective, the image retrieval retrieval task can be effectively performed just by using these

two simple types of features.

Color

Although the wavelength of visible light ranges from 400 nanometers to 700 nanometers,

research (Goldstein, 1999) shows that the colors that can be named by all cultures are

generally limited to eleven. In addition to black and white, the discernible colors are red,

yellow, green, blue, brown, purple, pink, orange and gray.

We first divide color into 12 color bins including 11 bins for culture colors and one bin

for outliers (Hua et al., 1999). At the coarsest resolution, we characterize color using a color

mask of 12 bits. To record color information at finer resolutions, we record eight additional

features for each color. These eight features are color histograms (the percentage of that

color in the image), color means in the hue (H), saturation (S) and value (V) channels,

color variances in the H, S and V channels, and two shape characteristics: elongation and

spreadness. For each color bin, the color means indicate the average shade of that particular

color. The color variances characterize the number of different shades of that color that are

present in the image. For example, in a forest image we would expect a large variance for

the H, S and V channels in the green color bin. Color spreadness is given by the second

moment of that color’s pixels’ locations. Spreadness characterizes how that color scatters

within the image (Leu, 1991). Color elongation characterizes the shape of a color and, for

CHAPTER 4. SVM EXPERIMENTS 51

efficiency, it is compute simply by taking the ratio of the variances of that color’s pixels’

locations in the vertical and horizontal directions. Table 4.4 summarizes color features in

coarse, medium and fine resolutions.

Texture

Texture is an important cue for image analysis. Studies (Manjunath et al., 2001; Smith

& Chang, 1996; Tamura et al., 1978; Ma & Zhang, 1998) have shown that characterizing

texture features in terms of structuredness, orientation, and scale (coarseness) fits well with

models of human perception. A wide variety of texture analysis methods have been pro-

posed in the past. We choose a discrete wavelet transformation (DWT) using quadrature

mirror filters(Smith & Chang, 1996) because of its computational efficiency.

 Coarse (Level 1)

Vertical Horizontal Diagonal

o
 E

n
er

g
y

 M
ea

n

o
 E

n
er

g
y

 V
ar

ia
n

ce

o
 T

ex
tu

re
 E

lo
n

g
at

io
n

o
 T

ex
tu

re
 S

p
re

ad
n

es
s

 Medium (Level 2)

 Fine (Level 3)

o
 E

n
er

g
y

 M
ea

n

o
 E

n
er

g
y

 V
ar

ia
n

ce

o
 T

ex
tu

re
 E

lo
n

g
at

io
n

o
 T

ex
tu

re
 S

p
re

ad
n

es
s

o
 E

n
er

g
y

 M
ea

n

o
 E

n
er

g
y

 V
ar

ia
n

ce

o
 T

ex
tu

re
 E

lo
n

g
at

io
n

o
 T

ex
tu

re
 S

p
re

ad
n

es
s

Figure 4.8: Multi-resolution texture features.

Each wavelet decomposition on a 2-D image produces four subimages: a 12 � 12 scaled-

down version of the input image and its wavelets in three orientations: horizontal, vertical

and diagonal. The energies of the horizontal, vertical and diagonal wavelet images capture

the amount of fine texture present for those particular orientations in the original image.

Now, applying the wavelet transformation to the 12 � 12 scaled-down version of the original

image produces another set of four subimages. This time, the energies of the horizontal,

vertical and diagonal wavelet images capture the amount of medium texture present in the

original image. Similarly, applying the wavelet to the 14 � 14 version of original image

yields a measure for the amount of coarse texture. Thus, we obtain a total of nine texture

combinations from subimages of three scales and three orientations.

CHAPTER 4. SVM EXPERIMENTS 52

Each of the wavelet images is similar to the result produced by using a standard edge

dectection filter in that it maintains spatial information. For example. if there is a large de-

gree of fine horizontal texture in the center of the original image (e.g, because the center of

the image contains a tree trunk) then the will be a high degree of energy in the center of the

corresponding wavelet image for horiziontal fine texture. Thus, we can also extract elon-

gation and spreadness information from the nine wavelet images. Figure 4.8 summarizes

texture features.

4.2.4 Experiments

For our empirical evaluation of our learning methods we used three real-world image

datasets: a four-category, a ten-category, and a fifteen-category image dataset where each

category consisted of 100 to 150 images. These image datasets were collected from Corel

Image CDs and the Internet.� Four-category set. The 602 images in this dataset belong to four categories – archi-

tecture, flowers, landscape, and people.� Ten-category set. The 1277 images in this dataset belong to ten categories – architec-

ture, bears, clouds, flowers, landscape, people, objectionable images, tigers, tools,

and waves. In this set, a few categories were added to increase learning difficulty.

The tiger category contains images of tigers on landscape and water backgrounds to

confuse with the landscape category. The objectionable images can be confused with

people wearing little clothing. Clouds and waves have substantial color similarity.� Fifteen-category set. In addition to the ten categories in the above dataset, the total of

1920 images in this dataset includes elephants, fabrics, fireworks, food, and texture.

We added elephants with landscape and water backgrounds to increase learning dif-

ficulty between landscape, tigers and elephants. We added colorful fabrics and food

to interfere with flowers. Various texture images (e.g., skin, brick, grass, water, etc.)

were added to raise learning difficulty for all categories.

CHAPTER 4. SVM EXPERIMENTS 53

To provide an objective measure of performance, we assumed that a query concept was

an image category. The SVMActive learner has no prior knowledge about image categories6.

It treats each image as a 144-dimension vector described in Section 4.2.3. The goal ofSVMActive is to learn a given concept through a relevance feedback process. In this process,

at each feedback round SVMActive selects twenty images to ask the user to label as relevant

or irrelevant with respect to the query concept. It then uses the labeled instances to suc-

cessively refine the concept boundary. After the relevance feedback rounds have finishedSVMActive then retrieves the top-k most relevant images from the dataset based on the final

concept it has learned.

Accuracy is then computed by looking at the fraction of the k returned result that be-

longs to the target image category. Notice that this is equivalent to computing the precision

on the top-k images. This measure of performance appears to be the most appropriate for

the image retrieval task – particularly since, in most cases, not all of the relevant images

will be able to be displayed to the user on one screen. As in the case of web searching, we

typically wish the first few screens of returned images to contain a high proportion of rel-

evant images. We are less concerned that not every single instance that satisfies the query

concept is displayed.

As with all SVM algorithms, SVMActive requires at least one relevant and one irrelevant

image to function. In practice a single relevant image could be provided by the user (e.g.,

via an upload to the system) or could be found by displaying a large number of randomly

selected images to the user (where, perhaps, the image feature vectors are chosen to be

mutually distant from each other so as to provide a wide coverage of the image space). In

either case we assume that we start off with one randomly selected relevant image and one

randomly selected irrelevant image.SVMActive Experiments

Figures 4.9(a-c) show the average top-k accuracy for the three different sizes of data sets.

We considered the performance of SVMActive after each round of relevance feedback. The

6Unlike some recently developed systems (Wang et al., 2000) that contain a semantic layer between image

features and queries to assist query refinement, our system does not have an explicit semantic layer. We argue

that having a layer can make a retrieval system restrictive. Rather, dynamically learning the semantics of a

query concept is more flexible and hence makes the system more useful.

CHAPTER 4. SVM EXPERIMENTS 54

graphs indicate that performance clearly increases after each round. Also, the SVMActive

algorithm’s performance degrades gracefully when the size and complexity of the database

is increased – for example, after four rounds of relevance feedback it achieves an average of

100%, 95%, 88% accuracy on the top-20 results for the three different data sets respectively.

It is also interesting to note that SVMActive is not only good at retrieving just the top few

images with high precision, but it also manages to sustain fairly high accuracy even when

asked to return larger numbers of images. For example, after five rounds of querying it

attains 99%, 84% and 76% accuracy on the top-70 results for the three different sizes of

data sets respectively7.SVMActive uses the Simple active querying method outlined in Section 3.6. We examined

the effect that the active querying method had on performance. Figures 4.10(a) and 4.10(b)

compare the active querying method with the regular passive method of sampling. The

passive method chooses random images from the pool to be labeled. This method is the one

that is typically used with SVMs since it creates a randomly selected data set. It is clear that

the use of active learning is beneficial in the image retrieval domain. There is a significant

increase in performance from using the active method and the boost in performance grows

with the number of querying rounds.SVMActive displays 20 images per pool-querying round. There is a tradeoff between the

number of images to be displayed in one round, and the number of querying rounds. The

fewer images displayed per round, the lower the performance. However, with fewer im-

ages per round we may be able to conduct more rounds of querying and thus increase our

performance. Figure 4.11 considers the effect of displaying different images per round. In

Figures 4.11(a-b) we consider one of the topics in the four-category dataset. We start out by

initializing with one relevant and one irrelevant image and then ask 20 randomly selected

images. We then compare asking different numbers of images per round. Fig. 4.11(a) dis-

plays the top-100 accuracy for different numbers of images seen, and Fig. 4.11(b) displays

the top-100 accuracy for different numbers of rounds. In Fig. 4.11(c) we consider the fif-

teen category dataset. We initialize with one relevant and one irrelevant image. Our first

7We note that, in general, the state-of-the-art performance levels of classifiers in the image domain is

worse than in the text classification domain. This is because is harder to find meaningful image features.

Thus the image features that are typically used are less informative about the topic of an image than the

words features are about the topic of a document.

CHAPTER 4. SVM EXPERIMENTS 55

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Num ber of Images Return ed (k)

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Round 5

Round 4

Round 3

Round 2

Round 1

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Num ber of Images Return ed (k)

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Round 5

Round 4

Round 3

Round 2

Round 1

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

N um ber o f Im ages Retu rned (k)

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Round 5

Round 4

Round 3

Round 2

Round 1

(a) (b) (c)

Figure 4.9: (a) Average top-k accuracy over the four-category dataset. (b) Average top-k
accuracy over the ten-category dataset. (c) Average top-k accuracy over the fifteen-category

dataset. Standard error bars are smaller than the curves’ symbol size. Legend order reflects

order of curves.

round consisted of displaying twenty random images and then, on the second and subse-

quent rounds of querying, active learning with 10 or 20 images is invoked. We notice that

in all graphs there is indeed a little benefit to asking (20 random + two rounds of 10 images)

over asking (20 random + one round of 20 images). This observation is unsurprising since

the active learner has more control and freedom to adapt when asking two rounds of 10

images rather than one round of 20. What is interesting is that asking (20 random + two

rounds of 20 images) is far better than asking (20 random + two rounds of 10 images). The

increase in the cost to users of asking 20 images per round is often negligible since users

can pick out relevant images easily. Furthermore, there is virtually no additional computa-

tional cost in calculating the 20 images to query over the 10 images to query. Thus, for this

particular task, we believe that it is worthwhile to display around 20 images per screen and

limit the number of querying rounds, rather than display fewer images per screen and use

many more querying rounds.

We also investigated how performance altered when various aspects of the algorithm

were changed. Table 4.5 shows how all three of the texture resolutions are important. Also,

the performance of the SVM appears to be greatest when all of the texture resolutions

are included (although in this case the difference is not statistically significant). Table 4.6

indicates how other SVM kernel functions perform on the image retrieval task compared to

the radial basis function kernel. It appears that the radial basis function kernel is the most

CHAPTER 4. SVM EXPERIMENTS 56

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Num ber of Images Return ed

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Active SVM

R egular SVM

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

N um ber o f Im ag es R etu rned

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Active SVM

R egular SVM

(a) (b)

Figure 4.10: (a) Active and regular passive learning on the fifteen-category dataset after

three rounds of querying. (b) Active and regular passive learning on the fifteen-category

dataset after five rounds of querying. Standard error bars are smaller than the curves’

symbol size. Legend order reflects order of curves.

22 42 62 82 102 122

Number of labeled instances seen

80

90

100

T
o

p
−

1
0

0
 p

re
c
is

io
n

1 query per round

5 queries per round

10 queries per round

20 queries per round

0 1 2 3 4 5

Number of additional rounds

70

80

90

100

T
o

p
−

1
0

0
 p

re
c
is

io
n

20 queries per round

10 queries per round

5 queries per round

1 query per round 0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Number of Im ages Returned (k)

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

20 random + 2 rounds of 20

20 random + 2 rounds of 10

20 random + 1 round of 20

(a) (b) (c)

Figure 4.11: (a) Top-100 precision of the landscape topic in the four-category dataset as

we vary the number of examples seen. (b) Top-100 precision of the landscape topic in the

four-category dataset as we vary the number of querying rounds. (c) Comparison between

asking ten images per pool-query round and twenty images per pool-querying round on the

fifteen-category dataset. Legend order reflects order of curves.

CHAPTER 4. SVM EXPERIMENTS 57

Texture Top-50

features Accuracy

None 80:6� 2:3
Fine 85:9� 1:7
Medium 84:7� 1:6
Coarse 85:8� 1:3
All 86:3� 1:8

Table 4.5: Average top-50 accuracy over the four-category data set using a regular SVM

trained on 30 images. Texture spatial features were omitted.

Top-50 Top-100 Top-150

Degree 2 Polynomial 95:9� 0:4 86:1� 0:5 72:8� 0:4
Degree 4 Polynomial 92:7� 0:6 82:8� 0:6 69:0� 0:5

Radial Basis 96:8� 0:3 89:1� 0:4 76:0� 0:4
Table 4.6: Accuracy on four-category data set after three querying rounds using various

kernels. Bold type indicates statistically significant results.

suitable for this feature space.

One other important aspect of any relevance feedback algorithm is the wall clock time

that it takes to generate the next pool-queries. Relevance feedback is an interactive task, and

if the algorithm takes too long then the user is likely to lose patience and be less satisfied

with the experience. Table 4.7 shows that SVMActive averages about a second on a Sun

Workstation to determine the 20 most informative images for the users to label. Retrieval

of the 150 most relevant images takes an similar amount of time and computing the final

SVM model never exceeds two seconds.

Scheme Comparison

Relevance feedback techniques proposed by the database and image retrieval communities

also perform non-random sampling and are closely related to active learning. The study

Dataset Dataset round of 20 Computing Retrieving top

Size queries (secs) final SVM 150 images

4 Cat 602 0:34� 0:00 0:5� 0:01 0:43� 0:02
10 Cat 1277 0:71� 0:01 1:03� 0:03 0:93� 0:03
15 Cat 1920 1:09� 0:02 1:74� 0:05 1:37� 0:04

Table 4.7: Average run times in seconds

CHAPTER 4. SVM EXPERIMENTS 58

60

70

80

90

100

1 2 3 4 5

Num ber of R ounds

T
o

p
-2

0
 A

c
c

u
ra

c
y

Active SVM

QEX

QPM

50

60

70

80

90

100

1 2 3 4 5

Num ber of R ounds

T
o

p
-2

0
 A

c
c

u
ra

c
y

Active SVM

QEX

QPM

(a) (b)

Figure 4.12: (a) Average top-k accuracy over the ten-category dataset. (b) Average top-k
accuracy over the fifteen-category dataset.

of (Porkaew et al., 1999b) puts these relevance feedback approaches into two categories:

query reweighting/query point movement and query expansion.� Query reweighting and query point movement (QPM) (Ishikawa et al., 1998; Ortega

et al., 1999; Porkaew et al., 1999a). Both query reweighting and query point move-

ment use nearest-neighbor sampling: They return top ranked objects to be marked by

the user and refine the query based on the feedback.� Query expansion (QEX) (Porkaew et al., 1999b; Wu et al., 2000). The query ex-

pansion approach can be regarded as a multiple-instances sampling approach. The

samples of the next round are selected from the neighborhood (not necessarily the

nearest ones) of the positive-labeled instances of the previous round. The study of

(Porkaew et al., 1999b) shows that query expansion achieves only a slim margin of

improvement (about 10% in precision/recall) over query point movement.

We compared SVMActive with these two traditional query refinement methods. In this

experiment, each scheme returned the 20 most relevant images after up to five rounds of

relevance feedback. To ensure that the comparison to SVMActive was fair, we seeded both

schemes with one randomly selected relevant image to generate the first round of images.

On the ten-category image dataset, Figure 4.12(a) shows that SVMActive achieves nearly90% accuracy on the top-20 results after three rounds of relevance feedback, whereas the

accuracies of both QPM and QEX never reach 80% and do not tend to improve significantly

CHAPTER 4. SVM EXPERIMENTS 59

after just five querying rounds. On the fifteen-image category dataset, Figure 4.12(b) shows

that SVMActive outperforms the others by even wider margins. SVMActive reaches 80% top-

20 accuracy after three rounds and 94% after five rounds, whereas QPM and QEX cannot

achieve 65% accuracy.

Traditional information retrieval schemes often require a large number of image in-

stances to achieve any substantial refinement. By refining current relevant instances both

QPM and QEX tend to be fairly localized in their exploration of the image space and hence

rather slow in exploring the entire space. During the relevance feedback phase SVMActive

takes both the relevant and irrelevant images into account when choosing the next pool-

queries. Furthermore, it chooses to ask the user to label images that it regards as most

informative for learning the query concept, rather than those that have the most likelihood

of being relevant. Thus it tends to explore the feature space more aggressively.

Figures 4.13 and 4.14 show an example run of the SVMActive system. For this run,

we are interested in obtaining architecture images. In Figure 4.13 we initialize the search

by giving SVMActive one relevant and one irrelevant image. We then have three feedback

rounds. The images that SVMActive asks us to label in these three feedback rounds are images

that SVMActive will find most informative to know about. For example, we see that it asks

us to label a number of landscape images and other images with a blue or gray background

with something in the foreground. The feedback rounds allow SVMActive to narrow down the

types of images that we like. When it comes to the retrieval phase (Figure 4.14) SVMActive

returns, with high precision, a large variety of different architecture images, ranging from

old buildings to modern cityscapes.

4.3 Multiclass SVM Experiments

The previous two domains both involved binary classification: we were interested in dis-

tinguishing relevant instances from irrelevant ones. We now consider using the extension

to the multiclass scenario discussed in Section 3.7.

Recall that, in the binary classification setting, our Simple method is essentinally the

same as Lewis and Gale’s uncertainty sampling method since we query the pool instance

CHAPTER 4. SVM EXPERIMENTS 60

that is closest to the current SVM decision boundary; i.e., the instance that we are most un-

certain about. In the multiclass case, however, the Simple method and uncertainty sampling

differ. The Simple method attempts to approximatedly reduce the size of the version space

and using the current SVMs as a guide via Eq. (3.5) and Eq. (3.6). Uncertainty sampling

explicitly chooses points that are closest to all of the hyperplanes. For example, given thek current SVMs f1; : : : ; fk, uncertainty sampling will choose to query the pool instance x
for which: Yi fi(x) (4.1)

is smallest.8

We compared the version space Simple active method with the uncertainty sampling

active method and regular random sampling on a variety of multiclass data sets: the iris,

vehicle and wine UCI Irvine datasets (Blake et al., 1998) and the four-class Corel photo CD

image dataset (text domain experiments were not performed due to time constraints). We

initialized each of the learners with one instance from each of the classes. Figures 4.15(a-

e) show the test set accuracy for the different datasets. We see that our Simple method,

which takes a version space reduction view of active learning, generally performs signifi-

cantly better than uncertainty sampling and random sampling. Furthermore, although the

uncertainty sampling criteria for choosing a pool instance (Eq. (4.1)) seems intuitively rea-

sonable, it can sometimes perform significantly worse that random sampling. This observa-

tion suggests that designing effective active learning querying components is a subtle task.

Furthermore, viewing the binary classification Simple method as a version space reduction

method enables us to extend the Simple method to an effective querying algorithm for the

multiclass case. In contrast, viewing the binary classification Simple method as uncertainly

sampling produces a less effective extension to the multiclass case. This observation in-

dicates that the version space reduction interpretation of the binary classification Simple
method, rather than the uncertainty sampling interpretation, is the more consistent view.

8Rather than taking the product of fis, we could instead look at the sum. Empirically, minimizing the

product of fis performs significantly better.

CHAPTER 4. SVM EXPERIMENTS 61

Initializing

Feedback Round 1

Feedback Round 2

Feedback Round 3

Figure 4.13: Searching for architecture images. SVMActive Feedback phase.

CHAPTER 4. SVM EXPERIMENTS 62

First Screen of Results Second Screen of Results

Third Screen of Results Fourth Screen of Results

Fifth Screen of Results Sixth Screen of Results

Figure 4.14: Searching for architecture images. SVMActive Retrieval phase.

CHAPTER 4. SVM EXPERIMENTS 63

0 10 20 30 40 50

Training set size

80

85

90

95

100

T
e

s
t

s
e

t
a

c
c
u

ra
c
y

Full

Active Version Space

Active Uncertainty

Random

0 10 20 30 40 50 60 70 80 90 100

Training set size

20

25

30

35

40

45

50

55

T
e

s
t

s
e

t
a

c
c
u

ra
c
y

Active Version Space

Random

Active Uncertainty

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

Training set size

30

35

40

45

50

55

60

65

70

T
e

s
t

s
e

t
a

c
c
u

ra
c
y

Full

Active Version Space

Active Uncertainty

Random

0 50 100 150 200 250 300

Training set size

35

40

45

50

55

60

65

70

75

80

85

90

T
e

s
t

s
e

t
a

c
c
u

ra
c
y

Active Version Space

Random

(c) (d)

0 50 100 150 200 250 300

Training set size

35

40

45

50

55

60

65

70

75

80

85

90

T
e

s
t

s
e

t
a

c
c
u

ra
c
y

Active Version Space

Active Uncertainty

(e)

Figure 4.15: (a) Iris dataset. (b) Vehicle dataset. (c) Wine dataset. (d) Image dataset

(Active version space vs. Random). (e) Image dataset (Active version space vs. uncertainty

sampling). Axes are zoomed for resolution. Legend order reflects order of curves.

Part III

Bayesian Networks

64

Chapter 5

Bayesian Networks

5.1 Introduction

We often wish to build models that describe domains of interest. However, uncertainty is

inherent in the world. In order to provide a realistic model, we would like to encode such

non-determinism explicitly. Probability theory provides us with a sound, principled frame-

work for describing and reasoning about uncertainty. In the field of Artificial Intelligence,

Bayesian networks (BNs) have emerged as the representation of choice for multivariate

probability distributions. In the next two chapters we review the main areas of Bayesian

network representation, inference and learning which we shall then use in order to tackle

active learning in Bayesian networks.

Bayesian networks are a compact graphical representation of joint probability distri-

butions. They have been successfully used as models of a wide variety of complex sys-

tems. For example, medical diagnosis (Heckerman, 1988), troubleshooting in the Microsoft

Windows operation system (Heckerman et al., 1994), monitoring electric generators (Mor-

jaia et al., 1993), filtering junk email (Sahami et al., 1998), displaying information for

time-critical decision making (Horvitz et al., 1992) and determining the needs of software

users (Horvitz et al., 1998).

The key property of Bayesian networks is that they permit the explicit encoding of

conditional independencies in a natural manner. Thus, Bayesian networks allow qualitative,

structural aspects of a domain to be represented and harnessed.

65

CHAPTER 5. BAYESIAN NETWORKS 66

Figure 5.1: Cancer Bayesian network modeling a simple cancer domain. “Cancer” denotes

whether the subject has secondary, or metastatic, cancer. “Calcium increase” denotes if

there is an increase of calcium level in the blood. “Papilledema” is a swelling of the optical

disc.

A Bayesian network consists of a graph structure together with local probability mod-

els for each node of the graph. See Fig. 5.1 for an example. The graph structure of a

Bayesian network encodes conditional independencies of the distribution and the parame-

ters at each node in the BN encode the local conditional distributions of each node given

its parents. The network structure, together with the set of numerical parameters, specify a

joint distribution over the domain variables. The graphical representation is both compact

and natural. Furthermore, the factored representation via local conditional distributions

enables a Bayesian network to support both efficient inference and learning from data.1

5.2 Notation

Before we proceed to the formal definition of a Bayesian network, it will be helpful to

introduce a little notation. We shall be frequently talking about probability distributions

1The term Bayesian network is a bit of a misnomer. There is nothing inherently Bayesian about a Bayesian

network – any form of statistical parameter estimation can be used to learn a Bayesian network.

CHAPTER 5. BAYESIAN NETWORKS 67

over sets of random variables. We shall use the shorthand P (X1; : : : ; Xn) to denote:8x1; : : : ; xn P (X1 = x1; : : : ; Xn = xn);
and we use P (x1; : : : ; xn) to denote:P (X1 = x1; : : : ; Xn = xn):

For example, when we write P (X1; X2) = P (X1)P (X2 j X1) we mean:8x18x2 P (X1 = x1; X2 = x2) = P (X1 = x1)P (X2 = x2 j X1 = x1);
and when we write P (x1; x2) = 0:4 we mean:P (X1 = x1; X2 = x2) = 0:4:

We use boldface to denote a vector of variables X = (X1; : : :Xn), or instantiationsx = (X1 = x1; : : : ; Xn = xn).
Definition 5.2.1 We say thatX is conditionally independent ofY given Z if:P (X j Y;Z) = P (X j Z);
and we denote this relationship by the statement: I(X;Y j Z).
5.3 Definition of Bayesian Networks

The formal definition of a Bayesian network is:

Definition 5.3.1 Let X = fX1; : : : ; Xng be a set of random variables. Let G be a directed

acyclic graph over X . Let Ui be the set of parents of Xi. Let � be a set of parameters

which specify conditional probability distributions (CPDs) P�(Xi j Ui). Then a Bayesian

network over X is a pair (G; �).

CHAPTER 5. BAYESIAN NETWORKS 68

The structure G of a Bayesian network asserts conditional independence statements

given by the following definition:

Definition 5.3.2 A Bayesian network structure G encodes the conditional independence

statement “Every node is independent of its non-descendants given its parents”:8Xi I(Xi;Non-descendants(Xi) j Ui):
Given the above definitions it is possible to show that any distribution P satisfying the

conditional independencies in Definition 5.3.2 can be encoded as a BN with G as a structure

and with CPDs corresponding to the corresponding local conditional distributions of P , and

it can be shown that the joint distribution P can be expressed by the chain rule for Bayesian

networks: P (X1; : : : ; Xn) =Yi P (Xi j Ui): (5.1)

When a distribution P satisfies the conditional independencies in Definition 5.3.2, we

say that the distribution P is consistent with the structure G, or that G is an independency

mapping (I-MAP) of P . Finally, given a Bayesian network (G; �), we denote the distribu-

tion that it induces over the entire set of variablesX in G by: P (X j �;G).
5.4 D-Separation and Markov Equivalence

The graph structure of a Bayesian network asserts a set of conditional independencies that

can be derived from Definition 5.3.2. For example, suppose we have a five node network(U V ! X Y ! Z). Then, it is actually possible to prove, using the statements

given in Definition 5.3.2, that U is independent of Z for every distribution that is consistent

with G.

Definition 5.4.1 Given a Bayesian network graph structure G, define the entire set of con-

ditional independence statements I(G) that G asserts as the set of conditional independence

statements for which every distribution P consistent with G must satisfy.

CHAPTER 5. BAYESIAN NETWORKS 69

Now, given an arbitrary BN graph, we can deduce the set of conditional independence

statements that it encodes by considering which nodesX are d-separated from other nodesY given nodes Z. Before we proceed with looking at d-separation, there is a graph sub-

structure that is important to define first:

Definition 5.4.2 A v-structure is a graph substructure of the form A ! B C. We also

say that B is the center of the v-structure.

We can now formally define d-separation:

Definition 5.4.3 Given a Bayesian network graph structure G, single node X , single nodeY and set of nodes Z, we say that X is not d-separated from Y given Z if there exists an

(undirected) path P from X to Y such that:� Whenever a node W in P is the center of a v-structure, either W or one of W ’s

descendants is in Z.� Whenever a node W in P is not the center of a v-structure it is not in Z.

We say that X is d-separated from Y given Z if no such path exists.

The definition can be extended to accommodate sets of variables X and Y: X is d-

separated from Y given Z if every X in X is d-separated from every Y in Y. It can be

shown that a conditional independence statement I(X;Y j Z) is in I(G) if and only if X
is d-separated fromY given Z.

It is possible for two different network structures to encode identical sets of conditional

independence statements. For example, the networks X ! Y and X Y both encode

no conditional independence statements. When two networks encode precisely the same

conditional independence statements we say that they are Markov equivalent (Pearl, 1988).

Definition 5.4.4 Let XG denote the set of variables in graph G. Then the Markov equiva-

lence class of a Bayesian network structure G is:fG 0 j XG = XG0; I(G) = I(G 0)g:

CHAPTER 5. BAYESIAN NETWORKS 70

All networks in a Markov equivalence class have the same skeleton (the set connected(X; Y) pairs). For some of the pairs, the direction of the edge is fixed, while the other edges

can be directed either way (Spirtes et al., 1993). See Fig. 5.2 for an example of networks

in the same Markov equivalence class.

5.5 Types of CPDs

In much of our work we shall assume that the CPD of each node consists of a separate

multinomial distribution over Dom[Xi℄ for each instantiation u of the parents Ui. The BN

in Fig. 5.1 is of this form. We have a parameter �xij ju for each xij 2 Dom[Xi℄; we use �Xiju
to represent the vector of parameters associated with the multinomial P (Xi j u).

In general, any conditional distribution can be used as a CPD. Other common types

of CPDs are: tree CPDs (Boutilier et al., 1996), Gaussian CPDs (Lauritzen, 1996) and

Conditional Linear Gaussian CPDs (Lauritzen, 1996).

5.6 Bayesian Networks as Models of Causality

A Bayesian network represents a joint distribution over the set of variables X . Viewed as

a probabilistic model, it can answer any query of the form P (Y j Z = z) where Y andZ are sets of variables and z an assignment of values to Z. However, a BN can also be

viewed as a causal model (Pearl, 2000). Under this perspective, the BN can also be used to

answer interventional queries, which specify probabilities after we intervene in the model,

forcibly setting one or more variables to take on particular values.

In Pearl’s framework (Pearl, 2000), an intervention in a causal model that sets a single

node X := x replaces the standard causal mechanism of X with one where X is forced

to take the value x. In graphical terms, this intervention corresponds to mutilating the

model G by cutting the incoming edges to X . Intuitively, in the new model, X does not

directly depend on its parents; whereas in the original model, the fact that X = x would

give us information (via evidential reasoning) about X’s parents, in the intervention, the

fact that X = x tells us nothing about the values of X’s parents. For example, in a fault

diagnosis model for a car, if we observe that the car battery is not charged, we might

CHAPTER 5. BAYESIAN NETWORKS 71

Figure 5.2: The entire Markov equivalence class for the Cancer network

CHAPTER 5. BAYESIAN NETWORKS 72

Figure 5.3: Mutilated Cancer Bayesian network after we have forced Cal := cal1.
conclude evidentially that the alternator belt is possibly defective, but if we deliberately

drain the battery, then the fact that it is empty obviously gives us no information about the

alternator belt. Thus, if we set X := x, the resulting model is a distribution where we

mutilate G to eliminate the incoming edges to nodes inX, and set the CPDs of these nodes

so that X = x with probability 1.

Fig. 5.3 demonstrates what happens when we intervene in the Cancer network by forc-

ing there to be a high calcium level in the blood, i.e., by forcing Cal to be cal1. If we

simply observe that there is a high blood calcium level, then the probability of the mouse

subject having cancer can be computed to be P (Can = can1 j Cal = cal1) = 0:0567, but

if we purposely inject the mouse subject with calcium solution, then the fact that it has a

high blood calcium level gives us no information about whether it has cancer and so the

probability that the mouse has cancer given that we have set Cal := cal1 is just the prior

probability: P (Can = can1 j Cal := cal1) = P (Can = can1) = 0:001.

More formally, we use define a mutilated Bayesian network that results from perform-

ing an intervention as:

Definition 5.6.1 Let (G; �) be a Bayesian network. Let Y be some set of nodes in G.

Define the mutilated Bayesian network resulting from the intervention Y := y to be the

pair (GY:=y; �Y:=y) where:

CHAPTER 5. BAYESIAN NETWORKS 73� GY:=y is the same as G except any incoming edges toY are removed.� �Y:=y is the same as � except �Y:=y no longer contains parameters for P (Y j U)
for each Y 2 Y. Instead, �Y:=y contains parameters that define:P�Y:=y(Y = y) = 8<: 1 if yi is consistent with y0 otherwise

for each Y 2 Y.

We now define a causal Bayesian network as follows:

Definition 5.6.2 Let P �(X) be a probability distribution on a set of variables X. LetP �(X j Y := y) denote the distribution resulting from intervening by forcing Y to have

values y where Y is any subset of X. The Bayesian network, (G; �) is a causal Bayesian

network for the distribution P � if:� P �(X) = P (X j G; �),� 8Y � X, P �(X j Y := y) = P (X j GY:=y; �Y:=y).
5.7 Inference in Bayesian Networks

One of the main tasks of a probabilistic model is inference. The task of inference is to deter-

mine the value of a probabilistic expression involving the domain variables. For example,

given the Cancer network (Fig. 5.1) we may wish to know the marginal distribution of

coma: P (Com). Whilst in general the task of inference in BNs is NP-hard (Cooper, 1990),

in a great many cases the factored representation of a Bayesian network allows us to com-

pute this type of expression efficiently.

5.7.1 Variable Elimination Method

Let’s consider computing the marginal distribution P (Com) in the Cancer network. By the

Bayesian network chain rule we have:

CHAPTER 5. BAYESIAN NETWORKS 74

P (Com) (5.2)= X
Tum;Cal;Pap;Can

P (Com; Tum; Cal; Pap; Can) (5.3)= X
Tum

X
Cal

X
Pap

X
Can

P (Com j Tum; Cal)P (Pap j Tum)P (Cal j Can)P (Tum j Can)P (Can):
(5.4)

Notice that if we naively compute this expression we will be doing a lot of unnecessary

work. For example, some of the terms do not involve the variable Can. Hence, it is un-

necessary, and inefficient, to have the scope for the sum over Can to be all of the terms. In

general, we can simplify the computation of this expression by pushing the summations in

as far as they can go:X
Tum

X
Cal

P (Com j Tum; Cal)X
Pap

P (Pap j Tum)X
Can

P (Cal j Can)P (Tum j Can)P (Can):(5.5)

Now let us consider how to evaluate this expression efficiently. We first consider the

innermost summation: X
Can

P (Cal j Can)P (Tum j Can)P (Can): (5.6)

This expression is a sum over Can of an expression involving the variables Cal; Can

and Tum. Note that P (Cal j Can); P (Tum j Can) and P (Can) can be represented as tables,

with each row of the table corresponding to a different instantiation of the variables. For

example the table for P (Cal j Can) is:

Cal Can P (cal j can)
cal0 can0 0.8

cal0 can1 0.2

cal1 can0 0.2

cal1 can1 0.8

CHAPTER 5. BAYESIAN NETWORKS 75

We combine P (Cal j Can)P (Tum j Can)P (Can) into one function, h1, where h1
is a function of Cal;Can and Tum. We call h1 a factor. In fact we call all such func-

tions involved in the inference computation, factors. Thus P (Cal j Can), P (Tum j Can)
and P (Can) are also called factors. We can represent the factor h1 as a table where the(cal; can; tum) entry is equal to:P (Cal = cal j Can = can)P (Tum = tum j Can = can)P (Can = can):

In other words, by multiplying the tables for P (Cal j Can); P (Tum j Can) and P (Can)
together we obtain the factor h1.2 The table for h1 is then:

Cal Can Tum h1(cal; can; tum)
cal0 can0 tum0 0.7524

cal0 can0 tum1 0.0396

cal0 can1 tum0 0.0016

cal0 can1 tum1 0.0004

cal1 can0 tum0 0.1881

cal1 can0 tum1 0.0099

cal1 can1 tum0 0.0064

cal1 can1 tum1 0.0016

Now, returning to our inference computation, after summing out Can we end up with a

function involving only Tum and Cal.X
Can

P (Cal j Can)P (Tum j Can)P (Can) = X
Can

h1(Cal;Can; Tum) (5.7)= g1(Cal; Tum): (5.8)

The factor g1 can be represented as a table, where we sum out Can in h1:

2More formally h1(Cal;Can; Tum) is the outer-product of P (Cal j Can); P (Tum j Can) and P (Can).

CHAPTER 5. BAYESIAN NETWORKS 76

Cal Tum g1(cal; tum)
cal0 tum0 0.754

cal0 tum1 0.04

cal1 tum0 0.1945

cal1 tum1 0.0115S

Substituting g1 back into Eq. (5.5) we obtain:P (Com)= X
Tum

X
Cal

P (Com j Tum;Cal)X
Pap

P (Pap j Tum)X
Can

P (Cal j Can)P (Tum j Can)P (Can)= X
Tum

X
Cal

P (Com j Tum;Cal)X
Pap

P (Pap j Tum)g1(Cal; Tum):
We have eliminated one of the summations, and hence we have eliminated one of the

variables in the expression. Notice that to eliminate the variable Can we did not have to sum

over all of the terms in the expression. We only had to sum over the terms P (Cal j Can),P (Tum j Can) and P (Can). This is essentially where we gain computational efficiency

over the naive evaluation of the expression.3

We can proceed similarly, multiplying and summing out factors, to eliminate the other

variables:P (Com) (5.9)= X
Tum

X
Cal

P (Com j Tum;Cal)X
Pap

P (Pap j Tum)X
Can

h1(Cal;Can; Tum) (5.10)= X
Tum

X
Cal

P (Com j Tum;Cal)X
Pap

P (Pap j Tum)g1(Cal; Tum) (5.11)= X
Tum

X
Cal

P (Com j Tum;Cal)0�X
Pap

h2(Pap; Tum)1A g1(Cal; Tum) (5.12)

3The general paradigm for the variable elimination algorithm is dynamic programming. We solve a large

problem by solving subproblems, storing their results, and using them to solving other subproblems until we

have solved the large problem.

CHAPTER 5. BAYESIAN NETWORKS 77= X
Tum

X
Cal

P (Com j Tum;Cal)g2(Tum)g1(Cal; Tum) (5.13)= X
Tum

X
Cal

h3(Com; Tum;Cal) (5.14)= X
Tum

g3(Com; Tum) (5.15)= X
Tum

h4(Com; Tum) (5.16)= g4(Com): (5.17)

The final factor g4(Com) is equal to P (Com):
Com g4(com)
com0 0.781

com1 0.219

We now consider the computational cost. All of our operations involve multiplying

and summing out factors. Each of these operations is linear in the number of elements

in the tables. Thus the computational complexity is determined by the size of the largest

factor encountered in the computation. In our above example the largest factor involved 3

variables, and has size 23 = 8. The total number of additions and multiplications is 52.

If we were to naively evaluate P (Com) directly from Eq. (5.4) we would first need to

create a factor over all 5 variables instead and so the largest factor will have size 25 = 32.

The total number of multiplications and additions required is 158.

The above computation was performed by first choosing an order in which to eliminate

the variables (we chose the order Can;Cal; Tum;Pap). The complexity is dependent upon

the choice of ordering. The optimal choice of ordering is an NP hard problem (Arnborg

et al., 1987), but heuristics can be used to choose a reasonable ordering (Kjaerulff, 1990).

In general, the variable elimination algorithm (Zhang & Poole, 1994) for computing

the marginal distribution P (Y) is described in Fig. 5.4. The essential algorithm is to pick

a variable to eliminate next, gather terms involving that variable, sum out the variable over

those terms and then repeat.

CHAPTER 5. BAYESIAN NETWORKS 78

VariableElimination(BN over X , Y)

Check that Y is a subset of X
Initialize F := fP (Xi j Ui) j i = 1; : : : ; ngZ := X � Y
For Each Zi 2 Z // this is where the choice of ordering is important

Extract and remove from F all factors g1; : : : gr involving Zih := Qj gjg := PZi h
Insert g into F

End For

Return
�Qg2F g�

Figure 5.4: The variable elimination algorithm for computing marginal distributions.

Conditional Queries

The above algorithm is used to compute marginal distributions such as P (Can;Com) andP (Tum;Pap). We often wish to consider posterior distributions such as: P (Can j com0)
and P (Tum j pap1). The variable elimination algorithm can be easily adapted to compute

such distributions. Suppose we have evidence Com = com0 and we want to computeP (Can j com0). By definition:P (Can j com0) = P (Can; com0)P (com0) :
Thus, to compute P (Can j com0) we just need to compute P (Can; com0) and then

renormalize. Computing P (Can; com0) is straightforward:P (Can; com0) (5.18)= X
Tum;Cal;Pap

P (com0; Tum;Cal;Pap;Can) (5.19)= X
Tum

X
Cal

X
Pap

P (com0 j Tum;Cal)P (Pap j Tum)P (Cal j Can)P (Tum j Can)P (Can):
(5.20)

Now, we can evaluate Eq. (5.20) just like we did before in the marginal distribution

CHAPTER 5. BAYESIAN NETWORKS 79

case (Eq. (5.4)). Like before, we have a sum of product of factors. The only difference is

that we have slightly different factors than before.

Notice that, because we are conditioning on evidence Com = com0, P (com0 j Tum;Cal)
is now not a function of Com. It is just a function of Tum and Cal. The table representingP (com0 j Tum;Cal) can be obtained by reducing the table for P (Com j Tum;Cal). That is,

the table for P (Com j Tum;Cal):
Com Tum Cal P (com j tum; cal)
com0 tum0 cal0 0.95

com0 tum0 cal1 0.3

com0 tum1 cal0 0.1

com0 tum1 cal1 0.2

com1 tum0 cal0 0.05

com1 tum0 cal1 0.7

com1 tum1 cal0 0.9

com1 tum1 cal1 0.8

reduces to:

Tum Cal P (com0 j tum; cal)
tum0 cal0 0.95

tum0 cal1 0.3

tum1 cal0 0.1

tum1 cal1 0.2

Definition 5.7.1 Given a factor g(X1; : : : ; Xr), and instantiation Xi = xij then the re-

duced factor gjxij is defined as:gjxij(x1; : : : ; xi�1; xi+1; : : : ; xr) = g(x1; : : : ; xi�1; xij; xi+1; : : : ; xr):
This definition can be extended in the obvious way to reducing factors by an instantia-

tion that involves more that one variable.

CHAPTER 5. BAYESIAN NETWORKS 80

CondVariableElimination(BN over X , Y , W , w)

Check that Y , W and w only contain variables in X
Initialize F := fP (Xi j Ui) j i = 1; : : : ; ng
Reduce each g 2 F to gjwZ := X � Y �W
For Each Zi 2 Z

Extract and remove from F all factors g1; : : : gr involving Zih := Qj gjg := PZi h
Insert g into F

End For

Return renormalize
�Qg2F g�

Figure 5.5: The Variable Elimination Algorithm.

Fig. 5.5 describes the general variable elimination algorithm for computing the distri-

bution P (Y1; : : : ; Ym jW = w).
5.7.2 The Join Tree Algorithm

The join tree algorithm (Lauritzen & Spiegelhalter, 1988; Huang & Darwiche, 1996) is

another method for computing marginal and posterior distributions. It is also known as

the cluster tree, clique tree and junction tree algorithm. It is very similar to the variable

elimination algorithm. It is slightly more complicated but allows one to simultaneously

compute distributions over different sets of variables (for example, it can simultaneously

derive P (Can j com0); P (Tum;Cal j om0) and P (Pap j om0)). This is in contrast to the

variable elimination algorithm which can only compute one distribution at a time.

We shall describe the essence of this algorithm. A more detailed account can be found

in (Huang & Darwiche, 1996). To gain an understanding of how this algorithm works,

let us first take another look at the variable elimination algorithm for computing marginal

distributions P (Y). Consider the Cancer example that we presented in Equations 5.9 to

5.17. We can take a more graphical view of this computation. Given the elimination order-

ing Can;Pap;Cal; Tum, the variable elimination algorithm creates a series of intermediate

factors h1; : : : hk. Let us represent each h factor that we create as a node in an undirected

CHAPTER 5. BAYESIAN NETWORKS 81

Figure 5.6: Initial join tree for the Cancer network constructed using the elimination or-

dering Can;Pap;Cal; Tum.

graph. We call the node corresponding to the last h created as the root node. We label the

node with the variables that appear in h. Whenever we use a g (obtained by summing out a

variable in h) to compute another h0 we draw an edge between the node for h and the node

for h0 and we label the edge with the variables present in g. For each node, there is an edge

that leads towards the root. We call such an edge the outgoing edge and we call all other

edges the incoming edges. We call such a graph a join tree. See Fig. 5.6 for an example.

Given a join tree obtained from a given ordering, the variable elimination algorithm for

computing marginal distributions P (Y1; : : : ; Ym) can then be restated as follows:� Insert each CPD P (Xi j Ui) into a node that is labeled with at least the variablesfXig [Ui.� Starting from the leaf nodes, multiply incoming factors with any factors resident

within the node. (This creates our h factors). Then sum out all variables not present

in the variables on the outgoing edge (this creates our g factors) and pass this factor

along the outgoing edge.

See Figures 5.7(a) and 5.7(b) for an example . By the end of this process we end up

with a factor at the root node which is equal to the marginal distribution for the variables

in the root node. Since the root node corresponded to the last h created in the variable

CHAPTER 5. BAYESIAN NETWORKS 82

elimination algorithm, it contains all of the variables Y1; : : : ; Ym. We then sum out the

extraneous variables in the root node factor to obtain P (Y1; : : : ; Ym).
The join tree algorithm works in a very similar manner to this. In the terminology of

the join tree algorithm, we have just performed the “upward” pass of the algorithm – we

have passed factors from leaves to the root. After the upward pass the root node contains

the marginal probability of the variables labeling that node. However, in general, for any

other node, the h factor in that node is not equal to the marginal distribution of the variables

labeling that node.

The join tree algorithm has a second phase called the “downward” pass. Here we pass

factors from the root down towards the leaves. Figures 5.8(a) and 5.8(b) show how this

process is performed. After the second phase, it can be shown that each node’s h factor

is the marginal distribution of the variables within that node (Lauritzen & Spiegelhalter,

1988). After performing these two passes we say that the tree has been calibrated.

The cost of this algorithm is at most twice that of the variable elimination algorithm,

but we have now managed to compute many different marginal distributions at once. We

also note for future reference that each CPD factor belongs to a node, and so a calibrated

join tree contains, in an accessible form, the marginals of P (Ui) for each node Xi.
Dealing with evidenceW = w, is a straightforward modification, just as it was with the

variable elimination algorithm. Before performing the upward and downward passes we

reduce all the factors to be consistent with the evidence w. After calibrating the tree with

the upward and downward passes the factors at each node of the tree are distributions of the

form: P (Y1; : : : ; Ym;w). Renormalizing such factors will then yield: P (Y1; : : : ; Ym j w)
for each node.

We have briefly described the essence of the join tree algorithm. There are number of

extensions and improvements to the algorithm that can be made. In reality, the structure

of the join tree is constructed by a different method, rather than by using an ordering for

variable elimination. It can be shown that, so long as the tree is constructed to obey certain

properties, the upward and downward passes are guaranteed to produce the correct marginal

distributions at each of the tree’s nodes. Furthermore, it doesn’t matter which join tree node

we choose as the root node. See (Lauritzen & Spiegelhalter, 1988) for a more detailed

explanation. The upward and downward passes need not be performed in series; they can

CHAPTER 5. BAYESIAN NETWORKS 83

(a)

(b)

Figure 5.7: Processing the node XYZ during the upward pass. (a) Before processing the

node. (b) After processing the node.

CHAPTER 5. BAYESIAN NETWORKS 84

(a)

(b)

Figure 5.8: Processing the node XYZ during the downward pass. (a) Before processing the

node. (b) After processing the node.

CHAPTER 5. BAYESIAN NETWORKS 85

be interleaved to create a distributed algorithm. Also, given an calibrated tree, there are

ways of efficiently recalibrating the tree in light of new evidence (Huang & Darwiche,

1996).

The variable elimination and join tree algorithms mentioned here are exact inference

methods – they will always produce the exact answer. If exact inference is too costly for a

given network there are a variety of approximate inference techniques that one can resort

to. The most popular of these methods are likelihood sampling (Shachter & Peot, 1989),

Markov Chain Monte Carlo techniques (Geman & Geman, 1987; Neal, 1993), variational

approximations (Jordan et al., 1998) and loopy belief propagation (Murphy & Weiss, 1999;

Yedidia et al., 2001).

Chapter 6

Parameter Estimation

6.1 Introduction

A Bayesian network consists of two components – the graph structure and the parameters.

In a number of situations the graph structure is easier to obtain than the parameters, particu-

larly when working with a domain expert. Human experts often have the ability to describe

the qualitative correlations in a domain but, typically, they find it harder to pinpoint the

exact parameter values.

Our first area of focus is the parameter estimation task. Suppose we are given dataD = fd[1℄;d[2℄; : : : ;d[M ℄g, where the instances are independent and identically dis-

tributed (i.i.d.). We are given the network structure G, and our goal is to use the data to

estimate the network parameters �.

Much of the work on parameter estimation for BNs has focused on the case where

we are presented with discrete data and wish to find the parameters of CPDs that take

the form of tables of multinomials (with one multinomial for each possible assignment of

the parents). We shall restrict our attention to this case. See Fig. 6.1 for an example of

such a network. We let �Xiju denote the set of parameters associated with the conditional

distribution P (Xi j u) and we denote the entire set of parameters for every possible parent

instantiation u of a node Xi by �XijUi . We also introduce another piece of useful notation:

Definition 6.1.1 Given discrete data D and let y be a partial instantiation. Denote the

number of data instances inD that are consistent with the partial instantiationy by: N(y).
86

CHAPTER 6. PARAMETER ESTIMATION 87

Figure 6.1: Smoking Bayesian network with its parameters.

6.2 Maximum Likelihood Parameter Estimation

A standard approach to parameter estimation in general is the maximum likelihood method.

The intuitive idea is to choose the parameters � that best explain the observed dataD. More

formally:

Definition 6.2.1 Given a family of distributions P (:j�) parameterized by �, and i.i.d. dataD, the maximum likelihood estimator (MLE) �̂ is given by:�̂ = argmax�P (D j �): (6.1)

As a simple example, suppose that we have a single binary node network: X . The

CPD of X is parameterized by a single parameter �x0 that corresponds to the probability

that X = x0. Suppose that our data D consists of N(x0) occurrences of x0 and N(x1)
occurrences of x1. Then the MLE is:�̂x0 = argmax�x0P (D j �x0) (6.2)= argmax�x0�N(x0)x0 (1� �x0)N(x1) (6.3)= N(x0)N(x0) +N(x1) : (6.4)

CHAPTER 6. PARAMETER ESTIMATION 88

Smoker Cancer Frequency

No No 80

No Yes 0

Yes No 19

Yes Yes 1

Figure 6.2: An example data set for the Smoking network

In general the following theorem is a well known result (Heckerman, 1998):

Theorem 6.2.2 The MLE for a discrete Bayesian network with graph structure G and

multinomial table CPDs is given by:8i8j8u �̂xij ju = N(xij ;u)N(u) : (6.5)

where �̂xij ju is the parameter for the j-th value of the i-th node with parent instantiation u.

MLE gives an intuitive, natural form of estimation. Furthermore, it is an objective

estimator and does not rely on any subjectivity on the part of the human designer. However

its main drawback is that it can tend to “overfit” the data. This phenomenon is particularly

acute with discrete data and low probability events (a very common situation with medical

diagnosis). For example, suppose we wish to fit parameters to the Smoking network in

Fig. 6.1. Assume that we see a sample consisting of 100 people, 20 of whom smoke.

Furthermore, suppose one smoker develops cancer and none of the 80 non-smokers develop

cancer. This set of data is summarized in Fig. 6.2. Our maximum likelihood estimates for

the network parameters are then: �s0 = 0:8;�0js0 = 1;�0js1 = 0:95:

CHAPTER 6. PARAMETER ESTIMATION 89

Thus we are asserting that if someone does not smoke he or she will never develop can-

cer – an extremely strong statement. It asserts that it is impossible to develop cancer if we

do not smoke. This claim is very different than saying that there is a very small, but non-

zero, chance of a non-smoker developing cancer. Our estimate of �0js0 = 1 came about

because we did not have enough data to provide sufficient resolution of the low probability

event of developing cancer. There are a number of techniques one can use to address this

issue (Lehmann, 1986; Lehmann & Casella, 1998). We next review the Bayesian method-

ology which has become one of the cornerstones of learning with Bayesian networks and

it is a framework which tackles this issue of “overfitting” in an elegant manner.

6.3 Bayesian Parameter Estimation

6.3.1 Motivation

The reason why we find the estimate of �0js0 = 1 unsatisfying is that we think that there

is some non-zero chance of developing cancer even if we do not smoke. Similarly, if

we have a coin and we wish to estimate the probability of heads, and if we toss the coin

only once and it lands as heads, then we find it unreasonable to use the ML estimate of�h = 1. Intuitively, we find it unreasonable because we have some prior knowledge that

coins generally do not land only on one side. If, however, our coin lands heads after a

hundred tosses then we may be more willing to accept that the coin is biased; in other

words our prior knowledge becomes less important the more data we receive. The Bayesian

framework formalizes these intuitions as well as allowing us to incorporate other types of

prior knowledge.

6.3.2 Approach

In the coin example, rather that ascribing a single number to �h we maintain a density over

its possible values. The initial density in the absence of data, p(�h), is called the prior, and

it encodes our prior beliefs of the parameter. If we have just a little prior knowledge and

are unsure of �h’s value then this density will be fairly flat. On the other hand, if we have a

CHAPTER 6. PARAMETER ESTIMATION 90

fairly strong prior belief of the value of �h then this prior density will be more peaked. As

we gather more dataD, we update this density, p(�h) to get the posterior density, p(�h j D).
Bayesian parameter estimation in Bayesian networks works in the same way. We keep

a density over possible parameter values. We will make the common assumption of pa-

rameter independence (Heckerman et al., 1995): p(�) = QiQu p(�Xiju). This assumption

allows us to represent the prior distribution p(�) as a set of independent distributions, one

for each multinomial �Xiju.

We now have to choose the functional form of our densities over parameters �Xiju.

One desirable property of a parameter density p(�Xiju) is that, when we gather data and

obtain the posterior p(�Xiju j D), then the posterior density has the same functional form

as the prior. In other words, when we update our prior parameter densities, we would like

the posterior densities to remain in the same family. We call such families of densities

conjugate priors.

For multinomials, the conjugate prior is a Dirichlet distribution (DeGroot, 1970), given

by: p(�1; : : : ; �r) = Dirichlet(�1; : : : ; �r) = �(��)Qri=1 �(�i) rYj=1 ��j�1j ; (6.6)

which is parameterized by hyperparameters �j 2 R+, with �� = Pj �j , and � is the

gamma function. Also,
P �i = 1, �i � 0.

The Dirichlet family of distributions are conjugate priors for multinomials: if we obtain

a new instance X = xj sampled from this distribution, then our posterior distribution p0(�)
is also distributed Dirichlet with hyperparameters (�1; : : : ; �j + 1; : : : ; �r). In general the

following is a standard result (DeGroot, 1970):

Theorem 6.3.1 Let X be distributed multinomial with parameters � = (�1; : : : ; �r) and letp(�) = Dirichlet(�1; : : : ; �r). Given i.i.d data D we have that:p(� j D) = Dirichlet(�1 +N(x1); : : : ; �r +N(xr)): (6.7)

Intuitively, �j represents the number of “imaginary xj instances” observed prior to

observing any actual data. In particular the follow well known result holds (DeGroot,

1970):

CHAPTER 6. PARAMETER ESTIMATION 91

Dirichlet(1; 1) Dirichlet(2; 2)
Dirichlet(9; 9) Dirichlet(6; 2)

Figure 6.3: Examples of the Dirichlet distribution. � is on the horizontal axis, and p(�) is

on the vertical axis.

Theorem 6.3.2 Let X be distributed multinomial with parameters � = (�1; : : : ; �r) and letp(�) = Dirichlet(�1; : : : ; �r). The probability that our next observation is xj is:P (xj) = �j�� :
Thus, the relative sizes of the different �j’s determine our prior beliefs in the probabil-

ities of the different outcomes for X . The absolute sizes of the �j’s determine our confi-

dence in the estimate; the higher �� is, the longer it will take for our posterior distribution

to be influenced by new data. See Fig. 6.3 for examples of some Dirichlet densities.

In a BN with the parameter independence assumption, we have a Dirichlet distribution

for every multinomial distribution �Xiju. Given a distribution p(�), we use �xij ju to denote

the hyperparameter corresponding to the parameter �xij ju.

CHAPTER 6. PARAMETER ESTIMATION 92

6.3.3 Bayesian One-Step Prediction

In most cases we are not necessarily interested in the densities over the parameters p(�) in

a BN. We are often more interested in distribution over the domain variables X1; : : : ; Xn.

For example, given complete data D, we may wish to know the probability of next seeing

a data instance x. Using Theorem 6.3.2, the following corollary can be shown to hold:

Corollary 6.3.3 Let (G; �) be a Bayesian network over X = (X1; : : : ; Xn). Let D be

i.i.d complete data, and let the prior density over parameters p(�) = QiQu p(�Xiju) be

a product of Dirichlet densities. Then the Bayesian one-step prediction of next observing

data instance x is given by:P (x j D) = E��p(�jD)P (x j �) (6.8)= Z� P (x j �)p(� j D) d� (6.9)= Yi �xij ju +N(xij ;u)Pj ��xij ju +N(xij;u)� ; (6.10)

where xij is the value of Xi in x, and u is the value of Ui in x.

As an example, let us suppose we are given the Smoking network and we have a prior

distribution as follows:1 p(�s0) = Dirichlet(5; 5); (6.11)p(�0js0) = Dirichlet(2:5; 2:5); (6.12)p(�0js1) = Dirichlet(2:5; 2:5): (6.13)

Now suppose we observe the data in Fig. 6.2. Then the posterior densities over param-

eters will be: p(�s0) = Dirichlet(85; 25);
1Such a prior is called a BDe uniform prior with equivalent sample size of 10. It is as if we have imagined

10 instances that are uniformly distributed. The reason for a Dirichlet(2:5; 2:5) density for �0js0 is that only

half of the 10 imaginary uniform instances would be non-smokers.

CHAPTER 6. PARAMETER ESTIMATION 93p(�0js0) = Dirichlet(82:5; 2:5);p(�0js1) = Dirichlet(21:5; 3:5):
The probability of observing a non-smoker without cancer next is:P (0; s0 j D) = E��p(�jD)P (0; s0 j �) = 8585 + 25 � 82:582:5 + 2:5 = 34 : (6.14)

The probability of observing a non-smoker next is:P (s0 j D) = E��p(�jD)P (s0 j �) = 8585 + 25 = 1722 : (6.15)

And the probability of observing a person without cancer next given that he or she is a

non-smoker is: P (0 j s0; D) = P (0; s0 j D)P (s0 j D) = 82:582:5 + 2:5 = 3334 : (6.16)

This is in contrast to the ML estimate, which asserted that:P�̂(0 j s0) = 1: (6.17)

Similarly we have that:P (0 j s1; D) = P (0; s1 j D)P (s1 j D) = 21:521:5:5 + 3:5 = 4350 : (6.18)

Notice that these Bayesian one-step predictions are equivalent to setting:�s0 = 1722 ; (6.19)�0js0 = 3334 ; (6.20)�0js1 = 4350 : (6.21)

in the Smoking network in Fig. 6.1 and then performing inference in this network with

these parameters.

CHAPTER 6. PARAMETER ESTIMATION 94

Figure 6.4: Bayesian point estimate for a Dirichlet(6; 2) parameter density using KL diver-

gence loss: ~� = 0:75.

6.3.4 Bayesian Point Estimation

In the Bayesian learning framework, we maintain a distribution p(�) over all of the param-

eters. However, when we are asked to reason using the model, we often wish to “collapse”

this distribution over parameters, generate a single representative vector of parameters ~�,

and answer questions relative to that. If we choose to use ~�, whereas the “true” parameters

are ��, we incur some loss Loss(~� k ��)2. In Bayesian point estimation, our goal is to

pick a single vector of parameters that minimize this parameter loss. Of course, we do not

have access to ��. However, our posterior distribution p(�) represents our “optimal” be-

liefs about the different possible values of ��, given our prior knowledge and the evidence.

Therefore, we can define the risk of a particular ~� with respect to p as:E��p(�)Loss(� k ~�) = Z� Loss(� k ~�)p(�) d�: (6.22)

We then define the Bayesian point estimate to be the value of ~� that minimizes the risk.

See Fig. 6.4 for an example.

There are many possible choices of parameter loss functions, but perhaps one of the best

2Note that this parameter loss is between two sets of parameters ~� and ��. This function should not be

confused the active learning model quality or model loss of our model.

CHAPTER 6. PARAMETER ESTIMATION 95

justified is the relative entropy or Kullback-Leibler divergence (KL-divergence) (Kullback

& Leibler, 1951; Cover & Thomas, 1991):KL(� k ~�) =Xx P�(x) ln P�(x)P~�(x) : (6.23)

The KL-divergence has several independent justifications, and a variety of properties that

make it particularly suitable as a measure of distance between distributions.

Another very common parameter loss function is Log loss:LL(� k ~�) = �Xx P�(x) lnP~�(x): (6.24)

The squared error loss is also commonly used in statistics:L2(� k ~�) =Xk (�k � ~�k)2: (6.25)

However, squared error loss is not frequently used with Bayesian networks because it

does not possess useful factorization properties that the other two loss functions have.

For all of these parameter loss functions, one can show that the Bayesian point estimate

(the value ~� that minimizes the risk relative to p) is the mean value of the parameters:~� = E��p(�)�: (6.26)

Notice that, if we insert this Bayesian point estimate back into the expression for the

risk (Eq. (6.22)) this risk expression now just depends upon the parameter density p:

Definition 6.3.4 The risk of a density is given by:Risk(p(�)) = E��p(�)Loss(� k ~�); (6.27)

where ~� is the Bayesian point estimate.

We can then observe the following:

CHAPTER 6. PARAMETER ESTIMATION 96� If we are using KL-divergence, then Risk(p(�)) is the expected KL-divergence of ~�
from the “true” �.� If we are using log loss, then Risk(p(�)) is the negative expected log likelihood of a

future data instance.� If we are using squared error loss, then Risk(p(�)) is the variance of �.

Finally, notice from Eq. (6.26) that, for all of these parameter loss functions, the Bayesian

point estimates are equivalent to the Bayesian one-step predictions. For example, given the

Cancer network with the same prior (Equations 6.11 to 6.13) and data set (Fig. 6.2) the

Bayesian point estimates will be: ~�s0 = E��p(�)�s0 = 1722 ; (6.28)~�0js0 = E��p(�)�0js0 = 3334 ; (6.29)~�0js1 = E��p(�)�0js1 = 4350 : (6.30)

which are identical to Equations 6.19, 6.20 and 6.21.

Chapter 7

Active Learning for Parameter

Estimation

“A prudent question is one-half of wisdom.”

— Francis Bacon, (1561 - 1626).

English philosopher, statesman, essayist.

7.1 Introduction

The possibility of active learning in Bayesian networks can arise naturally in a variety of

ways. In selective active learning, we have the ability of explicitly asking for an example

of a certain “type”; i.e., we can ask for a full instance where some of the attributes take

on requested values. For example, if our domain involves webpages, the learner might be

able to ask a human teacher for examples of homepages of graduate students in a Computer

Science department. The pool-based variant of active learning also arises in many cases.

For example, one could redesign the U.S. census to have everyone fill out only the short

form; the active learner could then select among the respondents for those that should fill

out the more detailed long form. Another example is a cancer study in which we have a

list of people’s ages and whether they smoke, and we can ask a subset of these people to

undergo a thorough examination.

97

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 98

A very different form of active learning arises with Bayesian networks when the learner

can ask for experiments involving interventions to be performed. This type of active learn-

ing arises naturally in several domains, for example medical diagnosis, microbiology and

manufacturing.

In such active learning settings, where we have the ability to actively choose instances

on which to train, we need a mechanism that tells us which instances to select. We shall

use the general approach that was outlined in Section 1.2 to arrive at a formal framework

for active learning of parameters in Bayesian networks. We will assume that the graphical

structure of the BN is fixed, and focus on the task of parameter estimation. We will define

a notion of a model and model quality, and provide an algorithm that selects queries in a

greedy way, designed to improve model quality as much as possible.

At first sight, the applicability of active learning to density estimation is unclear. After

all, if we are trying to estimate a distribution, then random samples from that distribution

would seem the best source. Surprisingly, we provide empirical evidence showing that, in a

range of interesting circumstances, our approach learns from significantly fewer instances

than random sampling.

7.2 Active Learning for Parameter Estimation

Assume that we start out with a network structure G and a prior distribution p(�) over

the parameters of G. The distribution p(�) is our model. In a standard machine learn-

ing framework, data instances are independently, randomly sampled from some underlying

distribution. In an active learning setting, we have the ability to request certain types of

instances. We formalize this idea by assuming that some subset C of the variables are con-

trollable. The learner can select a subset of variables Q � C and a particular instantiationq to Q.

The request Q := q is called a query. The result of such a query is called the response

and it is a randomly sampled instance x of all the non-query variables, conditioned onQ := q. Thus (q;x) is a complete data instance.

The interpretation of such a request depends on our active learning setting. In a selective

query, we assume that (q;x) is selected at random from instances satisfying the query.

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 99

Hence, (q;x) is a random instance from P �(X j Q = q). (The same statement holds for

the pool-based variant of selective active learning.) In an interventional query, we assume

that our graph G is a causal model and that x is the result of an experiment where we

intervene in the model and explicitly set the variables inQ to take the values q.

In the Bayesian network parameter estimation task, an active learner has a querying

function that takes G and p(�), and selects a query Q := q. It takes the resulting complete

instance (q;x), and uses it to update its distribution p(�) to obtain a posterior p0(�). It then

repeats the process, using p0 for p. We note that the parameter distribution p(�) summarizes

all the relevant aspects of the data seen so far, so that we do not need to maintain the history

of previous instances. To fully specify the algorithm, we need to address two issues: we

need to describe how our parameter distribution is updated given that (q;x) is not a random

sample, and we need to construct a mechanism for selecting the next query based on p.

7.2.1 Updating Using an Actively Sampled Instance

Clearly, the answer to the first of these questions depends on the active learning mechanism

since the sampling distribution for (q;x) is different in the two cases.

Let us first consider the case of selective active learning. Assume for simplicity that

our query is Q = q for a single node Q. First, it is clear that we cannot use the resulting

instance (q;x) to update the parameters of the node Q itself: the fact that we deliberately

sought and found an instance where Q = q does not tell us anything about the overall

probability of such instances within the population.

However, we also have a more subtle problem. Consider a parent U of Q. Although(q;x) does give us information about the distribution of U , it is not information that we

can conveniently use. Intuitively, P (U j Q = q) is sampled from a distribution specified

by a complex formula involving multiple parameters. For example, consider the Smoking

network: Cancer ! Smoking where we must choose the value of Smoking in advance. It

then hard to get a coherent idea of the prior probability of cancer. We sidestep this problem

simply by ignoring the information provided by (q;x) on nodes that are “upstream” of Q.

Definition 7.2.1 A variable Y is updateable in the context of a selective queryQ if it is not

in Q or an ancestor of a node in Q.

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 100

Update(p, Q := q, x)

For each variable Xi updateable relative to Q := q
Let u be the instantiation of Ui in (q;x)
Let xij be the instantiation of Xi in x
Set �0xij ju := �xij ju + 1

Define p0 according to �0
Figure 7.1: Algorithm for updating p0 based on query Q := q and response x.

The case of interventional queries is much simpler. Here, each node in the query is

forced to have no ancestors, as all of its incoming edges were cut. Thus, for example, the

parent U of X in an interventional query X := x is sampled from the original distributionP �, and hence we can easily use the information about U in (q;x).
Definition 7.2.2 A variable Y is updateable in the context of an interventional query Q if

it is not in Q.

For Bayesian parameter estimation, our update rule is now very simple. Given a prior

distribution p(�) and an instance (q;x) from a query Q := q, we do standard Bayesian

updating, as in the case of randomly sampled instances, but we update only the Dirichlet

distributions of updateable nodes. See Fig. 7.1 for the algorithm. We use p(� j Q := q;x)
to denote the distribution p0(�) obtained from this algorithm; this expression can be read as

“the density of � after performing query q and obtaining the complete response x”. Note

that this expression is quite different from the density p(� j q;x) which denotes standard

Bayesian conditioning.

7.2.2 Applying the General Framework for Active Learning

Our second task is to construct an algorithm for deciding on our next query given our

current distribution p. From Section 1.2 our general approach is to define a measure for

the model quality of our learned model p(�). We can then evaluate the extent to which

various instances would improve the quality of our model, thereby providing us with a way

to select the next query to perform.

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 101

Our formulation for the quality of the model is based on the framework of Bayesian

point estimation. We are maintaining a distribution p over our parameters and hence p is

our model.

Recall from section 6.3.4 that the Bayesian point estimate is the value of ~� that mini-

mizes the risk and that the risk of a density, Risk(p(�)), is the risk using ~� as the estimate.

The risk of our density p(�) is our measure for the model quality of our current state of

knowledge, as represented by p(�).1 In a greedy scheme, our goal is to obtain an instance(q;x) such that the risk of the p0 obtained by updating p with (q;x) is lowest. Of course,

we do not know exactly which response x we are going to get. We know only that it will be

sampled from a distribution induced by our query. We can, however, consider the expected

quality or risk of asking a query. Our expected posterior risk is given by:ExPRisk(p(�) j Q := q) = E��p(�)Ex�P�(XjQ:=q)Risk(p(� j Q := q;x)): (7.1)

We have now defined the model and model quality. When we consider a queryQ := q
we look at the expected quality of the posterior model. Using our general template for

active learning (Section 1.2) leads immediately to the following simple algorithm: For

each candidate query Q := q, we evaluate the expected posterior risk, and then select the

query for which it is lowest.

7.3 Active Learning Algorithm

To obtain a concrete algorithm from the active learning framework shown in the previ-

ous section, we must pick a parameter loss function. As we mentioned in Section 6.3.4,

although there are many possible choices, perhaps one of the best justified is the KL-

divergence (Cover & Thomas, 1991). We therefore proceed using KL-divergence as our

1The notions of model quality and model loss are identical, however to avoid confusion with the pa-

rameter loss we will only use the term model quality in this chapter. To clarify, the parameter loss (e.g.,

KL-divergence) is used to define the risk of our density, and the risk of our density is our measure of model

quality.

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 102

parameter loss function. An analogous analysis can be carried through for another very nat-

ural parameter loss function: log loss (which corresponds to the negative log-likelihood of

future data). In the case of multinomial CPDs with Dirichlet densities over the parameters

this alternative parameter loss results in an identical final algorithm. See appendix A.2.2

for details.

7.3.1 The Risk Function for KL-Divergence

We now want to find an efficient approach to computing the model quality which, in the

case of parameter estimation, is the risk. Two properties of KL-divergence turn out to be

crucial. The first is that the value ~� that minimizes the risk relative to p is the mean value

of the parameters, E��p(�)�. The second observation is that, for BNs, KL-divergence

decomposes with the graphical structure of the network (Heckerman et al., 1995):KL(� k �0) =Xi KL(P�(Xi j Ui) k P�0(Xi j Ui)); (7.2)

where KL(P (Xi j Ui) k P 0(Xi j Ui)) is the conditional KL-divergence and is given byPu P (u)KL(P (Xi j u) k P 0(Xi j u)). With these two facts, we can prove the following:

Theorem 7.3.1 Let �(�) be the Gamma function,	(�) be the digamma function�0(�)=�(�),
and H be the entropy function. Define:Æ(�1; : : : ; �r) = rXj=1 ��j�� ((�j + 1)� 	(�� + 1)) +H ��1�� ; : : : ; �r���� :
Then the risk decomposes as:Risk(p(�)) =Xi Xu2Dom[Ui℄P~�(u)Æ(�xi1ju; : : : ; �xiri ju): (7.3)

Proof. See Appendix A.2. 2

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 103

Figure 7.2: Single family. U1; : : : ; Uk are query nodes.

7.3.2 Analysis for Single CPDs

Eq. (7.3) gives us a concrete expression for evaluating the risk of p(�). However, to evaluate

a potential query, we also need its expected posterior risk. Recall that the expected posterior

risk (Eq. (7.1)) is the expectation, over all possible answers to the query, of the risk of the

posterior distribution p0. In other words, it is an average over an exponentially large set of

possibilities.

To understand how we can evaluate this expression efficiently, we first consider a much

simpler case. Consider a BN where we have only one child node X and its parents U, i.e.,

the only edges are from the nodes U to X . We also restrict attention to queries where we

control all and only the parents U. In this case, a query q is an instantiation to U, and the

possible outcomes to the query are the possible values of the variable X . See Fig. 7.2.

The expected posterior risk contains a term for each variable Xi and each instantiation

to its parents. In particular, it contains a term for each of the parent variables U . However,

as these variables are not updateable, their hyperparameters remain the same following any

query q. Hence, their contribution to the risk is the same in every p(� j U := q; x), and in

our prior p(�). Thus, we can ignore the terms corresponding to the parents, and focus on

the terms associated with the conditional distribution P (X j U). Hence, we define:

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 104

Definition 7.3.2 RiskX(p(�)) = Xu P~�(u)Æ(�x1ju; : : : ; �xrju); (7.4)ExPRiskX(p(�) j U := q) = Xj P~�(xj j q)Xu P~�0(u)Æ(�0x1ju; : : : ; �0xrju); (7.5)

where �0xj ju is the hyperparameter in p(� j U := q; xj) and ~�0
is the Bayesian point

estimates for the posterior p(� j U := q; xj).
Rather than evaluating the expected posterior risk directly, we will evaluate the reduc-

tion in risk obtained by asking a query U := q:�(X j q) = Risk(p(�))� ExPRisk(p(�) j q) = RiskX(p(�))� ExPRiskX(p(�) j q):
Our next key observation relies on the fact that, since the variablesU are not updateable

for this query, their hyperparameters do not change and so P~�(u) and P~�0(u) are the same.

The final observation is that the hyperparameters for the CPD at node X corresponding to

an instantiation u are the same in p and p0 except for u = q. Hence, terms cancel and the

expression simplifies to:P~�(q)0�Æ(�x1jq; : : : ; �xrjq)�Xj P~�(xj j q)Æ(�0x1jq; : : : ; �0xrjq)1A :
By taking advantage of certain functional properties of 	, we obtain the following theorem:

Theorem 7.3.3 Consider a simple network in which X has parentsQ. Then:�(X j q) = P~�(q)0�H ��x1jq�x�jq ; : : : ; �xrjq�x�jq��Xj P~�(xj j q)H ��0x1jq�0x�jq ; : : : ; �0xr jq�0x�jq�1A ; (7.6)

where �x�jq = Pi �xijq. Also, �0xijq = (�xijq+1) if i = j and �0xijq = �xijq otherwise. So,�0x�jq = �x�jq + 1.

Proof. See Appendix A.2. 2

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 105

If we now select our query q so as to maximize the difference between our current risk

and the expected posterior risk, we get a very natural behavior: We will choose the queryq that leads to the greatest reduction in the entropy (or, alternatively, greatest increase in

information) of X given its parents.2

It is also here that we can gain an insight as to where active learning may have an edge

over random sampling. Consider one situation in which q1 is 100 times less likely thanq2. Let us suppose that we have previously observed 202 randomly sampled instances, 2 of

which are consistent with q1 and 200 of which are consistent with q2. If we proceed with

random sampling, we are most likely to observe a data instance which is consistent with q2.
Notice that if we were to set q1, it will lead us to update a parameter whose current density

is Dirichlet(1; 1), whereas setting q2 will lead us to update a parameter whose current

density is Dirichlet(100; 100). According to �, updating the former is worth more than the

latter. Thus, we should be gathering a data instance that is consistent with q1 rather thanq2. In other words, if we are confident about commonly occurring situations, it is worth

more to ask about the rare cases.

7.3.3 Analysis for General BNs

We now generalize this derivation to the case of an arbitrary BN and an arbitrary query.

Here, our average over possible query answers encompasses exponentially many terms.

Fortunately, we can utilize the structure of the BN to avoid an exhaustive enumeration.

Unfortunately, in the case of general BNs, we can no longer exploit one of our main

simplifying assumptions. Recall that, in the expression for the risk (Eq. (7.4)), the term

involving Xi and u is weighted by P~�(u). In the expected posterior risk, the weight isP~�0(u). In the case of a single node and a full parent query, the hyperparameters of the

parents could not change, so these two weights were necessarily the same. In the more

general setting, an instantiation (q;x) can change hyperparameters all through the network,

leading to different weights.

2We also note that this rule is very similar to the decision tree splitting rule used in the decision tree

learners ID3 and C4.5 (Quinlin, 1986). In the decision tree splitting rule we wish to choose an attribute to

split a subset of the data on that will provide us with the greatest gain in information of the class label given

the splits.

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 106

However, we believe that a single data instance will not usually lead to a dramatic

change in the distributions. Hence, these weights are likely to be quite close. To simplify

the formula (and the associated computation), we therefore choose to approximate the pos-

terior probability P~�0(u) using the prior probability P~�(u). Under this assumption, we can

use the same simplification as we did in the single node case.

Assuming that this approximation is a good one, we have the following theorem:

Theorem 7.3.4 The change in risk of a Bayesian network over variables X when asking

query Q := q is given by:�(X j q) = Risk(p(�))� ExPRisk(p(�) j q) (7.7)� Xi Xu2Dom[Ui℄P~�(u j Q := q)�(Xi j u); (7.8)

where �(Xi j u) is as defined in Eq. (7.6). Notice that we actually only need to sum over

the updateable Xis since �(Xi j u) will be zero for all non-updateable Xis.

Proof. See Appendix A.2. 2
7.4 Algorithm Summary and Properties

The above analysis provides us with an efficient implementation of our general active learn-

ing scheme. We simply choose a set of variables in the Bayesian network that we are able

to control, and for each instantiation of the controllable variables we compute the expected

change in risk given by Eq. (7.7). We then ask the query with the greatest expected change

and update the parameters of the updateable nodes. See Fig. 7.3 for the general algorithm.

We now consider the computational complexity of the algorithm. For each potential

query Q := q we need to compute the expected change in risk. The most expensive com-

putation in evaluating the expected change is risk is computing P~�(u j Q := q) and P (u)
for each instantiation u of each set of parents Ui. However, as discussed in Section 5.7.2,

all of the P~�(u j Q := q) terms can be found in just one regular join tree inference and all

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 107

ActiveLearn(p)

For each candidate query Q := q
Compute the expected change in risk:PiPu2Dom[Ui℄ P~�(u j Q := q)�(Xi j u)

Ask query Q := q with greatest expected change

Receive complete response xp := Update(p, Q := q, x)

Repeat

Figure 7.3: Active learning algorithm for parameter estimation in Bayesian networks.

of the P (u) terms can be found in another standard join tree inference. Thus, the run time

complexity of the algorithm is: O(jQj � cost of BN join tree inference), where Q is the set

of candidate queries.3.

Our algorithm (approximately) finds the query that reduces the expected risk the most.

Given that we are not simply sampling from the underlying distribution, it is initially un-

clear that our active learning algorithm learns the correct density. In fact, we can show that

our specific querying scheme (including the approximation) is consistent – in other words

each parameter will tend towards the true �� that is generating the data (i.e., the long term

relative frequencies of the relevant quantities).

Theorem 7.4.1 Let U be the set of nodes which are updateable for at least one candidate

query at each querying step. Assuming that the underlying true distribution has the same

graphical structure as our network and is not deterministic, then our querying algorithm

produces consistent estimates for the CPD parameters of every member of U .

Proof. See Appendix A.2. 2
The restriction to consistency of updateable nodes in this theorem is quite reasonable.

If we have the network Y ! X and we are forced to always choose a value for Y then

it is impossible to get a consistent estimate for P (y) and it is impossible even if we do

3In fact, in some cases we could possibly do even better by modifying the join tree algorithm and evalu-

ating all queries together rather than in separate join tree passes.

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 108

not do active learning and resort to some form of random sampling instead, since we are

forced to pick a value for Y . The restriction to considering true distributions that encode

at least the same conditional independencies as our graphical structure is also reasonable.

If our graph structure consists of just two separate nodes X and Q, it asserts that X andQ are independent. Thus, no matter what we select Q to be, we should be able to use theX instantiations in the resulting data cases to find the marginal distribution of X . This

is only a valid step to take if X and Q are independent in the true distribution. Without

resorting to maintaining a distribution over possible graph structures, the only general way

to consistently find the parameters of the CPD of a node X is to assert no control over

the query node Q whatsoever and just sample randomly – and if we are always forced to

choose a value for the query node there exists no way to consistently find the parameters

for node X since we can’t even do random sampling.

7.5 Active Parameter Experiments

We performed experiments on three commonly used networks: 4 Alarm, Asia and Can-

cer. Alarm has 37 nodes and 518 independent parameters, Asia has eight nodes and 18

independent parameters, and Cancer has five nodes and 11 independent parameters.

We first needed to set the priors for each network. We use the standard approach (Heck-

erman et al., 1995) of eliciting a network and an equivalent sample size. In our experiments,

we assume that we have fairly good background knowledge of the domain. To simulate this

setup, we obtained our prior by sampling a few hundred instances from the true network

and used the counts (together with smoothing from a uniform prior) as our prior. This ar-

rangement is akin to asking for a prior network from a domain expert, or using an existing

set of complete data to find initial settings of the parameters. We then compared refining

the parameters either by using active learning or by random sampling. We permitted the

active learner to abstain from choosing a value for a controlled node if it did not wish to;

that node is then sampled as usual. For each network we chose some root nodes to be

controllable. Controlling the root nodes can be done via selective or interventional active

learning – there is no difference in this case. We also considered a situation where we

4e.g., obtainable from www.norsys.com/networklibrary.html

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 109

0 10 20 30 40 50

Number of Queries

0.7

0.8

0.9

1

1.1

K
L
 D

iv
e
rg

e
n
c
e

Random

Active

0 50 100 150 200

Number of Queries

0.02

0.025

0.03

0.035

0.04

K
L
 D

iv
e
rg

e
n
c
e

Random

Active

(a) (b)

Figure 7.4: (a) Alarm network with three controllable root nodes. (b) Asia network with

two controllable root nodes. The axes are zoomed for resolution.

controlled non-root nodes via selective active learning.

We used the true BN to simulate responses to queries asked by the learners. The ran-

dom query method would sample randomly from the entire joint distribution and the active

method would ask queries.

Figures 7.4 and 7.5 present the results for the three networks. The graphs compare the

KL-divergence between the learned networks and the true network that is generating the

data.

We see that active learning provides a substantial improvement in all three networks.

The improvement in the Alarm network is particularly striking given that we had control of

just three of the 37 nodes. The extent of the improvement depends on the extent to which

queries allow us to reach rare events. For example, Smoking is one of the controllable

variables in the Asia network. In the original network, P (Smoking) = 0:5. Although there

was a significant gain by using active learning in this network, we found that there was a

greater increase in performance if we altered the generating network to have P (Smoking) =0:1; this is the graph that is shown. This increase reinforces our intuition that active learning

boosts performance more when there are more pronounced “rare” and “common” cases.

We found a similar situation with the Cancer network.

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 110

0 100 200 300 400 500

Number of Queries

0.004

0.006

0.008

0.01

K
L
 D

iv
e
rg

e
n
c
e

Random

Active

0 50 100 150 200

Number of Queries

0.007

0.008

0.009

0.01

K
L
 D

iv
e
rg

e
n
c
e

Random

Active

(a) (b)

Figure 7.5: (a) Cancer network with one controllable root node. (b) Cancer network

with two controllable non-root nodes using selective querying. The axes are zoomed for

resolution.

We also experimented with specifying uniform priors with a small equivalent sample

size. Here, we obtained significant benefit in the Asia network, and some marginal im-

provement in the other two. One possible reason is that the improvement is “washed out”

by randomness, as the active learner and standard learner are learning from different in-

stances. Another explanation is that the approximation in Eq. (7.7) may not hold as well

when the prior p(�) is uninformed and thereby easily perturbed even by a single instance.

This observation indicates that our algorithm may perform best when refining an existing

domain model.

We investigated how altering the extent to which a query node influences the rest of

the network can affect the performance of our active learning algorithm. Intuitively, if

our query nodes Q have a large influence on the distribution, than there should be more

advantage in controling them with active learning. In the Asia network, the CPDs forP (Cancer j Smoking), P (Bronchitis j Smoking) and P (Tuberculosis j VisitAsia) are given

by:

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 111

Smoking P (cancer0 j Smoking) P (cancer1 j Smoking)
smoking0 0.1 0.9

smoking1 0.01 0.99

Smoking P (bronchitis0 j Smoking) P (bronchitis1 j Smoking)
smoking0 0.05 0.95

smoking1 0.01 0.99

VisitAsia P (tuberculosis0 j VisitAsia) P (tuberculosis1 j VisitAsia)
visitAsia0 0.6 0.4

visitAsia1 0.3 0.7

We altered the extent to which VisitAsia and Smoking influence the distribution by mod-

ifying these CPDs. We created a new CPD for P (Cancer j Smoking) by having a mixture

of the original CPD and:

Smoking P (cancer0 j Smoking) P (cancer1 j Smoking)
smoking0 1 0

smoking1 0 1

So, for example, P (new)(cancer0 j smoking0) = (1 � �) � 0:1 + � � 1. Thus, the

closer the mixture component � is to 1, the greater the difference between the distrubutionsP (Cancer j smoking0) and P (Cancer j smoking1). We did a similar transformation for

the other two CPDs. The parameter � can be regarded as the “degree of control” for the

Smoking and VisitAsia nodes. Fig. 7.6 shows the effect that changing � has on the perfor-

mance of the active learning algorithm. It shows that the more control the active learning

algorithm has, the greater the gain in performance over random sampling.

Overall, we found that, in almost all situations, active learning performed as well as

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 112

0 20 40 60 80 100

Number of Queries

0.03

0.035

0.04

0.045

K
L
 D

iv
e
rg

e
n
c
e

Random

Active

0 20 40 60 80 100

Number of Queries

0.03

0.035

0.04

0.045

K
L
 D

iv
e
rg

e
n
c
e

Random

Active

(a) (b)

Figure 7.6: (a) Asia network with � = 0:3. (b) Asia network with � = 0:9. The axes are

zoomed for resolution.

0 20 40 60 80 100

Number of Queries

0

0.02

0.04

0.06

0.08

0.1

K
L
 D

iv
e
rg

e
n
c
e

Random

Active

0 20 40 60 80 100

Number of Queries

1

1.2

1.4

1.6

1.8

2

K
L
 D

iv
e
rg

e
n
c
e

Active

Random

(a) (b)

Figure 7.7: (a) Cancer network with a “good” prior. (b) Cancer network with a “bad”

prior. The axes are zoomed for resolution.

CHAPTER 7. ACTIVE LEARNING FOR PARAMETER ESTIMATION 113

or better than random sampling. The situations where active learning produced most ben-

efit were, unsurprisingly, those in which the prior was confident and correct about the

commonly occurring cases and uncertain and incorrect about the rare ones (Fig. 7.7(a)).

Clearly, this is the precisely the scenario we are most likely to encounter in practice when

the prior is elicited from an expert or obtained from randomly sampled data. By experi-

menting with forcing different priors we found that active learning was worse in one type of

situation: where the prior was confident yet incorrect about the commonly occurring cases

and uncertain but actually correct about the rare ones (Fig. 7.7(b)). This type of scenario is

unlikely to occur in practice.

Chapter 8

Structure Learning

8.1 Introduction

The task of causal structure discovery from empirical data is a fundamental problem in

many areas. In Section 5.6, we saw that Bayesian networks could be used provide a causal

model of a domain. If we assume that the graphical structure of some BN represents the

causal structure of the domain, we can formalize the problem of discovering the causal

structure of the domain as the task of learning the BN structure from data. This chapter

reviews the standard techniques used for structure learning.

Over the last few years, there has been substantial work on discovering BN structure

from purely observational data (Heckerman, 1998). However, there are inherent limita-

tions on our ability to discover the structure based on randomly sampled data. Randomly

sampled data will only enable us, in the limit, to recover the Markov equivalence class

(see Section 5.4) of the underlying structure. Experimental data, where we intervene in

the model, is vital for a full determination of the causal structure. By observing the results

of these experiments, we can determine the direction of causal influence in cases where

purely observational data is inadequate. The problem of uncovering the causal structure

from observational and experimental data has been tackled in a non-active learning setting

by Heckerman (1995) and Cooper and Yoo (1999). Furthermore, although Cooper and Yoo

114

CHAPTER 8. STRUCTURE LEARNING 115

derived a closed-form scoring metric for full networks,1 they only apply their technique to

learn the relationship between single pairs of variables which they further assume are not

confounded (do not have a common cause)2.

8.2 Structure Learning in Bayesian Networks

Our goal is to learn the causal structure from data. In order to do this, we need to make

a number of standard assumptions. We assume that there are no hidden variables and we

make two further assumptions:� Causal Markov assumption: The data is generated from an underlying causal

Bayesian network (G�; ��) over X .� Faithfulness assumption: The distribution P � over X induced by (G�; ��) satisfies

no independencies beyond those implied by the structure of G�.

Our goal is to reconstruct G� from the data. Clearly, given enough data, we can recon-

struct P �. However, in general, P � does not uniquely determine G�. For example, if our

network G� has the form X ! Y , then Y ! X is equally consistent with P �. Given only

samples from P �, the best we can hope for is to identify the Markov equivalence class of G:

a set of network structures that induce precisely the same independence assumptions (see

Section 5.4).

If we are given experimental as well as observational data, our ability to identify the

structure is much larger (Cooper & Yoo, 1999). Intuitively, assume we are trying to de-

termine the direction of an edge between X and Y . If we are provided with experimental

data that intervenes at X , and we see that the distribution over Y does not change, while

intervening at Y does change the distribution over X , we can conclude (based on the as-

sumptions above) that the edge is Y ! X .

1They derived a closed for expression for the probability of a structure given the experimental and obser-

vational data.
2In the next chapter we show that, even setting aside the active learning aspects of our work, our frame-

work permits combining observational and experimental data for learning the structure over all variables in

our domain, allowing us to distinguish the structure at a much finer level, taking into consideration both

indirect causation and confounding influences.

CHAPTER 8. STRUCTURE LEARNING 116

�✁ ✂✄☎✆✝
θ ✞✟✂✄✠✆ ✡☛✝

θ☞✟ ✌✞✟☎✆☎✍
θ☞✟ ✌✞✎�✁ ✂✄☎✆✝

θ ✞✟✂✄☎✆✝
θ ✞✟✂✄✠✆ ✡☛✝

θ☞✟ ✌✞✟☎✆☎✍
θ☞✟ ✌✞✎✂✄✠✆ ✡☛✝
θ☞✟ ✌✞✟☎✆☎✍
θ☞✟ ✌✞✎ �✁ ✂✄✠✆✝

θ ☞✟✂✄☎✆ ✡✏✝θ ✞✟ ✌☞✟✠✆✠ ✍
θ ✞✟ ✌☞ ✎�✁ ✂✄✠✆✝

θ ☞✟✂✄✠✆✝
θ ☞✟✂✄☎✆ ✡✏✝θ ✞✟ ✌☞✟✠✆✠ ✍

θ ✞✟ ✌☞ ✎✂✄☎✆ ✡✏✝
θ ✞✟ ✌☞✟✠✆✠ ✍
θ ✞✟ ✌☞ ✎ �✁ ✂✄✠✆✝

θ☞✟✂✄☎✆✝
θ ✞✟�✁ ✂✄✠✆✝
θ☞✟✂✄✠✆✝
θ☞✟✂✄☎✆✝
θ ✞✟✂✄☎✆✝
θ ✞✟✂✄☛

→
✏✝ ✂✄☛

←
✏✝ ✂✄☛ ✏✝✑ ✑✑✑✑ ✑✑✑✑ ✑ ✑✑✑✑ ✑✑✑✑ ✑✑✑✑✑✑

Figure 8.1: A distribution over networks and parameters.

8.3 Bayesian approach to Structure Learning

There are a number of techniques for performing structure learning. One common approach

is to perform model selection, where we search for a good single representative structure

and then perform all subsequent analyses and inferences with respect to that single struc-

ture. There are a number of criteria for selecting a good structure (Heckerman, 1998),

for example: maximum likelihood, minimum description length and Bayesian marginal

likelihood. An alternative approach, and one which we use to guide our active learning

algorithm, is the full Bayesian framework. Rather than committing to a single structure, in

the full Bayesian framework we keep a distribution and perform all inferences with respect

to the entire distribution.

We now describe how to represent and maintain a distribution for structure learning.

We maintain a distribution over the set of structures and their associated parameters (see

Fig. 8.1 for a simple illustration on a two variable domain). We begin with a prior over

structures and parameters, and use Bayesian conditioning to update it as new data is ob-

tained. Following (Heckerman et al., 1995), we make several standard assumptions about

the prior:� Structure Modularity: The prior P (G) can be written in the form:P (G) =Yi P (Pa(Xi) = UGi): (8.1)

CHAPTER 8. STRUCTURE LEARNING 117

Thus, the a priori choices of the families for the different nodes are independent.� Parameter Independence:p(�G j G) =Yi Yu p(�Xiju j G): (8.2)

In other words, as in Chapter 6, we can decompose the joint density over the vector

of network CPD parameters as a product of localized densities.� Parameter Modularity: For two graphs G and G 0, if UGi = UG0i then:p(�XijUGi j G) = p(�XijUG0i j G 0): (8.3)

Thus, the density for each parameter only depends upon the network structure that is

local to the variable that the parameter is over.

We also assume that the CPD parameters are multinomials and that the associated param-

eter distributions are the conjugate Dirichlet distributions where we denote the Dirichlet

hyperparameter for the parameter corresponding to the j-th value of Xi given parents u,�xij ju, by �xij ju. However, some of our analysis holds for any distribution satisfying the

parameter independence and parameter modularity assumptions. There are a number of

different ways to choose the structure prior (Buntine, 1991; Heckerman, 1998), although a

common choice for the structure prior is a uniform prior over structures.

Given these assumptions, we can represent a distribution over structures and parame-

ters P (G; �G) by maintaining a structure prior component P (Pa(Xi) = U) for each valid

(node, parents) pair (Xi;U) and a Dirichlet distribution for each node Xi and each instan-

tiation of each the possible sets of parents. Now, given a particular prior distribution over

Bayesian network structures and parameters, when we receive a new data instance (either

observational or experimental) we update our distribution P to obtain the posterior distri-

bution P 0. We then use P 0 as our new distribution over structures and parameters. We next

show how to update the prior distribution with a data instance so as to obtain the posterior

distribution.

CHAPTER 8. STRUCTURE LEARNING 118

8.3.1 Updating using Observational Data

Given a complete, randomly sampled single instance d over X , we define how to update the

distribution P (G; �G). We break this distribution into two problems by using the identity:P (G; �G j d) = p(�G j d;G) � P (G j d):
Thus we need to determine how to update the parameter density of a structure and also how

to update the distribution over structures themselves.

For the first term in this expression, consider a particular network structure G and a

prior distribution p(�G) over the parameters of G. To obtain the posterior distribution over

the parameters, P (�G j d;G), we simply use standard Bayesian updating of each of the

Dirichlet parameter distributions associated with this graph as described in Section 6.3.

Note that this updating still preserves parameter modularity and parameter independence.

Now consider the distribution over structures P (G). We need to compute the posterior

distribution over structures P (G j d). We first introduce the following definition:

Definition 8.3.1 Let Xi be a node andU be its parents. We define the score of a family as:

Score(Xi;U j d) = Z P (xi j u; �Xiju)p(�Xiju) d�Xiju = P (xi j u):
The following well-known theorem (Heckerman, 1998) tells us how we can computeP (G j d):

Theorem 8.3.2 Given a complete data instance d, if P (G; �G) satisfies structure modular-

ity, parameter independence and parameter modularity, then:P (G j d) = 1P (d)Yi P (Pa(Xi) = UGi)Score(Xi;UGi j d):
Notice that P (d) is just a normalizing factor which is independent of the graph structure

and parameters that we are considering, and so it can be ignored. Also, notice that, just like

the prior, the posterior distribution over structures also obeys structure modularity, i.e., it is

CHAPTER 8. STRUCTURE LEARNING 119

also a product of terms, one for each family. To obtain the posterior, we essential just need

to multiple the term in the prior corresponding to each family by the score for that family.

We are using multinomial CPDs with Dirichlet distributions over the parameters. The

following standard result (Heckerman, 1998) shows us how to compute the score in this

case:

Theorem 8.3.3 Let d be a complete data instance. For multinomial CPDs with Dirichlet

distributions over the parameters we have:

Score(Xi;U j d) = �(�xi�ju)�(�xi�ju + 1) � �(�xij ju)�(�xij ju + 1) ; (8.4)

where u and xij are the values of U and Xi in d and �xi�ju = Pj �xij ju.

Thus, given a data instance d, to update the prior distribution P (G; �G) to obtain the

posterior P (G; �G j d), we need to update the hyperparameters of all of the Dirichlet

distributions by using Eq. (6.7) and we need to update the P (Pa(Xi) = Ui) components of

the modular structure prior. The updated components of the structure prior are computed

by: P (Pa(Xi) = Ui j d) = C � P (Pa(Xi) = Ui) � Score(Xi;Ui j d); (8.5)

where C is a normalizing constant. In all of the computations that we perform in this thesis,

we can ignore the normalizing constant since the constant will either cancel out, or will just

require us to perform a simple re-normalization step at the end.

8.3.2 Updating using Experimental Data

Now, instead of having a complete random instance, suppose that we have an experiment,

or query, that setsQ := q, and are given the resulting response x. We need to define how to

update the distribution P (G; �G) given this query and response. As before, we decompose

this problem into two subproblems by using the identity:P (G; �G j Q := q;x) = p(�G j Q := q;x;G) � P (G j Q := q;x):

CHAPTER 8. STRUCTURE LEARNING 120

For the first term in this expression, given structure G and a prior distribution p(�G) over

the parameters of G, our update rule for the parameter density is identical to the procedure

for interventional queries described in Section 7.2.1. In other words, we perform regular

Bayesian updating for all of the parameter densities associated with the non-query nodes.

We also note that performing such an interventional update to the parameters still preserves

parameter modularity.3

Now consider the distribution over structures. We use P (G j Q := q;x) to denote the

posterior distribution over structures after performing the query and obtaining the response.

The following theorem tells us how we can easily update the posterior over G given an

interventional query:

Theorem 8.3.4 (Cooper and Yoo, 1999) Given a queryQ := q and complete response x,

if P (G; �G) satisfies parameter independence and parameter modularity, then:P (G j Q := q;x) = 1P (x j Q := q) Yi:Xi =2QP (Pa(Xi) = UGi)Score(Xi;UGi j x;q):
After we have seen a queryQ := q and response x, we can use the updated distributionP (G; �G j Q := q;x) as our new “prior” distribution. As in the observational case, notice

that the posterior distribution over structures maintains the structure modularity condition,

and that updating the Dirichlet parameter distributions preserves parameter independence

and parameter modularity.

To summarize, to update our distribution P (G; �G), we update the hyperparameters of

the set of Dirichlet distributions that we are maintaining. The updated components of the

structure prior for P (G; �G j Q := q;x) are computed by:P (Pa(Xi) = Ui j Q := q) = C � P (Pa(Xi) = Ui) � Score(Xi;Ui j x;q); (8.6)

3Notice that we are assuming interventional queries. If we were to use selective queries then parameter

modularity no longer holds. Recall that, given a selective query Q := q and response, the variable Y in

a graph is updateable if it is not an ancestor of Q. But this ancestor-of-Q property is dependent upon the

graph. So for some graphs, Y will be updateable and for others it will not. Thus, the parameter modularity

assumption is violated when we observe selective data which, therefore, makes the task of representing and

updating the distribution P (G; �G) extremely hard.

CHAPTER 8. STRUCTURE LEARNING 121

where C is a normalizing constant and Score(Xi;UGi j x;q) = 1 if Xi is a query variable.

As we mentioned in the previous section, in all of the computations that we perform in this

thesis, we can ignore the normalizing constant.

8.4 Computational Issues

To represent a distribution over structures and parameters, we need to maintain a Dirichlet

distribution for each node Xi and each instantiation of each the possible sets of parents.

Similarly, we need to maintain the structure prior components P (Pa(Xi) = Ui) for each

node and parent set. In practice this is often infeasible. The number of Dirichlet distribu-

tions and structure prior components grow exponentially with the number of variables in

our domain. Instead, we can implicitly maintain these Dirichlet and structure component

distributions by storing the data D that we have collected, and then only reconstruct the

desired quantities (such as P (Pa(Xi) = Ui j D)) when required by applying the update

formulae mentioned in the previous two sections. Furthermore, all of the update formulae

generalize to take into account multiple observations (Heckerman, 1998; Cooper & Yoo,

1999). Hence, if we are implicitly maintaining the distribution over graphs and parameters

and have seen, say, five past data instances, then rather than using the single-instance up-

date formula five times to reconstruct P (Pa(Xi) = Ui j D), we need only perform one

generalized update step.

Chapter 9

Active Learning for Structure Learning

“The art of discovering the causes of phenomena,

or true hypothesis, is like the art of deciphering,

in which an ingenious conjecture greatly shortens the road.”

— Gottfried Whilhem Leibniz, (1646-1716).

New Essays Concerning Human Understanding, IV, XII.

9.1 Introduction

Experimental data is crucial for determining the underlying causal structure of a domain.

However, obtaining experimental data is often time consuming and costly. Thus the ex-

periments must be chosen with care. Our goal is not merely to update the distribution

over causal Bayesian networks based on experimental data. We want to actively choose

instances that will allow us to learn the structure better.

We provide an active learning algorithm that selects interventional experiments that are

most informative towards revealing the causal structure. We present a formal framework

for active learning of causal structure in Bayesian networks, based on the principles of

Bayesian learning. Our model is a distribution over Bayesian network structures, which

is updated based on our data. We define a notion of quality of our model, and provide

an algorithm that selects queries in a greedy way, designed to improve model quality as

122

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 123

much as possible. We provide experimental results on a variety of domains, showing that

our active learning algorithm can provide substantially more accurate estimates of the BN

structure using the same amount of data. Interestingly, our active learning algorithm pro-

vides significant improvements even in cases where it cannot intervene in the model, but

only select instances of certain types. Thus, it is applicable even to the problem of learning

structure in a non-causal setting.

9.2 General Framework

Our goal is to use active learning to learn the BN structure – learning from data where

we are allowed to control certain variables by intervening at their values. As in the active

parameter case, we have some subset C of the variables that are controllable. The learner

can select a subset of variables Q � C and a particular instantiation q to Q. We use

the same notion of an interventional query as before, and the result of a query Q := q
is the response x which is a randomly sampled instance of all the non-query variables,

conditioned on Q := q. We do not consider selective queries for structure estimation.

In addition to the computational complications mentioned in Section 8.3.2, the value of

selective queries is far less than those of interventional queries. As with randomly sampled

data, they do not intervene in the domain and, hence, they only permit us to resolve up to

the Markov equivalence class, rather than determine the full causal structure of the network.

For the case of causal structure learning, the querying function in an active learner

selects an interventional query Q := q based upon its current distribution over G and �G .

It takes the resulting response x, and uses it to update its distribution over G and �G . It then

repeats the process. We described the update process in the previous chapter. Our task now

is to construct an algorithm for deciding on our next query given our current distribution

over structures and paramters P (G; �G).
Our distribution over graphs and parameters will be our model. We shall need to de-

fine its model quality. To this end, we will define a model loss function as the notion of

model quality. We can then use this measure of quality to evaluate the extent to which

various instances would improve the quality of our distribution, thereby providing us with

an approach for selecting the next query to perform.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 124

More formally, given a distribution over graphs and parameters P (G; �G) we have a

model loss function Loss(P) that measures the model quality of our distribution over the

graphs and parameters. Given a query Q := q we define the expected posterior loss of the

query as:

ExPLoss(P (G; �G) j Q := q)= Ex�P (XjQ:=q)Loss(P (G; �G j Q := q;x)): (9.1)

Applying our general approach (Section 1.2) for active learning we have the following

algorithm: for each candidate query Q := q, we evaluate the expected posterior loss, and

then select the query for which it is lowest.

Although this idea seems good in principle, note that the expected loss appears to be

very computationally expensive to evaluate. We need to maintain a distribution over the set

of structures, and the size of this set is super-exponential in the number of nodes. Further-

more, given a query, to compute the expected posterior loss we have to perform a compu-

tation over the set of structures for each of the exponential number of possible responses to

the query.

One possibility is to approximate the distribution over structures by sampling a number

of them. We could then compute the expected posterior loss of asking a query with respect

to this representative set of structures by sampling possible responses to the query. How-

ever, this method has serious shortcomings. First, the distribution over structures is often

very “uneven”, requiring a great many sample structures to approximate it to a reasonable

degree (Friedman & Koller, 2000). Second, the effect of any single query and response

on the distribution over structures is very small (since it is merely a single data instance)

and so it is very likely that the small difference in effect of asking different queries will be

overwhelmed by the variance introduced by the sampling of structures and completions.

Ideally, we would like to have a close form, yet efficiently computable expression for

the expected posterior loss of asking a query. We show that, to some degree, this is possible

to achieve.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 125

9.3 Loss Function

To make the high-level active learning framework concrete, we must first pick a model

loss function. We wish the model loss function to reflect our goal of determining the causal

structure, and we also wish it to decompose in such a way that we can evaluate it efficiently.

Our goal is to be as certain about the network structure as possible. Thus, one natural choice

of model loss functions for a model P (G; �G) is the entropy of the marginal distribution

over graphs: H(P (G)). It can be shown (Chaloner & Verdinelli, 1995) that the expected

posterior loss using this model loss criterion corresponds to the D-optimality criterion used

in optimal experimental design for linear regression. Unfortunately, H(P (G)) does not

have useful decomposition properties (for example, it does not break down into a sum or

product of localized terms) and so computing it in closed form for each and every structure

and query response is intractable.

However, a reasonable alternative can be found that is computationally tractable. Recall

that our goal is to learn the correct structure; hence, we are interested in the presence and

direction of the edges in the graph. For two nodes Xi and Xj, there are three possible edge

relationships between them: either Xi ! Xj , or Xi Xj or Xi Xj. Our distribution P
over graphs and parameters induces a distribution over these three possible edge relation-

ships. We can measure the extent to which we are sure about this relationship using the

entropy of this induced distribution:H(Xi $ Xj) = �P (Xi ! Xj) logP (Xi ! Xj)�P (Xi Xj) logP (Xi Xj)�P (Xi Xj) logP (Xi Xj): (9.2)

The larger this entropy, the less sure we are about the relationship between Xi and Xj.
This expression forms the basis for our edge entropy model loss function:

Loss(P (G; �G)) =Xi;j H(Xi $ Xj): (9.3)

In certain domains we may be especially interested in determining the relationship between

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 126

particular pairs of nodes. We can reflect this desire in our model loss function by introduc-

ing scaling factors in front of different H(Xi $ Xj) terms. In Section 9.5, the fact that

this loss function decomposes as a sum of local terms permits us to efficiently evaluate the

expected posterior loss of a query.

Now that we have defined the quality for a model P (G; �G), our task is to find an

efficient algorithm for computing the expected posterior loss of a given query Q := q
relative to P . We note that P is our current distribution, conditioned on all the data obtained

so far. Initially, it is the prior; as we get more data, we use Bayesian conditioning (as

described in Chapter 8) to update P , and then apply the same algorithm to the posterior.

Our approach to obtaining a tractable algorithm is based on the ideas of Friedman et al.

(1999) and Friedman and Koller (2000). First, we restrict the set of possible parents of a

node during each querying round. Second, we consider the simpler problem of restricting

attention to network structures consistent with some total ordering, �; then, we relax this

restriction by introducing a distribution over the orderings.

9.4 Candidate Parents

Following Friedman et al. (1999), we assume that each node Xi has a set Wi of at mostm possible candidate parents that is fixed before each query round. In certain domains,

we can use prior knowledge to construct Wi. In other domains we can use a technique

discussed by Friedman et al. (1999) where we can use randomly sampled observational

data to point out nodes that are more likely to be directly related to Xi: one way to do this

is to choose the m variables which have the highest individual mutual information withX . The mutual information (Cover & Thomas, 1991) between two variables Xi and Xj is

given by the following expression:MI(Xi;Xj) = Xxi;xj P (xi; xj) ln P (xi; xj)P (xi)P (xj) : (9.4)

For this computation it is reasonable to use the maximum likelihood estimates forP (xi; xj) since we are just estimating the distribution over two variables and only wish

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 127

to determine the pairs of nodes that have the highest mutual information. However, we

may choose to use any other form of estimator if we desire.1

9.5 Analysis for a Fixed Ordering

Let� be a total ordering ofX . We restrict attention to network structures that are consistent

with �, i.e., if there is an edge X ! Y , then X � Y . We also assume that, given �, the

structure prior P (G j�) is modular. We note that, from Chapter 8, given data Q := q;x,

the posterior P (G j Q := q;x;�) will also then be modular.

Recall that each node Xi has a set of at most m candidate parents Wi. We define the

set of candidate parents for a node Xi that are consistent with our ordering as:Ui;� = fU : U � Xi;U �Wig;
whereU � Xi is defined to hold when all nodes inU precede Xi in �.

We note that the number of structures induced by � and by having a set of candidate

parents Wi for each node Xi is still exponential in the number of variables in X , even

when we hold the maximum number of candidate parents constant. The key impact of the

restriction to a fixed ordering is that the choice of parents for one node is independent of

the choice of parents for another node (Buntine, 1991; Friedman & Koller, 2000). Three

important consequences are the following two theorems and corollary, which give us closed

form, efficiently computable expressions for key quantities:

1Unfortunately, we cannot use interventional data to estimate the mutual information between two nodes.

If we are using interventional data, we may produce inconsistent estimates for the mutual information. This

inconsistency is not just because we are forcing the values of some nodes thus affecting the correlation

between a forced node and other variables. The problem is more subtle, and even affects the estimate of the

mutual information between two nodes that are non-query nodes. For example, suppose the true network isX ! Y Z and the CPD of Y is such that if Z = z0 then X and Y are independent, and if Z = z1 thenX and Y are totally dependent (i.e., deterministic). Also, suppose that P (z0) = 0:01. Now suppose that we

always intervene at Z, and we tend to set Z := z0 much more than Z := z1. It will then appear to us that the

two non-query nodes X and Y are only slightly correlated when in fact they are very heavily correlated.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 128

Theorem 9.5.1 Given a query Q := q, the probability of a response x to our query is:P (x j Q := q;�)= XG2�Yi P (Pa(Xi) = UGi j�) Yj:Xj =2Q Score(Xj;UGj j x;q)= �Q Yi:Xi =2Q XU2Ui;� P (Pa(Xi) = U j�)Score(Xi;U j x;q);
where �Q = Qi:Xi2QPU2Ui;� P (Pa(Xi) = U j�).
Proof. See Appendix A.3. 2
Theorem 9.5.2 (Friedman and Koller, 2000) We can write the probability of an edgeXj !Xi as: P (Xj ! Xi j�) =PU2Ui;�;U3Xj P (Pa(Xi) = U j�)PU2Ui;� P (Pa(Xi) = U j�) :
Intuitively, we are dividing the probability mass for structures that have Xi ! Xj by the

total mass for all of the structures. Most of the terms for each expression cancel out leaving

just the terms involving the families for Xi. Notice that since we are performing Bayesian

averaging over multiple graphs the probability of an edge Xi ! Xj will generally only be

high if Xi is a direct cause of Xj rather than if Xi merely has some indirect causal influence

on Xj. A simple corollary of the previous theorem is:

Corollary 9.5.3 Given query Q := q and completion x we can write the probability of an

edge Xj ! Xi as:P (Xj ! Xi j Q := q;x;�) =PU2Ui;�;U3Xj P (Pa(Xi) = U j�)Score(Xi;U j x;q)PU2Ui;� P (Pa(Xi) = U j�)Score(Xi;U j x;q) :
where we define Score(Xi;U j x;q) = 1 if Xi 2 Q.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 129

Now, consider the expected posterior loss (Eq. (9.1)) given �:

ExPLoss�(P (G; �G) j Q := q)= Ex�P (XjQ:=q;�)Xi;j H(Xi $ Xj j Q := q;x;�): (9.5)

We can compute the distribution for P (Xi $ Xj j Q := q;x;�) by using Corol-

lary 9.5.3. The formula for computing the probability of an edge Xj ! Xi depends on

Score(Xi;U j x;q) for eachU 2 Ui;�. Recall from Theorem 8.3.4 that:

Score(Xi;U j x;q) = P (xi j u);
where xi and u are the values of Xi and U in the data instance (q;x). For all U 2 Ui;�,

we have U � Wi and hence Score(Xi;U j x;q) only depends upon the values that q
and x give to Xi and Wi. Therefore, the expression P (Xj ! Xi j Q := q;x;�) only

depends upon the values that q and x give to Xi and Wi. Similarly, the expression for the

probabilty of an edge from Xi to Xj , P (Xj Xi j Q := q;x;�) only depends upon the

values that q and x give to Xj and Wj. Thus, H(Xi $ Xj j Q := q;x;�) depends only

on the values that q and x give to Xi, Xj ,Wi andWj.
Using this fact and then applying Theorem 9.5.1, we can rewrite the expected posterior

loss as described in the follow theorem:

Theorem 9.5.4 Given a queryQ := q, the expected posterior loss can be written as:

ExPLoss�(P (G; �G) j Q := q)= �QXi;j Xx (xi; xj;wi;wj) Yk:Xk =2Q�(xk;wk); (9.6)

where (xi; xj;wi;wj) = H(Xi $ Xj j xi; xj;wi;wj;�);�(xk;wk) = XU2Uk;� P (Pa(Xk) = U j�)Score(Xk;U j xk;wk):
Proof. See Appendix A.3.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 1302
Notice that we have successfully decomposed the loss so that we no longer encounter

the computational blow-up from the exponential number of structures. However, this ex-

pression still involves summations over the exponential number of possible completions of

a query. We can deal with this second form of exponential intractability by taking another

look at Eq. (9.6). Notice that, for each i and j in Eq. (9.6), the summation over comple-

tions x resembles the expression for computing a marginal probability in Bayesian network

inference where we are marginalizing out x. In other words:Xx (xi; xj;wi;wj) Yk:Xk =2Q�(xk;wk); (9.7)

is similar to Eq. (5.4). It is a sum of product of factors each of which is dependent on only a

small number of variables. Regarding and each � as factors, we can then use the variable

elimination algorithm presented in Section 5.7.1 to evaluate this expression effectively. The

restriction to a candidate set of parents for each node ensures that each factor � is over at

most (m + 1) variables, and each factor over at most 2m + 1 variables. After applying

the variable elimination algorithm we end up with a factor over the variables Q where for

each possible query q we have the value of the expression in Eq. (9.7).

We need to perform such an inference for each i; j pair. However, since we restricted

to at most m candidate parents, the number of possible edges is at most mn. Thus, the

computational cost of computing the expected posterior loss for all possible queries is the

cost of mn applications of Bayesian network inference.

9.6 Analysis for Unrestricted Orderings

In the previous section, we obtained a closed form expression for computing the expected

posterior loss of a query for a given ordering. We now generalize this derivation by remov-

ing the restriction of a fixed ordering.

Primarily for computational reasons, we start with a uniform prior over structures given

an ordering P (G j�) and a uniform prior over orderings P (�). As discussed by Fried-

man and Koller (2000), a uniform prior over structures given an ordering together with a

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 131

uniform distribution over orderings does not correspond to a uniform prior over structures.

This is because simpler structures (e.g., (X Y)) are consistent with more orderings than

more complex structures (e.g., (X ! Y)). On the other hand, structures that make more

assumptions about the ordering of the nodes are making more assumptions about the causal

ordering or the domain variables. Our prior makes these types of structures less likely a

priori, which is arguably a reasonable prior to start off with.

We also note that our structure prior P (G) does not satisfy structure modularity. How-

ever, for any given ordering�, the structure prior given that ordering P (G j�) does statisfy

structure modularity. This is all that we require in our analysis since we shall first condition

on a fixed ordering and then perform computations with respect to that ordering.

The expression for the expected posterior loss can be rewritten as:

ExPLoss(P (G; �G) j Q := q) (9.8)= Ex�P (XjQ:=q)Loss(P (G; �G j Q := q;x)) (9.9)= E�Ex�P (XjQ:=q;�)Loss(P (G; �G j Q := q;x)) (9.10)= E�Ex�P (XjQ:=q;�)Xi;j H(Xi $ Xj j Q := q;x): (9.11)

The expectation over orderings can be approximated by sampling possible orderings

from our current distribution over graphs and parameters. As shown by Friedman and

Koller (2000), sampling from orderings can be done very effectively using Markov chain

Monte Carlo (MCMC) techniques.

The expression inside the expectation over orderings is very similar to the expected

posterior loss of the query with a fixed ordering (Eq. (9.5)). The only difference is that

we now must compute the entropy terms H(Xi $ Xj j x;Q := q) without restricting

ourselves to a single ordering. This entropy term is based on probability expressions for

relationships between nodes:P (Xi ! Xj j Q := q;x)= E�jQ:=q;xP (Xi ! Xj j Q := q;x;�): (9.12)

Each of the terms inside the expectation can be computed using Theorem 9.5.3.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 132

Naively, we can compute the expectation for each query Q := q and completion x
by sampling orderings from P (�j Q := q;x) and then computing P (Xi ! Xj j Q :=q;x;�). Clearly, this approach is impractical. However, we can use a simple approxi-

mation that substantially reduces the computational cost. Our general MCMC algorithm

generates a set of orderings sampled from P (�). In many cases, a single data instance

will only have a small effect on the distribution over orderings; hence, we can often use our

samples from P (�) to be a reasonably good approximation to samples from the distributionP (�j Q := q;x). Thus, we approximate Eq. (9.12) by:P (Xi ! Xj j Q := q;x)= E�jQ:=q;xP (Xi ! Xj j Q := q;x;�) (9.13)� E�P (Xi ! Xj j Q := q;x;�); (9.14)

where the expectation over orderings is computed with our current set of MCMC sampled

orderings. Note that this small approximation error will not accumulate since we are not

using the approximation to update any of the parameters of our model, but merely to predict

the value of candidate queries in this current round.

With the above approximation, we can compute H(Xi $ Xj j Q := q;x) efficiently.

We note that, as in the fixed ordering case, the entropy term H(Xi $ Xj j Q := q;x)
depends only on the values given to the variables Xi; Xj;Wi and Wj. Thus, we can use

the same variable elimination method to compute the expression:Ex�P (XjQ:=q;�)Xi;j H(Xi $ Xj j Q := q;x): (9.15)

In other words, we evaluate the above expression for a particular order � by computing:�QXi;j Xx (xi; xj;wi;wj) Yk:Xk =2Q�(xk;wk); (9.16)

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 133

where, �Q = Yi:Xi2Q XU2Ui;� P (Pa(Xi) = U j�); (xi; xj;wi;wj) = H(Xi $ Xj j xi; xj;wi;wj);�(xk;wk) = XU2Uk;� P (Pa(Xk) = U j�)Score(Xk;U j xk;wk):
This expression is the same as equation Eq. (9.6), except that now we average over

the set of sampled orderings when computing the and � factors. Notice that does not

depend upon the particular ordering that we are currently considering, and so we need only

compute this expression once.

We can now compute expression (9.15) efficiently for a given ordering. We compute

the expectation over orderings in Eq. (9.11) by computing then averaging these expressions

for each of the sampled orderings.

We made two approximations to enable us to relax the restriction of a fixed ordering,

each of which introduces some small amount of error. First, and most significantly, we

sample over orderings. As noted by Friedman and Koller (2000), unlike the distribution

over structures, the distribution over orderings appears to be far more amenable to sampling

methods. Secondly, we made a small approximation to enable us to evaluate the expected

posterior loss component given a fixed ordering (Eq. (9.15)). In Section 9.9, we show

empirically that our (almost) exact closed form expected posterior loss computation for all

of the structures consistent with a fixed ordering together with the effectiveness of sampling

over orderings is accurate enough to determine the most useful experiments to perform.

9.7 Algorithm Summary and Properties

To summarize the algorithm, we first sample a set of orderings from the current distribution

over graphs and parameters. We then use this set of orderings to compute and cache the term present in Eq. (9.16). Next, for each ordering, we compute Eq. (9.16) by using

the variable algorithm to obtain a factor h�(Q) over all possible queries. This factor gives

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 134

ActiveLearn(P)

Sample orderings using MCMC

Compute and cache functions for each Xi; Xj pair

For each set of candidate query variables Q
For each ordering

Compute the loss factor h�(Q) associated with the

ordering by using variable elimination with Eq. (9.16)

End For

Average the loss factors h�(Q) obtained from each ordering

to obtain the expected posterior loss factor h(Q)
End For

Scan expected posterior loss factor h(Q) for query q with lowest value.

Ask query Q := q
Receive complete response x
Update P
Repeat

Figure 9.1: Active learning algorithm for structure learning in Bayesian networks.

us the value of Ex�P (XjQ:=q;�)H(Xi $ Xj j Q := q;x) for each query Q := q. We

then average all of these query factors obtained from each ordering. For example, if we

maintain three orderings, we obtain three factors h�1(Q), h�2(Q), h�3(Q). We then create

a new factor h(Q) in which each h(q) entry is the average of the q entries of the three

original factors. This process of averaging factors computes the expectation over orderings

in Eq. (9.11). The final result is a query factor h(Q) that, for each possible query q over

variables Q, gives the expected posterior loss of asking that query.

We then choose to ask the query that gives the lowest expected posterior loss. After

weq ask a query Q := q and receive the response x we then update our model P to get the

posterior P 0 and we use P 0 in place of P to find our subsequent query. The algorithm is

summarized in Fig. 9.1.

We now consider the computational complexity of the algorithm. For each ordering

we need to compute Ex�P (XjQ:=q;�)Pi;jH(Xi $ Xj j Q := q;x). This involves at

most mn Bayesian network inferences. Each inference returns a factor over all possible

queries involvingQ and so the inference will take time exponential in the number of query

variables in Q.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 135

The above computation was for one particular set of query variables Q. We may also

have the ability to choose different subsets Q of queries variables from some set of con-

trollable variables C. Thus we would do the above mn inference computations for each of

those subsets Q. Hence, the time complexity of our algorithm to generate the next query

is:O(# of sampled orderings �mn � # of query subsets of C � cost of BN inference): (9.17)

In addition, we need to generate the sampled orderings themselves. Friedman and Koller

(2000) provide techniques, such as caching of statistics and commonly used expressions,

that greatly reduce the cost of this process. They also show that the Markov chain mixes

fairly rapidly, thereby reducing the number of steps in the chain required to generate a

random sample. In our setting, we can reduce the number of steps required even further.

Initially, we start with a uniform prior over orderings, from which it is easy to generate

random orderings. Each of these is now the starting point for a Markov chain. As we do

a single query and get a response, the new posterior distribution over orderings is likely

to be very similar to the previous one. Hence, our old set of orderings is likely to be be

fairly close to the new stationary distribution. Thus, a very small number of MCMC steps

from each of the current orderings will give us a new set of orderings which is very close

to being sampled from the new posterior.

9.8 Comment on Consistency

We now comment on the issue of consistency. Ideally we would like to have a guarentee

that our algorithm always finds the correct underlying structure. There exist a number of

matters to address. First, unlike the active parameter estimation algorithm in Chapter 7, it

is possible that our active strucutre algorithm will end up concentrating its efforts to learn

about one part of the domain, while ignoring certain important other queries. In practice,

this does not tend to happen to a great extent. Nevertheless, to remedy this shortcoming, we

could simply modify our algorithm so that it chooses an experiment uniformly at random

after every, say, twenty queries.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 136

The second matter we need to address is more subtle, and far less easy to resolve. It has

less to do with the active learning aspect of our algorithm, and more to do with how we treat

experimental data. Recall from Section 7.4 that our parameter updates for a given graph G
may not be consistent if the data is really being generated from a different graph G�. For

example, suppose G consists of just two separate nodes: X and Q. We update the Dirichlet

distribution for �X no matter what we set the query node Q to be, since we assume that the

data values for X are coming from the true marginal distribution P �(X). However, if the

true graph G� is really Q ! X then the X value of a new data instance is not distributed

according to P �(X), but instead P �(X j Q := q) for whatever query Q := q we have

chosen. Hence, our parameter for �X will not converge to the true parameter in the limit.

We also note that this (inconsistent) assumption of always being able to update a non-query

node no matter how we set the query nodes appears to be implicitly assumed in Cooper and

Yoo’s (1999) proof of Theorem 8.3.4.

One way to view the inconsistent parameter estimates is the following. Suppose that

our domain consists of two variables, X and Q. Also, rather than perform active learning,

suppose we set queries Q := q according to some distribution ~P (Q). Then the X values

of the data instances we receive are distributed according to
Pq P �(X j Q := q) ~P (q), and

this quantity is what our �X parameters will converge to in the limit.

Despite this drawback, we still believe that our algorithm does find the correct under-

lying structure, and in practice this seems to be the case. Notice, that the inconsistent

parameters will only be those that correspond to the families whose parents are not super-

sets of a family present in the true structure. In particular, the parameters of the CPDs for

families that are present in the true structure will be consistent. It is plausible that, as we

gather more data, the probability mass associated with the true structure will dominate our

distribution so much so that the inconsistent parameter estimates for the other structures

will have an inconsequential effect on any inferences that we perform. The true structure

should dominate since it will explain the data far better than any other structure.

Based on the ideas outlined in this section, we believe that it should be possible to show

that our algorithm determines the correct strucutre and parameters in the limit, however

such a proof would be a serious undertaking, and some assumptions may have to be made

about way we perform the active queries.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 137

9.9 Structure Experiments

We experimented with three commonly used networks: Cancer, with five nodes; Asia,

with eight nodes; and Car Troubleshooter, with twelve nodes. We evaluated the ability of

our algorithm to reconstruct a network structure by using data generated from that network

and then measuring how close the algorithm’s estimate of the structure was to the true

network. For each test network, we maintained 50–75 orderings, as described above. We

restricted the set of candidate parents to have size m = 5.

We compared our active learning method with both random sampling and uniform

querying, where we choose a setting for the query nodes from a uniform distribution. Each

method produces estimates for the probabilities of edges between each pair of variables in

our domain. Our goal is to learn the correct causal structure of a domain. Thus we would

like all of the edges in our method’s estimate to match those of the true network G�. We

compared each method’s estimate with the true network G� by using the L1 edge error of

the estimate:

Error(P) = Xi;j>i IG�(Xi ! Xj)(1� P (Xi ! Xj))+IG�(Xi Xj)(1� P (Xi Xj))+IG�(Xi Xj)(1� P (Xi Xj)); (9.18)

where IG�(A) = 1 if A holds in G� and is zero otherwise.

We first considered whether the active method provides any benefit over random sam-

pling other than the obvious additional power of having access to queries that intervene in

the model. Thus, for the first set of experiments, we eliminated this advantage by restricting

the active learning algorithm to query only roots of G�. When the query is a root, a causal

query is equivalent to simply selecting a data instance that matches the query (e.g., “Give

me a 40-year-old male”); hence, there is no need for a causal intervention to create the re-

sponse. Situations where we can only query root nodes arise in many domains; in medical

domains, for example, we often have the ability to select subjects of a certain age, gender,

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 138

0 10 20 30 40 50 60 70

Number of queries

3.5

4

4.5

5

5.5

6

L
1

 E
rr

o
r

Random

Uniform

Active

0 10 20 30 40 50 60 70

Number of queries

6

8

10

12

14

16

L
1

 E
rr

o
r

Random

Uniform

Active

(a) (b)

0 4 8 12 16 20

Number of queries

0

20

40

60

80

100

W
e

ig
h

te
d

 L
1

 E
rr

o
r

Random

Uniform

Active

(c)

Figure 9.2: (a) Cancer with one root query node. (b) Car with four root query nodes. (c)

Car with three root query nodes and weighted edge importance. Legends reflect order in

which curves appear. The axes are zoomed for resolution.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 139

or ethnicity, variables which are often assumed to be root nodes. All algorithms were in-

formed that these nodes were roots by setting their candidate parent sets to be empty. In this

batch of experiments, the candidate parents for the other nodes were selected at random,

except that the node’s true parents in the generating network were always in its candidate

parent set. It typically took a few minutes for the active method to generate the next query.

Figures 9.2(a) and 9.2(b) show the learning curves for the Cancer and Car networks.

We used a uniform prior over the structures and experimented with using uniform Dirichlet

(BDe) priors and also more informed priors (simulated by sampling 20 data instances from

the true network2). The type of prior made little qualitative difference in the comparative

performance between the learning methods (the graphs shown are with uniform priors).

In both graphs, we see that the active method performs significantly better than random

sampling and uniform querying.

In some domains, determining the existence and direction of causal influence between

two particular nodes may be of special importance. We experimented with this possibility

in the Car network. We modified the L1 edge error function Eq. (9.18) and the edge

entropy Eq. (9.3) used by the active method to make determining the relationship between

two particular nodes (the FuelSubsystem and EngineStart nodes) 100 times more important

than a regular pair of nodes. We used three other nodes in the network as query nodes. The

results are shown in Fig. 9.2(c). Again, the active learning method performs substantially

better.

Note that, without true causal interventions, all methods have the same limited power to

identify the model: asymptotically, they will identify the skeleton and the edges whose di-

rection is forced in the Markov equivalence class (rather than identifying all edge directions

in the true causal network). However, even in this setting, the active learning algorithm al-

lows us to derive this information significantly faster.

Finally, we considered the ability of the active learning algorithm to exploit its ability

to perform interventional queries. We permitted our active algorithm to choose to set any

pair of nodes or any single node or no nodes at all. We compared this approach to random

sampling and also uniformly choosing one of our possible queries (setting a single node,

2In general, information from observational data can easily be incorporated into our model simply by

settingQ to be the empty set for each of the observational data instances. By Theorem 8.3.4, the update rule

for these instances is equivalent to standard Bayesian updating of the model.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 140

0 5 10 15 20 25

Number of queries

5

6

7

8

9

10

11

12

L
1

 E
rr

o
r

Random

Uniform

Active

Figure 9.3: Asia with any pairs or single or no nodes as queries. Legends reflect order in

which curves appear. The axes are zoomed for resolution.

pair of nodes, or no nodes). Experiments were performed on the Asia, Cancer, and Car

networks with an informed prior of 20 random observations. In this batch of experiments,

we also experimented with different methods for choosing the candidate parents for a nodeX . As an alternative to using random nodes together with the true parents, we chose them = 5 variables which had the highest individual mutual information with X .3 Empiri-

cally, both methods of choosing the candidate parents gave very similar results, despite the

fact that for one node in the Car network, a true parent of a node happened not to be chosen

as a candidate parent with the mutual information method. We present the results using the

mutual information criterion for choosing parents.

Figures 9.3, 9.4(a) and 9.4(c) show that in all networks our active method significantly

outperforms the other methods. We also see, in Figures 9.4(b) and 9.4(d), that the prediction

error graphs are very similar to the graphs of the edge entropy (Eq. (9.3)) based on our

distribution over structures. Recall that the edge entropy is our model’s internal measure of

quality – the model doesn’t have access to the true causal network structure that it is trying

to find and so cannot use the L1 edge error as its measure of quality. Ideally we would

like the internal measure of quality to match closely with how near we really are to the

true network structure. These graphs show that the edge entropy is, indeed, a reasonable

surrogate for predictive accuracy.

3As we mentioned in Section 9.5, in practice this information can be obtained from observational data.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 141

0 10 20 30 40 50

Number of queries

2

3

4

5

6

L
1
 E

rr
o
r

Random

Uniform

Active

0 10 20 30 40 50

Number of queries

5

6

7

8

9

E
d
g
e
 E

n
tr

o
p
y

Random

Uniform

Active

(a) (b)

0 5 10 15 20 25

Number of queries

8

12

16

L
1
 E

rr
o
r

Random

Uniform

Active

0 5 10 15 20 25

Number of queries

20

24

28

32

E
d
g
e
 E

n
tr

o
p
y

Random

Uniform

Active

(c) (d)

Figure 9.4: (a) Cancer with any pairs or single or no nodes as queries. (b) Cancer edge

entropy. (c) Car with any pairs or single or no nodes as queries. (d) Car edge entropy.

Legends reflect order in which curves appear. The axes are zoomed for resolution.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 142

Figures 9.5(b), 9.5(c) and 9.5(d) show typical estimated causal edge probabilities in

these experiments for random sampling, uniform querying and active querying respec-

tively for the Cancer network (Fig. 9.5(a)). Figure 9.5(b) demonstrates that one requires

more that just random observational data to learn the directions of many of the edges, and

Fig. 9.5(d) shows that our active learning method creates better estimates of the causal

interactions between variables than uniform querying. In fact, in some of the trials our

active method recovered the edges and direction perfectly (when discarding low probabil-

ity edges) and was the only method that was able to do so given the limitation of just 50

queries. Also, our active method tends to be much better at not placing edges between

variables that are only indirectly causally related; for instance in the network distribution

learned by the active method (summarized in Fig. 9.5(d)), the probability of an edge from

Cancer to Papilledema is only 4% as opposed to 49% for uniform querying and 22% for

random sampling.

CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 143

(a) (b)

(c) (d)

Figure 9.5: (a) Original Cancer network. (b) Cancer network after 70 observations. (c)

Cancer network after 20 observations and 50 uniform experiments. (d) Cancer network

after 20 observations and 50 active experiments. The darker the edges the higher the proba-

bility of edges existing. Edges with less than 15% probability are omitted to reduce clutter.

Part IV

Conclusions and Future Work

144

Chapter 10

Contributions and Discussion

“Questions are the creative acts of intelligence.”

— Frank Kingdon, (1885-1958)

British botanist.

The goal of machine learning is to extract patterns from the world which can then be used

to forward scientific understanding, create automated processes, assist with labor intensive

tasks, and much more besides. However, much of machine learning relies on data, and

gathering data is typically expensive and time consuming. We have demonstrated that,

in a variety of widely applicable scenarios, active learning can be used to ask targeted,

poignant and informative questions thereby vastly reducing the amount of data that needs

to be gathered while, at the same time, increasing the quality of the resulting models,

classifiers and conclusions.

We have tackled active learning by first creating a general approach whereby we define

a model and its quality. We then myopically choose the next query that most improves

the expected or minimax quality. We then have applied this general decision theoretic

approach to the task at hand. In particular, we have addressed three different tasks: clas-

sification using support vector machines, parameter estimation and causal discovery using

Bayesian networks.

145

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 146

10.1 Classification with Support Vector Machines

In the first part of this thesis, we introduced techniques for performing active learning with

SVMs. We used the notion of a version space as our model and its size as the quality. By

taking advantage of the duality between parameter space and feature space, we arrived at

three algorithms that approximately reduce the version space as much as possible at each

query round.

Empirically, these techniques can provide considerable gains in both the inductive and

transductive settings for text classification – in some cases reducing the need for labeled

instances by over an order of magnitude, and in almost all cases reaching the performance

achievable on the entire pool having seen only a fraction of the data. Furthermore, larger

pools of unlabeled data improve the quality of the resulting classifier by providing a wider

range of potential queries for the active learner to choose from. Support vector machines are

already one of the most effective classifiers for text classification, and our active learning

methods improve their performance even further.

We have also demonstrated that active learning with support vector machines can pro-

vide a powerful tool for searching image databases, outperforming a number of traditional

query refinement schemes. Our image retrieval algorithm, SVMActive, not only achieves

consistently high accuracy on a wide variety of user queries, but also does it quickly and

maintains high precision when asked to deliver large quantities of images. Also, unlike

recent systems such as SIMPLIcity (Wang et al., 2000), it does not require an explicit

semantic layer to perform well.

Of the three main methods presented, the Simple method is computationally the fastest.

However, the Simple method would seem to be a rougher and more unstable approxima-

tion, as we witnessed when it performed poorly on two of the five Newsgroup topics. If

asking each query is expensive relative to computing time then using either the MaxMin orMaxRatio may be preferable. However, if the cost of asking each query is relatively cheap

and more emphasis is placed upon fast feedback, as in the image retrieval domain, then theSimple method may be more suitable. In either case, we have shown that the use of these

methods for learning can substantially outperform standard passive learning. Furthermore,

experiments with the Hybrid method indicate that it is possible to combine the benefits of

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 147

the MaxRatio and Simple methods.

The work presented on support vector machines leads us to many directions of interest.

Several studies have noted that gains in computational speed can be obtained at the expense

of generalization performance by querying multiple instances at a time (Lewis & Gale,

1994; McCallum & Nigam, 1998). Viewing SVMs in terms of the version space gives

an insight as to where the approximations are being made, and may provide a guide as to

which multiple instances are better to query. For instance, it is suboptimal to query two

instances whose version space hyperplanes are fairly parallel to each other. There may

exist a reasonable tradeoff between how well an instance bisects the version space and how

mutually perpendicular it is to the other instances that we will be asking as queries.

Bayes Point Machines (Herbrich et al., 1999) also take advantage of the version space

framework. They approximately find the center of mass of the version space. Using theSimple method with this point rather than the SVM point in version space may produce an

improvement in performance and stability. The use of Monte Carlo methods (Applegate &

Kannan, 1991; Herbrich & Graepel, 2001) to estimate version space areas may also give

improvements.

Monte Carlo methods may also permit us to maintain a distribution over the version

space. One way of viewing the strategy of always choosing to halve the version space is

that we have essentially placed a uniform distribution over the current space of consistent

hypotheses and we wish to reduce the expected size of version space as fast as possible.

Rather than maintaining a uniform distribution over consistent hypotheses, it is plausible

that the addition of prior knowledge over our hypothesis space may allow us to modify

our query algorithm and provided us with an even better strategy. Furthermore, the PAC-

Bayesian framework introduced by McAllester (1999) considers the effect of prior knowl-

edge on generalization bounds and this approach may lead to theoretical guarantees for the

modified querying algorithms.

For the image retrieval task, the running time of our algorithm scales linearly with the

size of the image database both for the relevance feedback phase and for the retrieval of

the top-k images. This linear scaling is because, for each querying round, we have to scan

through the database for the twenty images that are closest to the current SVM boundary,

and in the retrieval phase we have to scan the entire database for the top k most relevant

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 148

images with respect to the learned concept. SVMActive is practical for image databases that

contain a few thousand images; however, we would like to find ways for it to scale to larger

sized databases.

For the relevance feedback phase, one possible way of coping with a large image

database is, rather than using the entire database as the pool, to sample a few thousand

images from the database and use these as the pool of potential images with which to query

the user. The technique of subsampling databases is often used effectively when perform-

ing data mining with large databases (e.g., (Chaudhuri et al., 1998)). It is plausible that

this technique will have a negligible effect on overall accuracy, while significantly speed-

ing up the running time of the SVMActive algorithm on large databases. Retrieval speed of

relevant images in large databases can perhaps be sped up significantly by using intelligent

clustering and indexing schemes (Moore, 1991; Li et al., 2001). An online version of theSVMActive system is available at: http://www.robotics.stanford.edu/˜stong/svmActive.html.

It already incorporates some of these clustering techniques.

Another direction we wish to pursue is an issue that faces many relevance feedback

algorithms: that of designing methods to seed the algorithm effectively. At the moment we

assume that we are presented with one relevant data instance and one irrelevant instance.

It would be beneficial to modify SVMActive so that it is not dependent on having a relevant

starting instance. We are currently investigating ways of using SVMActive’s output to explore

the feature space effectively until a single relevant image is found.

Finally, the MaxRatio and MaxMin methods are computationally expensive since they

have to step through each of the unlabeled data instances and learn an SVM for each pos-

sible labeling. This limits their use for interactive relevance feedback tasks in particular,

and for active learning with large datasets in general. However, the temporarily modified

data sets will only differ by one instance from the original labeled data set and so one can

envisage learning an SVM on the original data set and then computing the “incremental”

updates to obtain the new SVMs (Cauwenberghs & Poggio, 2001) for each of the possible

labelings of each of the unlabeled instances. Thus, one would hopefully be able to obtain

a much more efficient implementation of the MaxRatio and MaxMin methods and hence

allow these active learning algorithms to scale up to larger machine learning problems and,

in interactive relevance feedback tasks, to provide sufficiently fast responses.

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 149

10.2 Parameter Estimation and Causal Discovery

We have also explored active learning for Bayesian networks. To our knowledge, this study

is one of the first applications of active learning in an unsupervised context.

We have demonstrated that active learning can have significant advantages for the task

of parameter estimation in BNs, particularly in the case where our parameter prior is of

the type that a human expert is likely to provide. We used the distribution over parameters

as our model and the expected KL-divergence to the “true” parameters (or alternatively,

the expected log likelihood of future data) as our notion of model quality. Intuitively,

the benefit of active learning comes from estimating the parameters associated with rare

events. Although it is less important to estimate the probabilities of rare events accurately,

the number of instances obtained if we randomly sample from the distribution is still not

enough. We note that this advantage arises even though use a loss function that considers

only the accuracy of the distribution. In many practical settings such as medical or fault

diagnosis, the rare cases are even more important, as they are often the ones that it is critical

for the system to deal with correctly.

We have also considered the fundamental task of causal structure discovery. Here we

used a distribution of graphs and parameters. Unlike the related non-active work of Cooper

and Yoo (1999), our framework permits us to efficiently combine observational and ex-

perimental data for learning the structure over all variables in our domain, rather that just

non-confounded pairs of variables. Thus we can take a much more global view of causal

structure learning by taking into account indirect causation and confounding influences.

We demonstrated that active learning can provide significant benefits for causal struc-

ture discovery. We used the distribution over structures and parameters as our model and

the entropy of the existence of edges between variables as our model quality. Our ac-

tive method provides substantially better predictions regarding structure than both random

sampling, and a process by which interventional queries are selected at random. Somewhat

surprisingly, our algorithm achieves significant improvements over these other approaches

even when it is restricted to querying roots in the network, and therefore cannot exploit the

advantage of intervening in the model.

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 150

10.2.1 Augmentations

There are many interesting directions in which our work with Bayesian networks can be

extended. For example, a treatment of continuous variables would be worthwhile. Two

key issue to address are how to choose an query if the query variables are continuous, and

whether the terms involving the continuous variables in the expected quality expression

have a closed form and are decomposable.

In many domains there are missing data values (for example, partial experimental re-

sults) and hidden variables (variables that we never measure or observe) and it would be

useful to explore how our algorithms could be extended to cope with such situations. Main-

taining a distribution over graphs and parameters in the presence of missing data or hidden

variables quickly becomes intractable (Heckerman, 1998). Among other things, the distri-

bution over parameters becomes heavily multi-modal (thus prohibiting an efficient, closed

form representation of the individual parameter distributions) and the parameters become

dependent (thus preventing prohibiting us from factorizing the joint density over param-

eters into individual, smaller terms). Thus it remains a challenging research problem to

extend Bayesian network active learning to cope with these scenarios.

Active learning can be regarded as being part of the large field of decision theory (Howard,

1970). Decision theory tackles the problem of decide how to act (in our case, which queries

to ask) so as to maximum some utility function. The general field of decision theory tackles

a great number of issues such as multiple decision making, computing the value of extra

information, modeling people’s utility functions and using decision theory as a framework

for rationality.

Markov decision processes (MDPs) (Puterman, 1994) are a framework for represent-

ing the type of sequential decision making problems most related to active learning. They

can potentially be used to relax the myopia approximation and enable us to introduce more

advanced aspects of decision theory. For example, we may like to compute the next best

query given that we can perform, say, twenty queries in total, or that we have, say, $10; 000
in total and each different type of query costs a certain amount. Such a setup also enables

us to determine optimal stopping rules when performing queries – the point at which the

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 151

expected future information gleaned from queries is outweighed by the expected cost. Un-

fortunately, even using the simplest networks, expressing our active learning problems as

full MDPs becomes intractable. We would have a special type of MDP called a belief state

MDP. The state space of our MDP would be huge: it would be the set of possible mod-

els, and each model is a distribution over parameters (and structures in the causal structure

learning case). Approximate algorithms for dealing with massive state space sizes as well

as algorithms for tackling belief state MDPs do exist (Bertsekas & Tsitsiklis, 1996; Kael-

bling et al., 1998; Boutilier et al., 1999; Koller & Parr, 1999; Guestrin et al., 2001) although

their applicability to active learning for Bayesian networks is unclear. The use of MDPs

for augmenting the power of active learning in Bayesian networks remains an open issue.

Some of the benefits of the full decision theoretic framework could, perhaps, be approx-

imately obtained without resorting to an MDP. For example, our active learning algorithms

maintain an internal notion of model quality and thus we can plot the curve of model qual-

ity versus number of queries that we’ve asked so far. We can then extrapolate this learning

curve and use the curve to decide whether to stop asking queries.

10.2.2 Scaling Up

Handling larger domains and larger data sets is an important area of research for most ma-

chine learning techniques. We would like to explore ways in which our active learning

algorithms can be scaled up to cope with complex domains. There are a number of is-

sue to tackle here. In our active learning for structure, we use MCMC methods to sample

node orderings. MCMC methods often become infeasible when faced with a large data set

size or a large dimensional problem. With a large amount of data the posterior distribu-

tion landscape often becomes much more “peaked”, which causes MCMC methods great

difficulty with slow convergence. Friedman and Koller (Friedman & Koller, 2000) note

that this landscape is often much smoother when we sample over orderings as opposed to

graph structures, but nevertheless, with enough data, even the posterior over orderings will

become sharply peaked. Fortunately, this difficultly is slightly assuaged in the case of ac-

tive learning because we typically wish to use active learning to reduce the amount of data

we wish to collect. With very high dimensional problems containing several thousands of

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 152

variables, the posterior distribution is often concentrated on a lower-dimensional subspace,

which again can lead MCMC methods to suffer from slow convergence (Breiman, 1997).

One can envisage scenarios in which we have combinations of a large quantity of data, a

high dimensional domain and active learning. In the case where we have large data set

sizes, we may be able to take advantage of the possibility that there will only be a few

graphs (and hence orderings) that fit the data well. Thus, perhaps maintaining a small set

of key orderings would be enough to account for most of the probability mass of the distri-

bution over orderings. If we are faced with a very high dimensional problem the problem

of convergence using MCMC will only be one of several issues that need to be addressed.

Our Bayesian network algorithms currently evaluate the expected posterior quality for

every possible query. The number of possible queries grows exponentially with the number

of query variables that we can control at once. There are a number of approaches one could

explore to reduce the number of queries that are evaluated for each round of querying.

For example, we could make use of the observation that if the expected quality of a queryQ := q is high last querying round, then, because the model does not changed much

in response to a single query, it is likely that Q := q will produce a large increase in

expected quality in the next querying round as well. Thus, if we can only afford to evaluate,

say, 100 candidate queries, we could perform some form of sampling in which the most

promising queries (the queries that gave a large expected increase in quality in the previous

few querying rounds) are sampled with higher likelihood than the less promising ones.

10.2.3 Temporal Domains

Discrete time-step temporal processes can be represented as dynamic Bayesian networks

(Dean & Kanazawa, 1989) (see Fig. 10.1 for an example). The temporal aspect of a domain

defines a natural partial causal ordering on the nodes in the network: nodes in the past

cannot be causally dependent upon those in the future. If we assume that we know the

edges present within each discrete time-slice (but that we don’t necessarily know the edges

between time-slices), then this constraint enforces a total ordering on the nodes. Thus, there

is no need to sample node orderings to compute the expected loss. Furthermore, given that

we have just one ordering, we may be able to use a wider variety of loss functions to

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 153

Figure 10.1: Three time-slices of a Dynamic Bayesian network.

measure the model quality – for example the entropy of the distribution over structures.

Using active learning to uncover the parameters or underlying structure of a DBN could

be extended to the problem of active learning for optimal control (Boyan, 1995). This

problem is closely related to that of reinforcement learning. In the optimal control problem,

at each time-step, one observes some variables and then is permitted to perform some

actions. The goal is to find the best actions to perform given current and past observations

so as to maximize some utility. Such a task can be represented by a Markov decision

process which can be regarded as a DBN augmented with nodes that represent actions and

nodes that represent utilities.

10.2.4 Other Tasks and Domains

There exist many other problems related to Bayesian networks an related representations

that we would like to explore. Relating active learning to the value of information, we

might be able to use active learning to decide which extra variable to observe or which

extra piece of missing data we should try to obtain in order to best learn the model. In

practice, data instances are not always complete, or are partial on purpose. For example,

doctors may always take a patient’s temperature, but may not give every patient a X-ray. It

may be useful to suggest which extra readings will be most promising to take.

Another exciting direction is the potential of using active learning in order to try to

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 154

Figure 10.2: A hidden variableH makesX and Y appear correlated in observational data,

but independent in experimental data.

uncover the existence of a hidden variable in our domain. As we noted in Section 10.2.1,

representing a distribution over structures and parameters in the presence of hidden vari-

ables can be very difficult. Intuitively, the task of searching for hidden variables should

not have to involve such a complex setup. If we believe that there is a hidden variableH between X and Y that is making X and Y appear to be causally dependent then one

easy way to ascertain whether H exists is first to set X and observe Y and then set Y and

observe X . If X and Y appear independent then it is likely that there is a hidden variable

(see Fig. 10.2). One possible direction to explore in formalizing this intuition is to gather

observational data and consider the distribution of graph structures given the data. If there

is a high probability of an edge between nodes X and Y , then, if there are no hidden vari-

ables, it should be due to a direct causal influence from X to Y or from Y to X . If there

were a hidden variable, then when we just look at experimental data where we intervene

at X or Y , there will be a much lower probability of an edge between X and Y . Thus,

we could attempt to choose queries so as to maximize some form of discrepancy between

the distribution over graphs obtained by using observational data, and the distribution over

graphs obtained using experimental data.

Object oriented Bayesian networks (OOBNs) (Koller & Pfeffer, 1997) and, more gen-

erally, probabilistic relational models (PRMs) (Pfeffer, 2000) are effective frameworks for

enabling Bayesian networks to scale-up to very large domains. PRMs extend the standard

CHAPTER 10. CONTRIBUTIONS AND DISCUSSION 155

attribute-based Bayesian network representation to incorporate a richer relational structure.

These models allow the specification of a probability model for classes of objects rather

than simple attributes; they also allow properties of an object to depend probabilistically on

properties of other related objects. PRMs augment the representational power of Bayesian

networks – for example they enable one to model structural uncertainty over the very exis-

tence or number of objects in our domain. A possibly fruitful avenue to pursue would be to

investigate how the methods and techniques presented here carry over to these new repre-

sentations. Potential research issues are how to represent queries (in a relational database

the notion of a set of data instances no longer exists), whether the parameter sharing nature

of these models can be exploited efficiently in the querying algorithm, and whether one can

actively choose queries that uncover or reveal the new types of structural uncertainty.

10.3 Epilogue

We hope that the work presented here will provide motivation for further work into explor-

ing the uses of active learning within machine learning and statistics. There are numerous

applications of active learning to real-world domains, a number of which have been demon-

strated, and many of which have been alluded to in this text. Active learning provides clear

productivity and financial benefits in industrial settings by reducing the expensive task of

gathering data and performing experiments. In addition, the investigation of active learn-

ing can provide a useful insight into how automated devices can be designed so as to ask

meaningful and apparently intelligent questions in order to learn about a domain. We have

also outlined an number of open issues that now present themselves to us with respect to

improving and extending the current work. In the words of a famous American economist,

social commentator and former Stanford professor:

”The outcome of any serious research can only be

to make two questions grow where only one grew before.”

— Thorstein Veblen, (1857-1929).

The Place of Science in

Modern Civilization.

Appendix A

Proofs

A.1 Preliminaries

We shall frequently use the following identity:8z z�(z) = �(z + 1): (A.1)

We shall also use the following equivalence frequently. For a Bayesian network parem-

terized by multinomial table CPDs with independent Dirichlet distributions over the CPD

parameters: ~�xij ju = Z �xij jup(�xij ju) d�xij ju (A.2)= �xij ju�xi�ju (A.3)= P (xij j u); (A.4)

which is equivalent to the standard (Bayesian) approach used for collapsing a distribution

over BN parameters into a single parameter vector for one-step prediction. We shall also

make use of the following well know result (DeGroot, 1970):

156

APPENDIX A. PROOFS 157

Lemma A.1.1 Suppose p(�1; : : : ; �r) = Dirichlet(�1; : : : ; �r). Then,p(�i) = Beta(�i;Xk 6=i�k):
Lemma A.1.2 Suppose p(�) = Beta(a; b). Then,Z 10 (� ln �) p(�) d� = aa+ b((a+ 1)� 	(a+ b + 1)); (A.5)

where 	 is the digamma function
�0(�)�(�) .

Proof. Z 10 (� ln �) p(�) d� (A.6)= �(a+ b)�(a)�(b) Z 10 �a(1� �)(b�1) ln � d�: (A.7)

Using a standard table of integrals, the above expression can be re-written as:�(a + b)�(a)�(b) � �(a + 1)�(b)�(a + b + 1) ((a+ 1)� 	(a+ b + 1)) (A.8)= aa+ b((a+ 1)�	(a + b+ 1)): (A.9)2
A.2 Parameter Estimation Proofs

A.2.1 Using KL Divergence Parameter Loss

Theorem A.2.1 Let �(�) be the Gamma function, 	(�) be the digamma function and H
be the entropy function. Define:Æ(�1; : : : ; �r) = rXj=1 ��j�� ((�j + 1)� 	(�� + 1)) +H ��1�� ; : : : ; �r���� :

APPENDIX A. PROOFS 158

Then the risk decomposes as:Risk(p(�)) =Xi Xu2Dom[Ui℄P~�(u)Æ(�xi1ju; : : : ; �xiri ju): (A.10)

Proof.Risk(p(�)) = E��p(�)KL(� k ~�) (A.11)= Z KL(� k ~�)p(�) d� (A.12)= Z Xi Xu P�(u)KL(P�(Xi j u) k P~�(Xi j u))p(�) d�: (A.13)

Now, using parameter independence, which allows us to separately integrate P�(u),
and noticing

R P�(u)p(�) d� = P~�(u), expression (A.13) becomes:Xi Xu P~�(u)Xj Z 10 �xij ju ln �xij ju~�xij jup(�xij ju) d�xij ju: (A.14)

Using that ~�xij ju = R 10 �xij jup(�xij ju) d�xij ju = P (xij j u) we have that this expression

is equal to:Xi Xu P~�(u)0�Xj Z 10 ��xij ju ln �xijju� p(�xij ju) d�xij ju �Xj P (xij j u) lnP (xij j u)1A= Xi Xu P~�(u)0�Xj Z 10 ��xij ju ln �xij ju� p(�xijju) d�xij ju +H(P (Xi j u))1A : (A.15)

Applying Lemma A.1.1 and Lemma A.1.2 we finally obtain:Xi Xu P~�(u)Xj "�xij ju�xi�ju �	(�xij ju + 1)� 	(�xi�ju + 1)�+H(P (Xi j u))# : (A.16)2

APPENDIX A. PROOFS 159

Theorem A.2.2 Consider a simple network in which X has parents Q. Then:�(X j q) = P~�(q)0�H ��x1jq�x�jq ; : : : ; �xrjq�x�jq��Xj P~�(xj j q)H ��0x1jq�0x�jq ; : : : ; �0xr jq�0x�jq�1A ; (A.17)

where �x�jq = Pi �xijq. Also, �0xijq = (�xijq + 1) if i = j and �0xijq = �xijq otherwise.

Thus �0x�jq = �x�jq + 1.

Proof. To ease notation, let �xijq = �i for all i = 1; : : : ; r and �� = Pri=1 �i.
By the discussion in Section 7.3.2,�(X j q) (A.18)= P~�(q) 24Æ(�1; : : : ; �r)� rXj=1P~�(xj j q)Æ(�1; : : : ; �j + 1; : : : ; �r)35 : (A.19)

Let K(�1; : : : ; �r) =Xj �j��	(�j + 1) +H ��1�� ; : : : ; �r��� ;
and Hj = H � �1�� + 1 ; : : : ; �j + 1�� + 1 ; : : : ; �r�� + 1� :
Also, using the fact that, 8z 	(z + 1) = 	(z) + 1z and P~�(xj j q) = �j�� , after some

algebraic manipulation we obtain:�(X j q) (A.20)= P~�(q)24 1�� + 1 +K(�1; : : : ; �r)� rXj=1 P~�(xj j q)K(�1; : : : ; �j + 1; : : : ; �r)35 (A.21)= P~�(q)24 1�� + 1 + rXj=1 �j��	(�j + 1) +H ��1�� ; : : : ; �r���� rXj=1 P~�(xj j q)0�Xk 6=j �k�� + 1	(�k + 1) + �j + 1�� + 1	(�j + 2) +Hj1A35 (A.22)= P~�(q)24 1�� + 1 + rXj=1 �j��	(�j + 1) +H ��1�� ; : : : ; �r���

APPENDIX A. PROOFS 160� rXj=1 P~�(xj j q) rXk=1 �k�� + 1	(�k + 1) + �j(�� + 1) (�j + 1) + 1�� + 1	(�j + 2) +Hj!35 :
(A.23)

Gathering 	(�j+1) terms in Eq. (A.23) and then expanding	(�j+2) = 	(�j+1)+ 1�j+1 we obtain:P~�(q)24 1�� + 1 + rXj=1 �j(��) (�� + 1)	(�j + 1) +H ��1�� ; : : : ; �r���� rXj=1 �j�� � �j(�� + 1) (�j + 1) + 1�� + 1 �	(�j + 1) + 1�j + 1�+Hj�35= P~�(q)24 1�� + 1 +H ��1�� ; : : : ; �r���� rXj=1 �j(�� + 1) (��) � rXj=1 P~�(xj j q)Hj35 (A.24)= P~�(q)24H ��1�� ; : : : ; �r���� rXj=1 P~�(xj j q)Hj35 : (A.25)2
Theorem A.2.3 The change in risk of a Bayesian network over variables X when asking

query Q := q is given by:�(X j q) = Risk(p(�))� ExPRisk(p(�) j q) (A.26)� Xi Xu2Dom[Ui℄P~�(u j Q := q)�(Xi j u); (A.27)

where �(Xi j u) is as defined in Eq. (A.17). Notice that we actually only need to sum over

the updateable Xis since �(Xi j u) will be zero for all non-updateable Xis.

Proof. ExPRisk(p(�) j Q := q)= E��p(�)Ex�P�(XjQ:=q)Risk(p(� j Q := q;x))= Ex�P~�(XjQ:=q)Risk(p(� j Q := q;x)):

APPENDIX A. PROOFS 161

Let ~�0
be the point estimate for p(� j Q := q;x). Then using the fact that the KL

divergence decomposes (Eq. (7.2)) we have that this expression is equal to:Ex�P~�(XjQ:=q)E�0�p(�jQ:=q;x)KL(�0 k ~�0)= Ex�P~�(XjQ:=q)E�0�p(�jQ:=q;x)Xi Xu2Dom[Ui℄P�0(u)KL(P�0(Xi j u) k P~�0(Xi j u))= Xi Ex�P~�(XjQ:=q) Xu2Dom[Ui℄E�0�p(�jQ:=q;x)P�0(u)KL(P�0(Xi j u) k P~�0(Xi j u))= Xi Xx P~�(x j Q := q) Xu2Dom[Ui℄E�0�p(�jQ:=q;x)P�0(u)KL(P�0(Xi j u) k P~�0(Xi j u)):
First using parameter independence and then supposing that P~�0(u) � P~�(u) we have

that this expression becomes:Xi Xx P~�(x j Q := q) Xu2Dom[Ui℄ �E�0�p(�jQ:=q;x)P�0(u)�E�0�p(�jQ:=q;x)KL(P�0(Xi j u) k P~�0(Xi j u))�� Xi Xx P~�(x j Q := q) Xu2Dom[Ui℄P~�(u)E�0�p(�jQ:=q;x)KL(P�0(Xi j u) k P~�0(Xi j u)):
Notice that KL(P�0(Xi j u) k P~�0(Xi j u)) is just dependent upon the parameters �0Xiju

(i.e., �0xij ju for all j). Now, p(�Xiju j Q := q;x) is only dependent upon the values of Xi
and Ui within the instantiationQ := q;x.

Also, notice that if Xi is not updateable, then KL(P�0(Xi j u) k P~�0(Xi j u)) =KL(P�(Xi j u) k P~�(Xi j u)) and so the loss does not depend upon the completion x
that we are summing over. Furthermore, if Xi is an updateable node, then the nodes in Q
are not descendents of Xi (by definition of updateable in the selectional query case, and

because of mutilation in the interventional query case). Thus Xi is independent ofQ given

the value of its parentsUi. Hence, p(�Xiju j Q := q;x) = p(�Xiju j u; xi). We now have:Xi Xxi;u0 P~�(xi;Ui = u0 j Q := q) Xu2Dom[Ui℄P~�(u)�E�0Xiju�p(�0Xijuju;xi)KL(P�0Xiju(Xi j u) k P~�0Xiju(Xi j u)) (A.28)

APPENDIX A. PROOFS 162= Xi Xu02Dom[Ui℄P~�(u0 j Q := q)Xxi P~�(xi j Ui = u0) Xu2Dom[Ui℄P~�(u)�E�0Xiju�p(�0Xijuju;xi)KL(P�0Xiju(Xi j u) k P~�0Xiju(Xi j u)):(A.29)

Let us take a look at the regular risk:Risk(p(�)) = E��p(�)KL(� k ~�)= E��p(�)Xi Xu2Dom[Ui℄P�(u)KL(P�(Xi j u) k P~�(Xi j u))= Xi Xu2Dom[Ui℄P~�(u)E�Xiju�p(�Xiju)KL(P�Xiju(Xi j u) k P~�Xiju(Xi j u)):
(A.30)

When we take the difference of Eq. (A.30) and Eq. (A.29) we obtain:Risk(p(�))� ExPRisk(p(�) j q) (A.31)� Xi Xu02Dom[Ui℄P~�(u0 j Q := q)�0� Xu2Dom[Ui℄P~�(u)E�Xiju�p(�Xiju)KL(P�Xiju(Xi j u) k P~�Xiju(Xi j u))�Xxi P~�(xi j Ui = u0) Xu2Dom[Ui℄P~�(u)E�0Xiju�p(�0Xijuju;xi)KL(P�0Xiju(Xi j u) k P~�0Xiju(Xi j u))1A :
(A.32)

From the proof of Theorem A.2.1 we have that:E�Xiju�p(�Xiju)KL(P�Xiju(Xi j u) k P~�Xiju(Xi j u)) = Æ(�xi1ju; : : : ; �xiri ju):
Using this, together with Eq. (A.19), the expression (A.32) becomes:Xi Xu02Dom[Ui℄P~�(u0 j Q := q)�(Xi j u0);
where �(Xi j u0) is defined as in Eq. (A.17). 2

APPENDIX A. PROOFS 163

Theorem A.2.4 Let U be the set of nodes which are updateable for at least one candidate

query at each querying step. Assuming that the underlying true distribution has the same

graphical structure as our network and is not deterministic, then our querying algorithm

produces consistent estimates for the CPD parameters of every member of U .

Proof. Let P � by the underlying true distribution that is generating the data. Notice that

no query node is a descendent of Xi in the interventional case (because we sever the edges

from incoming edges to query nodes) or in the selective case (because of the definition of

updateable node, and because P � has the same network structure as our network).

Furthermore, from the definition of a Bayesian network, every node is conditionally

independent of its non-decendents given its parents. Thus, when we perform a selective

or interventional query Q := q, and have that the parents of and updateable node Xi take

values u, we have that Xi is sampled from the distribution:P �(Xi j Q := q;u) = P �(Xi j u):
So, whenever we update a parameter �xij ju from data instance d, the value xij present in d
is generated from P �(Xi j u). Thus, since Bayesian point estimate updating is known to

be consistent, the parameter �xij ju will converge to the true limiting probability P �(Xi =xij j u).
Thus, each of our point estimate parameters will converge to the correct quantities. We

only need to show that we will update each parameter in U an infinite number of times.

Since the true distribution is not deterministic, the only parameters that could possibly not

be updated infinitely many times are �xij ju where U contains a query node.

In Eq. (A.17), we can use standard results from information theory (e.g., from (Cover

& Thomas, 1991)) to show that �(X j u)! 0 as �x� !1 and that �(X j u) > 0, whereu is a complete instantiation of X’s parents.

Now, suppose we have a domain where we set or select the value of a single node Q.

Let us consider a candidate query Q := q and let Xk be a child of Q. We wish to show

that this query is asked infinitely often. Our algorithm uses a measure of model quality to

evaluate the benefit of asking Q := q, and this quantity is given by Eq. (A.26):

APPENDIX A. PROOFS 164

Xi Xu2Dom[Ui℄P~�(u j Q := q)�(Xi j u) (A.33)> Xu2Dom[Uk℄P~�(u j Q := q)�(Xk j u) (A.34)> Xu2Dom[Uk℄P~�(u j Q := q) minv2Dom[Uk℄;v consistent with q�(Xk j v) (A.35)= �(Xk j v) (A.36)= � > 0; (A.37)

where the instantiation v is consistent with q. Now, asking any other query Q := q0 causes

that query’s quality to tend to zero:Xi Xu2Dom[Ui℄P~�(u j Q := q0)�(Xi j u) +�! 0: (A.38)

Furthermore, asking Q := q0 does not alter any of the parameters �Xk jv since it always setsQ to some other value. Thus, � remains constant. Thus, eventually, � will be greater than

the score for any other query and so we shall eventually ask the query Q := q.

By using a similar argument, we can extend the proof to accomodate sets of candidate

queries. 2
A.2.2 Using Log Loss

The theorems in this subsection show that when we use log loss (rather than KL divergence)

as our parameter loss function we get an identical algorithm. The upcoming series of

theorems follow the same progression as the KL divergence derivation. We first show that

the risk decomposes. We then analyze the case for a single family network and then we

generalize to general Bayesian networks.

APPENDIX A. PROOFS 165

Theorem A.2.5 The risk when using log loss as the loss function decomposes as:RiskLL(p(�)) =Xi H(Xi j Ui): (A.39)

Proof.RiskLL(p(�)) = E��p(�)LL(� k ~�) = E��p(�)EX�P�(X) � lnP (X j ~�); (A.40)

which is the negative expected loglikelihood of future data and is equal to:= Z p(�)Xx �P (x j �) lnP (x j ~�) d� (A.41)= �Xx lnP (x j ~�) Z p(�)P (x j �) d� (A.42)= �Xx P (x) lnP (x j ~�) (A.43)= �Xx P (x) lnP (x) (A.44)= �Xx P (x) lnYi P (xi j ui) (A.45)= �Xi Xxi Xui P (xi;ui) lnP (xi j ui) (A.46)= �Xi Xui P (ui)Xxi P (xi j ui) lnP (xi j ui) (A.47)= �Xi H(Xi j Ui): (A.48)2
Theorem A.2.6 Consider a simple Bayesian network in which X has parents Q. Define�LL(X j q) = RiskLL(X)� ExPRiskLL(X j Q := q). Then:�LL(X j q) = P~�(q)0�H ��x1jq�x�jq ; : : : ; �xr jq�x�jq ��Xj P~�(xj j q)H ��0x1jq�0x�jq ; : : : ; �0xrjq�0x�jq�1A ; (A.49)

where �x�jq = Pi �xijq. Also, �0xijq = (�xijq + 1) if i = j and �0xijq = �xijq otherwise.

Thus �0x�jq = �x�jq + 1.

APPENDIX A. PROOFS 166

Proof. This is immediate from Theorem A.2.5 and the fact that:H(X j q) = H ��x1jq�x�jq ; : : : ; �xr jq�x�jq� : (A.50)2
Now, notice that �LL(X j q) is identical to �(X j q) from Eq. (A.17). In other words,

for this simple network, the difference in expected posterior loss when using log loss is

the same as when using KL divergence. Thus, the proof for Theorem A.2.3 can be used to

prove the analogous theorem:

Theorem A.2.7 The change in risk of a Bayesian network over variables X when asking

query Q := q is given by:�LL(X j q) = RiskLL(p(�))� ExPRiskLL(p(�) j q) (A.51)� Xi Xu2Dom[Ui℄P~�(u j Q := q)�LL(Xi j u); (A.52)

where �LL(Xi j u) is as defined in Eq. (A.49). Notice that we actually only need to sum

over the updateable Xis since �LL(Xi j u) will be zero for all non-updateable Xis.

Thus, we have exactly the same algorithm as before, and so the proof for consistency

also holds.

A.3 Structure Estimation Proofs

Theorem A.3.1 Given a query Q := q, we can write the probability of a response x to

our query as:P (x j Q := q;�)= �Q Yi:Xi =2Q XU2Ui;� P (Pa(Xi) = U j�)Score(Xi;U j x;q);
where �Q = Qi:Xi2QPU2Ui;� P (Pa(Xi) = U j�).

APPENDIX A. PROOFS 167

Proof. Applying Theorem 8.3.4 and parameter modularity we have:P (x j Q := q;�)= XG2�P (x j Q := q;G)P (G j�)= XG2�Yi P (Pa(Xi) = UGi j�) Yj:Xj =2Q Score(Xj;UGj j x;q)= XG2�0� Yj:Xj2QP (Pa(Xj) = UGj j�)1A0� Yi:Xi =2QP (Pa(Xi) = UGi j�)Score(Xi;UGi j x;q)1A= 0� Yj:Xj2Q XU2Uj;� P (Pa(Xj) = U j�)1A�0� Yi:Xi =2Q XU2Ui;� P (Pa(Xi) = U j�)Score(Xi;U j x;q)1A :
The last step relies on parameter modularity and the observation that:XG2�Yi f(Xi;U) =Yi XU2Ui;� f(Xi;U): 2
Theorem A.3.2 Given a query Q := q, the expected posterior loss can be written as:

ExPLoss�(P (G; �G) j Q := q)= �QXi;j Xx (xi; xj;wi;wj) Yk:Xk =2Q�(xk;wk); (A.53)

where, (xi; xj;wi;wj) = H(Xi $ Xj j xi; xj;wi;wj;�)�(xk;wk) = XU2Uk;� P (Pa(Xk) = U j�)Score(Xk;U j xk;wk):
Proof.

ExPLoss�(P (G; �G) j Q := q) (A.54)

APPENDIX A. PROOFS 168= Ex�P (XjQ:=q;�)Xi;j H(Xi $ Xj j xi; xj;wi;wj;�) (A.55)= Xi;j Xx P (x j Q := q;�)H(Xi $ Xj j xi; xj;wi;wj;�) (A.56)= Xi;j Xx H(Xi $ Xj j xi; xj;wi;wj;�)��Q Yk:Xk =2Q XU2Uk;� P (Pa(Xk) = U j�)Score(Xk;U j x;q) (A.57)= �QXi;j Xx (xi; xj;wi;wj) Yk:Xk =2Q�(xk;wk): (A.58)2

Bibliography

Applegate, D., & Kannan, R. (1991). Sampling and integration of near log-concave func-

tions. Proceedings of the Twenty Third Annual ACM Symposium on Theory of Computing

(pp. 156–163).

Arnborg, S., Corneil, D., & Proskurowski, A. (1987). Complexity of finding embeddings

in a k-tree. SIAM Journal of Algebraic and Discrete Methods, 8, 277–284.

Atkinson, A. C., & Bailey, R. A. (2001). One hundred years of the design of experiments

on and off the pages of “Biometrika”. Biometrika. In press.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Athena.

Blake, C., Keogh, E., & Merz, C. (1998). UCI repository of machine learning databases.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision theoretic planning: Structural as-

sumptions and computational leverage. Journal of Artificial Intelligence Research, 10.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific inde-

pendence in Bayesian networks. Proceedings of Uncertainty in Artificial Intelligence.

Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response surfaces.

Wiley.

Boyan, J. A. (1995). Active learning for optimal control in acyclic domains. Proceedings

of AAAI Symposium on Active Learning.

Breiman, L. (1997). No Bayesians in foxholes. IEEE Expert November/December issue,

Trends and Controversies.

169

BIBLIOGRAPHY 170

Bryant, C. H., Muggleton, S. H., Page, C. D., & Sternberg, M. J. E. (1999). Combining

active learning with inductive logic programming to close the loop in machine learning.

Proceedings of AISB’99 Symposium on AI and Scientific Creativity (pp. 59–64).

Buntine, W. (1991). Theory refinement on Bayesian Networks. Proceedings of Uncertainty

in Artificial Intelligence.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery, 2, 121–167.

Campbell, C., Cristianini, N., & Smola, A. (2000). Query learning with large margin clas-

sifiers. Proceedings of the Seventeenth International Conference on Machine Learning.

Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental support vector ma-

chine learning. Advances in Neural Information Processing Systems.

Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical

Science, 10, 273–304.

Chan, P. K., & Stolfo, S. J. (1998). Toward scalable learning with non-uniform class and

cost distributions: A case study in credit card fraud detection. In KDD98.

Chaudhuri, S., Narasayya, V., & Motwani, R. (1998). Random sampling for histogram

construction: How much is enough? ACM Sigmod.

Cohn, D. (1997). Minimizing statistical bias with queries. Advances in Neural Information

Processing Systems.

Cohn, D., Ghahramani, Z., & Jordan, M. (1996). Active learning with statistical models.

Journal of Artificial Intelligence Research, 4.

Cooper, G. (1990). Probabilistic inference using belief networks is NP-hard. Artificial

Intelligence, 42, 393–405.

Cooper, G. F., & Yoo, C. (1999). Causal discovery from a mixture of experimental and

observational data. Proceedings of Uncertainty in Artificial Intelligence.

BIBLIOGRAPHY 171

Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 1–25.

Cover, T., & Thomas, J. (1991). Information theory. Wiley.

Dagan, I., & Engelson, S. (1995). Committee-based sampling for training probabilistic

classifiers. Proceedings of the Twelfth International Conference on Machine Learning

(pp. 150–157). Morgan Kaufmann.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation.

Computational Intelligence, 5.

DeGroot, M. H. (1970). Optimal statistical decisions. New York: McGraw-Hill.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society.

Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. Wiley, New York.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algorithms

and representations for text categorization. Proceedings of the Seventh International

Conference on Information and Knowledge Management. ACM Press.

Freund, Y., Seung, H., Shamir, E., & Tishby, N. (1997). Selective sampling using the Query

by Committee algorithm. Machine Learning, 28, 133–168.

Friedman, J. (1996). Another approach to polychotomous classification (Technical Report).

Department of Statistics, Stanford University.

Friedman, N., & Koller, D. (2000). Being Bayesian about network structure. Proceedings

of Uncertainty in Artificial Intelligence.

Friedman, N., Nachman, I., & Pe’er, D. (1999). Learning Bayesian network structure

from massive datasets: The “sparse candidate” algorithm. Proceedings of Uncertainty in

Artificial Intelligence.

Geman, S., & Geman, D. (1987). Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images. Readings in Computer Vision: Issues, Problems, Princi-

ples and Paradigms.

BIBLIOGRAPHY 172

Goldstein, E. B. (1999). Sensation and perception (5th edition). Brooks/Cole.

Guestrin, C., Koller, D., & Parr, R. (2001). Max-norm projections for factored MDPs.

Proceedings of the International Joint Conference on Artificial Intelligence.

Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. Advances in

Neural Information Processing Systems 10.

Heckerman, D. (1988). An empirical comparison of three inference methods. Proceedings

of the Fourth on Uncertainty in Artificial Intelligence.

Heckerman, D. (1995). A Bayesian approach to learning causal networks (Technical Re-

port MSR-TR-95-04). Microsoft Research.

Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan

(Ed.), Learning in graphical models. Kluwer Academic Publishers.

Heckerman, D., Breese, J., & Rommelse, K. (1994). Troubleshooting Under Uncertainty

(Technical Report MSR-TR-94-07). Microsoft Research.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks:

The combination of knowledge and statistical data. Machine Learning, 20, 197–243.

Herbrich, R., & Graepel, T. (2001). Large scale Bayes Point Machines. Advances in Neural

Information Processing Systems 13.

Herbrich, R., Graepel, T., & Campbell, C. (1999). Bayes point machines: Estimating the

Bayes point in kernel space. International Joint Conference on Artificial Intelligence

Workshop on Support Vector Machines (pp. 23–27).

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., & Rommelse, K. (1998). The Lumiere

project: Bayesian user modeling for inferring the goals and needs of software users.

Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (pp.

256–265).

BIBLIOGRAPHY 173

Horvitz, E., Ruokangas, E., Srinivas, C., & Barry, S. (1992). A decision-theoretic approach

to the display of information for time-critical decisions: The Vista project. Proceedings

of SOAR-92.

Horvitz, E., & Rutledge, G. (1991). Time dependent utility and action under uncertainty.

Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence. Morgan

Kaufmann.

Howard, R. (1970). Decision analysis: Perspectives on inference, decision, and experimen-

tation. Proceedings of the IEEE, 58, 632–643.

Hua, K. A., Vu, K., & Oh, J.-H. (1999). Sammatch: A flexible and efficient sampling-based

image retrieval technique for image databases. Proceedings of ACM Multimedia.

Huang, C., & Darwiche, A. (1996). Inference in belief networks: A procedural guide.

International Journal of Approximate Reasoning, 15, 225–263.

Ishikawa, Y., Subramanya, R., & Faloutsos, C. (1998). Mindreader: Querying databases

through multiple examples. VLDB.

Joachims, T. (1998). Text categorization with support vector machines. Proceedings of the

European Conference on Machine Learning. Springer-Verlag.

Joachims, T. (1999). Transductive inference for text classification using support vector

machines. Proceedings of the Sixteenth International Conference on Machine Learning

(pp. 200–209). Morgan Kaufmann.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1998). An introduction to

variational methods for graphical models. In M. I. Jordan (Ed.), Learning in graphical

models. Kluwer Academic Publishers.

Kaebling, L. P., Littman, M. L., & Moore, A. (1996). Reinforcement learning: a survey.

Journal of AI Research, 4, 237–285.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101, 99–134.

BIBLIOGRAPHY 174

Kearns, M., & Koller, D. (1999). Efficient reinforcement learning in factored MDPs. Pro-

ceedings of the Sixteenth International Joint Conference on Artificial Intelligence (pp.

740–747).

Kearns, M., & Singh, S. (1998). Near-optimal reinforcement learning in polynomial time.

Proceedings of the Fifteenth International Conference on Machine Learning (pp. 260–

268). Morgan Kaufmann, San Francisco, CA.

Kjaerulff, U. (1990). Triangulation of graphs – algorithms giving small total state space

(Technical Report TR R 90-09). Department of Mathematics and Computer Science,

Strandvejen, Aalborg, Denmark.

Koller, D., & Parr, R. (1999). Computing factored value functions for policies in structured

MDPs. Proceedings of the International Joint Conference on Artificial Intelligence (pp.

1332–1339).

Koller, D., & Pfeffer, A. (1997). Object-oriented Bayesian networks. Proceedings of the

13th Annual Conference on Uncertainty in AI (UAI) (pp. 302–313).

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathe-

matical Statistics, 22, 76–86.

Latombe, J.-C. (1991). Robot motion planning. Kluwer Academic Publishers.

Lauritzen, S. L. (1996). Graphical models. Oxford: Clarendon Press.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on

graphical structures and their application to expert systems. J. Royal Statistical Society,

B 50.

LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Gradient-based learning for object

detection, segmentation and recognition. Feature Grouping.

LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A., Cortes, C., Denker, J. S., Drucker, H.,

Guyon, I., Muller, U. A., Sackinger, E., Simard, P., & Vapnik, V. (1995). Comparison

of learning algorithms for handwritten digit recognition. International Conference on

Artificial Neural Networks (pp. 53–60). Paris.

BIBLIOGRAPHY 175

Lehmann, E. L. (1986). Testing statistical hypotheses. Springer-Verlag.

Lehmann, E. L., & Casella, G. (1998). Theory of point estimation. Springer-Verlag.

Leu, J.-G. (1991). Computing a shape’s moments from its boundary. Pattern Recognition,

Vol.24, No.10,pp.949–957.

Lewis, D. (1995). A sequential algorithm for training text classifiers: Corrigendum and

additional data. Special Interest Group on Information Retrieval Forum.

Lewis, D., & Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised learn-

ing. Proceedings of the Eleventh International Conference on Machine Learning (pp.

148–156). Morgan Kaufmann.

Lewis, D., & Gale, W. (1994). A sequential algorithm for training text classifiers. Proceed-

ings of the Seventeenth Annual International ACM-SIGIR Conference on Research and

Development in Information Retrieval (pp. 3–12). Springer-Verlag.

Li, C., Chang, E., Garcia-Molina, H., & Wiederhold, G. (2001). Clustering for approximate

similarity queries in high-dimensional spaces. IEEE Transaction on Knowledge and Data

Engineering (to appear).

Liere, R. (2000). Active learning with committees: An approach to efficient learning in text

categorization using linear threshold algorithms. Oregon State University Ph.D Thesis.

Liere, R., & Tadepalli, P. (1997). Active learning with committees for text categorization.

Proceedings of AAAI (pp. 591–596).

Ma, W. Y., & Zhang, H. (1998). Benchmarking of image features for content-based re-

trieval. Proceedings of Asilomar Conference on Signal, Systems & Computers.

MacKay, D. (1992). Information-based objective functions for active data selection. Neural

Computation, 4, 590–604.

Manjunath, B., Wu, P., Newsam, S., & Shin, H. (2001). A texture descriptor for browsing

and similarity retrieval. Signal Processing Image Communication.

BIBLIOGRAPHY 176

Manning, C., & Schütze, H. (1999). Foundations of statistical natural language processing.

The MIT Press.

McAllester, D. (1999). PAC-Bayesian model averaging. Computational Learning Theory.

McCallum, A., & Nigam, K. (1998). Employing EM in pool-based active learning for

text classification. Proceedings of the Fifteenth International Conference on Machine

Learning. Morgan Kaufmann.

Mitchell, T. (1982). Generalization as search. Artificial Intelligence, 28, 203–226.

Moore, A. (1991). An introductory tutorial on kd-trees (Technical Report No. 209). Com-

puter Laboratory, University of Cambridge, Cambridge, UK.

Moore, A. W., Schneider, J. G., Boyan, J. A., & Lee, M. S. (1998). Q2: Memory-based

active learning for optimizing noisy continuous functions. Proceedings of the Fifteenth

International Conference on Machine Learning. Morgan Kaufmann.

Morjaia, M., Rink, F., Smith, W., Klempner, J., Burns, C., & Stein, J. (1993). Commercial-

ization of EPRI’s generator expert monitoring system. Expert System Application for the

Electric Power Industry, EPRI, 1993..

Murphy, K., & Weiss, Y. (1999). Loopy belief propagation for approximate inference: an

empirical study. Proceedings of Uncertainty in Artificial Intelligence.

Nakajima, C., Norihiko, I., Pontil, M., & Poggio, T. (2000). Object recognition and de-

tection by a combination of support vector machine and rotation invariant phase only

correlation. Proceedings of International Conference on Pattern Recognition.

Neal, R. (1993). Probabilistic inference using Markov Chain Monte Carlo methods. (Tech-

nical Report CRG-TR-93-1). Department of Computer Science, University of Toronto.

Odewahn, S., Stockwell, E., Pennington, R., Humphreys, R., & Zumach, W. (1992). Au-

tomated star/galaxy discrimination with neural networks. Astronomical Journal, 103,

318–331.

BIBLIOGRAPHY 177

Ortega, M., Rui, Y., Chakrabarti, K., Warshavsky, A., Mehrotra, S., & Huang, T. S. (1999).

Supporting ranked boolean similarity queries in mars. IEEE Transaction on Knowledge

and Data Engineering, 10, 905–925.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge University Press.

Pfeffer, A. J. (2000). Probabilistic reasoning for complex systems. Stanford University

Ph.D Thesis.

Platt, J. (1999). Probabilistic outputs for support vector machines and comparison to regu-

larized likelihood methods. Advances in Large Margin Classifiers.

Platt, J., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin DAGS for multiclass

classification. Advances in Neural Information Processing Systems, 12.

Porkaew, K., Chakrabarti, K., & Mehrotra, S. (1999a). Query refinement for multimedia

similarity retrieval in mars. Proceedings of ACM Multimedia.

Porkaew, K., Mehrota, S., & Ortega, M. (1999b). Query reformulation for content based

multimedia retrieval in MARS. ICMCS, 747–751.

Porter, M. (1980). An algorithm for suffix stripping. Automated Library and Information

Systems (pp. 130–137).

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic pro-

gramming. New York: Wiley.

Quinlin, R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

Raab, G. M., & Elton, R. A. (1993). Bayesian-analysis of binary data from an audit of

cervical smears. Statistics Medicine, 12, 2179–2189.

Rocchio, J. (1971). Relevance feedback in information retrieval. The SMART retrieval

system: Experiments in automatic document processing. Prentice-Hall.

BIBLIOGRAPHY 178

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian approach to

filtering junk e-mail. AAAI-98 Workshop on Learning for Text Categorization.

Salton, G., & Buckley, C. (1988). Term weighting approaches in automatic text retrieval.

Information Processing and Management (pp. 513–523).

Schohn, G., & Cohn, D. (2000). Less is more: Active learning with support vector ma-

chines. Proceedings of the Seventeenth International Conference on Machine Learning.

Seung, H., Opper, M., & Sompolinsky, H. (1992). Query by committee. Proceedings of

Computational Learning Theory (pp. 287–294).

Shachter, R., & Peot, M. (1989). Simulation approaches to general probabilistic inference

on belief networks. Fifth Workshop on Uncertainty in Artificial Intelligence.

Smith, J., & Chang, S.-F. (1996). Automated image retrieval using color and texture. IEEE

Transaction on Pattern Analysis and Machine Intelligence.

Sollich, P. (1999). Probabilistic interpretation and Bayesian methods for support vector

machines. International Conference on Artificial Neural Networks 99.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction and search. MIT

Press.

Tamura, H., Mori, S., & Yamawaki, T. (1978). Texture features corresponding to visual

perception. IEEE Transaction on Systems Man Cybernet (SMC).

Tong, S., & Chang, E. (2001). Support vector machine active learning for image retrieval.

ACM Multimedia.

Tong, S., & Koller, D. (2001a). Active learning for parameter estimation in Bayesian

networks. Advances in Neural Information Processing Systems 13 (pp. 647–653).

Tong, S., & Koller, D. (2001b). Active learning for structure in Bayesian networks. Pro-

ceedings of the Seventeenth International Joint Conference on Artificial Intelligence (pp.

863–869).

BIBLIOGRAPHY 179

Tong, S., & Koller, D. (2001c). Support vector machine active learning with applications

to text classification. Journal of Machine Learning Research, To appear.

Vapnik, V. (1982). Estimation of dependences based on empirical data. Springer Verlag.

Vapnik, V. (1995). The nature of statistical learning theory. Springer, New York.

Vapnik, V. (1998). Statistical learning theory. Wiley.

Wald, A. (1950). Statistical decision functions. Wiley, New York.

Wang, J., Li, J., & Wiederhold, G. (2000). Simplicity: Semantics-sensitive integrated

matching for picture libraries. ACM Multimedia Conference.

Wu, L., Faloutsos, C., Sycara, K., & Payne, T. R. (2000). Falcon: Feedback adaptive loop

for content-based retrieval. The 26th VLDB Conference.

Yang, Y., & Pedersen, J. (1997). A comparative study on feature selection in text catego-

rization. Proceedings of the Fourteenth International Conference on Machine Learning.

Morgan Kaufmann.

Yedidia, J., Freeman, W., & Weiss, Y. (2001). Generalized belief propagation. Advances

in Neural Information Processing Systems 13.

Zhang, N. L., & Poole, D. (1994). A simple approach to Bayesian network computations.

Proceedings of the Tenth Canadian Conference on Artificial Intelligence (pp. 171–178).

Index

active learning, 4

general approach, 7

interventional, 5, 99, 122

parameter estimation, 97

pool-based, 5, 16, 24

selective, 5, 98

structure learning, 122

support vector machine, 24

bag-of-words, 36

Bayes point machine, 147

Bayesian

point estimation, 94

prediction, 92

Bayesian network, 65

causal model, 70

intervention, 70

mutilated, 72

chain rule, 68

conditional probability distribution, 67

multinomial, 70

consistent with, 68

D-separation, 69

graph, see Bayesian network, struc-

ture

I-Map, 68

inference, see inference

Markov equivalence, 69, 115

object oriented, 154

parameter estimation, see parameter

estimation

structure, 67

structure learning, see structure learn-

ing

Bayesian parameter estimation, see pa-

rameter estimation, Bayesian

BDe prior, 92

belief network, see Bayesian network

candidate parents, 126

causal discovery, see structure learning

causal markov assumption, 115

causal model, see Bayesian network, causal

model

chain rule, 68

classification, 13

binary, 17

induction, 14

multiclass, see multiclass

transduction, 15, 19, 42

classifier, 13

cluster tree, see inference, join tree

180

INDEX 181

color, 50

elongation, 50

histogram, 50

mean, 50

spreadness, 50

variance, 50

conditional probability distribution, 67

multinomial, 70

conditionally independent, 67

confounded, 115

conjugate prior, 90

consistency, 107, 135

constant modulus, 19, 30

convex optimization, 19

Corel photographs, 52

culture colors, 50

D-optimality, 125

D-separation, 69

decision theory, 6, 150

directed acyclic graphical model, see Bayesian

network

Dirichlet, 90

duality, 22

dynamic Bayesian network, 152

dynamic programming, 76

edge entropy, 125

EM, 46

email filtering, 16

entropy, 102, 125

expectation maximization, 46

experimental, see interventional

exploration/exploitation trade-off, 11

factor, see inference, factor

faithfulness assumption, 115

feature space, 18

duality, 22

fixed ordering, 127

function optimization, 10

graphical model, see Bayesian network

hidden variables, 150Hybrid method, 30

hyperplane, 17

hypersphere, 23

I-Map, 68

image characterization, 49

image retrieval, 47

query concept, 48

induction, 14

inference, 73

approximate, 85

factor, 75

join tree, 80

complexity, 82

downward pass, 82

root node, 81

upward pass, 82

variable elimination, 73

complexity, 77

conditional queries, 78

INDEX 182

evidence, 78

ordering, 77

input space, 19

interventional, 5, 70, 99

join tree, see inference, join tree

junction tree, see inference, join tree

kernel, 18

polynomial, 18

radial basis function, 19

KL divergence, 95, 102

learning

active, 4

passive, 3

supervised, 2

unsupervised, 3

log loss, 95

loss

model, 6, 24

expected, 6, 124

minimax, 7, 26, 32

parameter, 94

KL divergence, 95

log loss, 95

squared error loss, 95

margin, 17

Markov decision process, 150

Markov equivalence, 69, 115

maximum likelihood, see parameter esti-

mation, maximum likelihood

MaxMin method, 29MaxRatio method, 30

MCMC, 133, 151

MDP, 150

Mercer kernel, 18

missing data, 150

model, 6

building, 3

loss, see loss, model

expected, 101

quality, see loss, model

Monte Carlo, 133, 147, 151

multiclass, 31, 59

mutually exclusive, 31

one-vs-all, 31

overlapping, 31

multinomial, 70

mutilated, 72

mutual information, 126

mutually exclusive, 31

myopia, 6, 150

naive Bayes, 9, 46Newsgroups, 43

non-overlapping, 31

one-vs-all, 31

optimal control, 153

optimal experimental design, 10, 125

optimal stopping, 29, 150

PAC-Bayesian, 147

parameter

INDEX 183

independence, 90, 117

loss, see loss, parameter

modularity, 117

updating, 99

parameter estimation, 3, 86

active learning, 97

complexity, 106

consistency, 107

Bayesian, 89

conjugate prior, 90

Dirichlet, 90

parameter independence, 90

point estimation, 94

prediction, 92

maximum likelihood, 87

parameter space, 22

duality, 22

passive learning, 3

pool-based, 5, 16

precision, 39

precision/recall breakeven point, 39

probabilistic relational model, 154

quality, see loss

query, 5

interventional, 70, 99

selective, 98

query by committee, 9, 46

query concept, 48

query refinement scheme, 48

querying component, 5

Bayesian network

parameter estimation, 99, 106

structure learning, 123

databases

query expansion, 58

query point movement, 58

query reweighting, 58

support vector machine, 24Hybrid, 30MaxMin, 29MaxRatio, 30

multiple simultaneous, 49Simple, 28

recall, 39

regression, 10

reinforcement learning, 11, 153

relevance feedback, 16, 48Reuters newswire, 37

risk, 94

expected posterior, 101

of a distribution, 95

of a node, 103

selective, 5, 98Simple method, 28

squared error loss, 95

stemming, 37

stop words, 36

structure estimation

candidate parents, 126

structure learning, 3, 114

active learning

INDEX 184

complexity, 135

consistency, 135

fixed ordering, 127

parameter independence, 117

parameter modularity, 117

structure modularity, 116

unrestricted ordering, 130

updating, 119

with interventional data, 123

structure modularity, 116

supervised learning, 2

support vector, 17

support vector machine, 17

active learning, 24

complexity, 19, 20

convex optimization, 19

duality, 22

hyperplane, 17

hypersphere, 23

incremental updating, 148

inductive, 17

margin, 17

model, 24

model loss, 24, 32

multiclass, see multiclass

querying function, 24

radius, 23

soft margin, 19

threshold, 18

transductive, 19, 42

test

phase, 14

set, 15

text classification, 36

bag-of-words, 36Newsgroups, 43

precision/recall breakeven point, 39Reuters, 37

stemming, 37

stop words, 36

texture, 51

wavelet, 51

TFIDF, 37

training

phase, 14

set, 14

transduction, 15, 19, 42

troubleshooting, 11

uncertainty sampling, 9, 60

unlabeled data, 3, 15, 16, 24

unrestricted ordering, 130

unsupervised learning, 3

value of information, 11, 153

variable elimination, 73

version space, 20

area, 24

wavelet, 51

web searching, 16

Winnow, 9, 47

