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ABSTRACT: 

 

Training dataset generation is a difficult and expensive task for LiDAR point classification, especially in the case of large area 

classification. We present a method to automatically extent a small set of training data by label propagation processing. The class labels 

could be correctly extended to their optimal neighbourhood, and the most informative points are selected and added into the training 

set. With the final extended training dataset, the overall (OA) classification could be increased by about 2%. We also show that this 

approach is stable regardless of the number of initial training points, and achieve better improvements especially stating with an 

extremely small initial training set. 

 

 

1. INTRODUCTION 

LiDAR (Light Detection And Ranging) automatic classification 

has been an important study topic over years. Supervised 

statistical approaches, such as Support Vector Machines (SVM) 

(Secord and Zakhor, 2007) or Random Forest (Guo et al., 2011) 

have been widely applied and achieved good performance. 

Additionally, to incorporate the spatial contextual information, 

Markov Random Field (MRF) and Conditional Random Field 

(CRF) are successfully used for contextual classification and 

achieve smoother results than the classifications based on 

individual independent features (Niemeyer et al., 2014; 

Shapovalov et al., 2010). This research mostly focuses on site-

specific classification for 3D points at a small scale. Only few 

papers were published on large area LiDAR classification. 

 

Extensive 3D point clouds over large area would result in 

handcrafted features inhomogeneity, making automated points 

cloud classification difficult. This would bring further challenges 

for class separability when only small training data is available. 

Especially, supervised classifiers rely on the quality of the 

labeled training data. The training samples should be fully 

representatives of the class-type statistics to allow the classifier 

to find the correct solution. In the case of large area classification, 

this constraint makes the generation of an appropriate training set 

a difficult and expensive task that requires extensive manual 

interaction.  This is a common problem for classification of large 

amounts of data, and only a small amount of reference points can 

be manual labelled due to the limited economical and temporal 

resources. Therefore, the classification model constructed on the 

collected small training data could show poor generalization 

capabilities when applied to the rest of large amount of data.  

Additionally, manual training set definition is usually done by 

visual inspection of the scene and the successive labeling of each 

sample. This phase is highly redundant as well as time-

consuming. 

 

A solution to the problem of training data extraction is 

represented by semi-automatic active learning methods. Its key 
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idea is to select the samples whose inclusion in the training set 

would be beneficial to the classification performance. And the 

semi-automatic active learning already has shown to be effective 

for hyperspectral image classification. For instance, a 

combination of the SVM classifier is commonly used (Mitra et 

al., 2004; Tan et al., 2014), samples that are close to the hype-

plane are selected into the training dataset. In order to be adaptive 

with any generative classifier, the maximum information gain 

(Rajan et al., 2008) and breaking tie (Luo et al., 2005) can also 

be used to select uncertain samples. A co-training approach 

proposed by (Romaszewski et al., 2016) scored samples by 

combining spatial and spectral features, an optimal training set 

would be learned by iteratively adding new samples with high 

scores. 

 

In this paper, we aim to extend a small set of initial labelled 

samples during a process of label propagation. By adapting an 

optimal neighborhood selection, the knowledge about class 

labels from the training set can be correctly extended to their 

neighborhood. And one most informative point is selected by BT 

(breaking tie) and added into the training set. In this way, we 

extent the training dataset, and automatically label the newly 

added samples.  Compared with original small training set, the 

new extended training set could be more representative for 

features and capable to improve the classification results.  

 

The rest of the paper is organized as follows: Section 2 explains 

our method. Section 3 presents the experiment on real data and 

its results, while Section 4 describes the performance along 

iteration and the impact of the number of initial training points. 

Summaries are provided in Section 5. 

 

2. METHODOLOGY 

Normally, the active learning approach consists of two 

components. The first is the selection of the most useful 

unlabelled samples to the classifier, and the second is how to 

determine the class labels of these new selected samples. In this 

paper, we start with a small set of suboptimal training points. The 
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breaking ties (BT) method (Luo et al., 2005) is applied to sample 

the informative unlabelled points. And the label of selected 

unlabelled point is determined by the spatial similarity. Since the 

class label is highly correlated with spatial similarity of points, 

we could assume that points located in the same neighbourhood 

are likely to have the same label with the center point. After 

adding those informative samples to the training dataset, the 

classification model is forced to focus on conflicting areas and to 

improve its generalization capabilities. The processing sequence 

is as follows: 

 

Step 1: Based on the initial small training dataset, an initial 

classifier is built; 

Step 2: For each training point, finding its’ optimal 

neighbouring points; 

Step 3: The classifier is applied to those neighbouring points, 

and one most informative point is selected by the minimal BT 

value and labelled by the current training point. 

Step 4: Extending training dataset by adding new samples, and 

updating the classifier; 

Step 5: Repeating step 2,3,4, until a maximum iteration number 

is met. Then, the final training set is used to refine the classifier; 

Step 6: Finally, the classifier is used to predict labels for all 

unlabelled points. 

 

The following section 2.1 describe the estimation of the optimal 

neighborhood, and section 2.2 induces the breaking ties 

 

2.1 Label propagation by the optimal neighbourhood 

By taking the advantage of spatial correlation of point cloud, the 

knowledge about class labels of training points can be extended 

to their neighborhood. To guarantee the accuracy of label 

propagation, an optimal neighborhood estimation method is 

applied (Li et al., 2019). The  neighboring points are adaptively 

selected by weighted geometric similarity, so that all neighboring 

points that potentially belong to the same object with the 

concerned points could be included. 

 

Here, the geometric similarity is measured by the angle between 

the normal vectors and point-to-plane orthogonal distances, 

while the weights are determined by the local surface variations 

(σ). To avoid lacking enough neighboring points for non-planar 

points, like vegetation, we assign larger weights to those non-

planar points to increase the geometric similarity with neighbors. 

The weight function is defined in Eq. (1), and neighboring points 

that satisfy Eq. (2) are collected as the optimal neighbors of the 

concerned point: 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0,𝑝𝑝𝑖𝑖) = � 1 𝑊𝑊𝑖𝑖 𝜎𝜎(𝑝𝑝0) ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎𝑊𝑊𝜎𝜎(𝑝𝑝0) ∙ 𝑊𝑊𝜎𝜎(𝑝𝑝𝑖𝑖) 𝑊𝑊𝑒𝑒𝑒𝑒𝑊𝑊 𝜎𝜎(𝑝𝑝0) > 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎 (1) 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0,𝑝𝑝𝑖𝑖) ∙ 𝑛𝑛𝑛𝑛𝑝𝑝0 ∙ 𝑛𝑛𝑛𝑛𝑝𝑝𝑖𝑖 ≥ cos(𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼) 𝑎𝑎𝑛𝑛𝑎𝑎 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0,𝑝𝑝𝑖𝑖) ∙ �(𝑝𝑝0 − 𝑝𝑝𝑖𝑖) ∙ 𝑛𝑛𝑛𝑛𝑝𝑝0� ≤  𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 
(2) 

 

Where 𝜎𝜎(𝑝𝑝0) is the local surface variation in the point 𝑝𝑝0. 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎 

is a threshold to determine whether 𝑝𝑝0 may belong to a planar 

object. 𝑛𝑛𝑛𝑛𝑝𝑝  denotes the normal vector of point 𝑝𝑝  and 𝑝𝑝 =

[𝑥𝑥𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝] denotes the 3D coordinates of point 𝑝𝑝. 𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼 is the 

threshold of the normal vector-angle change and 𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑  is the 

threshold of the local point-to-plane orthogonal distance. 

  

2.2 Sample selection by BT 

The BT technique is focused on the diversity of the unlabeled 

samples, which is obtained by the minimum difference between 

the two highest posterior class probabilities. The more a point 

shows a similar posterior probability between the two most 

probable classes, the more it is uncertain and thus capable of 

providing useful information if added to the training dataset (Tuia 

et al., 2011). Thus the BT value of point 𝑝𝑝𝑖𝑖 is formed by Eq.(3): 

 

BT(𝑝𝑝𝑖𝑖) = max𝑐𝑐∈𝐶𝐶 �𝑃𝑃(𝑒𝑒𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖)� − max𝑐𝑐∈𝐶𝐶\𝑐𝑐+�𝑃𝑃(𝑒𝑒𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖)� (3) 

Where 𝑃𝑃(𝑒𝑒𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖) probability for class prediction 𝑒𝑒𝑊𝑊 of a point 𝑝𝑝𝑖𝑖, 𝑐𝑐 ∈ 𝐶𝐶 corresponds to one class 𝑐𝑐 among the 𝐶𝐶 possible 

classes, and 𝑐𝑐+ = max𝑐𝑐∈𝐶𝐶 �𝑃𝑃�𝑒𝑒𝑊𝑊 = 𝑐𝑐�𝑝𝑝𝑊𝑊�� is the most probable 

class for point 𝑝𝑝𝑖𝑖. 
 

After finding all optimal neighboring points for one training 

point, the point minimizing Eq.(3) is then taken and labeled by 

the current, certain training point. The procedure is implemented 

for all training points and repeated for several times, the final 

selected labeled training points are used to refine the classifier. 

 

3. RESULTS 

3.1 Datasets 

The point cloud we used was a fully labelled airborne LiDAR 

dataset of Vienna, Austria. The selected area is 1270×200 m2, 

and the average density is about 50 points/m2. This area 

represents a complex urban scene, including a mixture of high 

and low vegetation, high-rise and small detached houses, and flat 

and sloped ground. Five domain classes were categorized for the 

Vienna dataset: ground, vegetation, roofs, façades and others that 

include fences, cars, street lights, power lines and so on.  

To get an impression of the dataset, the percentage distribution 

of each class in the dataset are shown in Table. 1. 

 

Class Percentage 

Ground 53.70% 

Vegetation 26.72% 

Roofs 14.04% 

Facades 1.54% 

Others 4.00% 

Table 1. Percentage distribution of each class in the dataset 

 

3.2 Experiment setup and results 

We used the random forest (RF) as the probabilistic classifier. 

For the optimal neighbourhood estimation, the spherical 

neighbourhood with radius of 2m was used for initial 

neighbouring points searching. Then the optimal neighbouring 

samples are selected by weighted geometric similarity and 

labelled by its neighbouring labelled training point. The initial 

number of training points is 100 per class, and the iteration was 

empirically set as 3 to extend the training data. 

 

Figure. 1 shows the classification results using initial training 

dataset, extended training dataset and the reference dataset. From 

visual inspection, a more smooth classification result is achieved 

after training dataset extension. For instance, as shown in the 

marked area A in Figure. 2, more points are correctly classified 

as ground after the active learning, whereas those points are 

wrongly labelled as others in the initial training dataset. Another 

notable change appears in the marked area B in Figure. 2. There 

is a large amount of points misclassified as vegetation by the 

initial classification. After the active learning, most of those 

points’ labels are changed into façades, this situation could be 

explained by a small error in the reference data (seen in the 

Figure. 2(c)). 
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From the Table. 2, the OA (overall) accuracy was increased by 

1.7% after the active learning of training points. A relatively 

significant improvement was achieved for the class of vegetation 

and others, 4.00% and 3.37%, respectively. However, the 

accuracy of façade has dropped to 74.14% using the extended 

training dataset. 13.36% façade points are misclassified as 

vegetation which is 6.31% higher than the initial classification, 

and a few of façade points (2.41%) are misclassified as roofs 

since they are easily mixed up over the conjunctions of roofs and 

façades.  

 

 

Class Initial 

accuracy 

Accuracy 

after active learning 

OA 84.24% 85.98% 

Ground 88.60% 89.35% 

Vegetation 79.74% 83.73% 

Roofs 81.82% 84.85% 

Façades 84.59% 74.14% 

Others 64.06% 67.37% 

Table 2. Accuracy comparison of classification using initial 

training set and extended training set 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 1. The classification results. (a) using the initial training dataset; (b) using the extended training dataset; (c) the reference 

labelled data.    

 

   

(a) (b) (c) 

 
Figure 2. Detailed comparison of classification results. (a) using the initial training dataset; (b) using the extended training dataset; 

(c) the reference labelled data. 

 

 

4. DISCUSSIONS 

To access the stability of this active training data learning 

method, we started with different amounts of training dataset, 

which includes 10,100 and 1000 initial training points per class, 

respectively. Each experiment was repeated 3 times. The 

accuracy changes along the iterations are shown in Figure. 3, 

which are the average accuracy and its standard deviation over 3 

experiments.  

 

Compared to the initial classification results, the OA accuracies 

were all increased after the active learning (seen in Figure. 3(a)). 

Notably, the significant overall accuracy improvement was 

achieved by the smallest set of initial training data of 10 samples 

per class. It gained 5% higher OA accuracy than initial 

classification, while 2.4% and 1.5% OA increase for initial 

training points of 100 and 1000 per class, respectively. The 

representativeness of the extremely small training set is usually 

lacking strongly, thus the effect of adding new informative 

samples would be notable when it was started with a poor initial 
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classification result. While the models trained by 100 and 1000 

samples per class are already decent, the improvement would 

become moderate when the amount of the initial training set is 

raised. Also due to the incompleteness of small initial training set 

of 10, the variation is relatively larger than the other two initial 

training sets. 

 

We also observed that the accuracy would be immediately 

improved by extending the training data in the 1st iteration, and 

the accuracy only has slight changes over iterations besides the 

accuracy of façade. It means that the samples that are selected 

during the first extension are the most informative and could be 

effective to increase classification ability, whereas other samples 

from the rest of iterations may have very similar feature vectors 

with samples that already exist in the training set. Therefore, they 

could not provide more useful information to achieve better 

accuracy. This is caused by the local neighbourhood we used for 

label propagation. However, the trend of accuracy change of 

façade is different from the others. Façade points tend to be 

misclassified into vegetation during this active learning 

procedure. Since generally the optimal neighbourhood favours 

points that are located in the same plane, vegetation points that 

lie in the same vertical plane would have similar feature vectors 

with the vertical façade points. Iteratively including those 

vegetation points into training dataset would lead to the 

confusion with façade. 

 

Another interesting finding is that the performance of active 

learning would be fundamentally impacted by the initial amount 

of training samples. The accuracy with 100 initial training points 

per class reached 84.5% after 6 iterations, meanwhile the total 

number of training points per class is 1600. This result is still not 

as good as the initial classification accuracy using random 1000 

training samples at first. But it is comparable to the classification 

by initial training samples of 300 per class (84.04%). 

 

  
(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 3. The trend of accuracy changes over iterations. (a) overall accuracy; (b) ground accuracy; (c) vegetation accuracy; (d) roofs 

accuracy; (e) façades accuracy; (f) others accuracy. 
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5. SUMMARY 

We proposed an effective active learning method to 

automatically extend training points. Classification accuracy was 

increased by using the extended training dataset, which was 

significant especially starting with an extremely small set of 10 

labelled points per class. An optimal training dataset would be 

achieved by a few of iterations. The reasonable amount of 

training samples also keep the classifier learning efficient. Due 

to the limitation of initial training sample, an exploration for 

initial samples selection will be considered in the further 

research. 
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