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Abstract. In learning to classify streaming data, obtaining the true la-
bels may require major effort and may incur excessive cost. Active learn-
ing focuses on learning an accurate model with as few labels as possible.
Streaming data poses additional challenges for active learning, since the
data distribution may change over time (concept drift) and classifiers
need to adapt. Conventional active learning strategies concentrate on
querying the most uncertain instances, which are typically concentrated
around the decision boundary. If changes do not occur close to the bound-
ary, they will be missed and classifiers will fail to adapt. In this paper we
develop two active learning strategies for streaming data that explicitly
handle concept drift. They are based on uncertainty, dynamic allocation
of labeling efforts over time and randomization of the search space. We
empirically demonstrate that these strategies react well to changes that
can occur anywhere in the instance space and unexpectedly.

1 Introduction

Supervised learning models the relationship between the observed variables of
an instance and the target variable (label). To build a predictor we need to
know the true labels of the training data. Often unlabeled data is abundant
but labeling is expensive. Labels can be costly to obtain due to required human
input (labor cost). Consider, for example, textual news arriving as a stream. The
goal is to predict if a news item will be interesting to a given user at a given
time. The interests of the user may change. To obtain training data the historical
news needs to be read and labeled as interesting or not interesting. This requires
human labor. For instance, Amazon Mechanical Turk1 provides a marketplace
for intelligent human labeling. Labeling can also be costly due to a required
expensive, intrusive or destructive laboratory test. Consider a production process
in a chemical plant where the goal is to predict the quality of production output.
The relationship between input and output quality might change over time due to
constant manual tuning, complementary ingredients or replacement of physical
sensors. In order to know the quality of the output (the true label) a laboratory
test needs to be performed which is costly. Under such conditions it may be
unreasonable to require true labels for all incoming instances.
1 https://www.mturk.com
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Active learning studies how to label selectively instead of asking for all true
labels. It has been extensively studied in pool-based [14] and online settings [6].
In pool-based settings the decision concerning which instances to label is made
from all historical data. In this paper we explore active learning in data stream
settings, where this decision needs to be made immediately for every incoming
instance, as there is no re-access to it. The main difference between online active
learning and active learning in data streams is in expectations around changes.
Online active learning typically fixes a threshold (e.g. an uncertainty threshold)
and asks for the true label if the threshold is exceeded. In data streams the re-
lationship between the input data and the label may change (concept drift) and
these changes can happen anywhere in the instance space. Thus, existing active
learning strategies may never query instances from some regions and thus may
never know that changes are happening and therefore never adapt. Moreover,
in data streams we cannot keep the decision threshold or a region of uncer-
tainty fixed, as eventually the system would stop learning and fail to react to
changes. Finally, active learning with data streams must preserve the incoming
data distribution to the extent that changes could be detected as they happen.

We study active learning strategies specifically for data streams. In brief, the
setting is as follows. Data arrives in a stream, and predictions need to be made
in real time. Concept drift is expected, thus learning needs to be adaptive. The
true label can be requested immediately or never, as the instances are regularly
discarded from memory. Our goal is to maximize prediction accuracy over time,
while keeping the labeling costs fixed within an allocated budget. After scanning
an instance and outputting the prediction for it, we need a strategy to decide,
whether or not to query for the true label so that our model could train itself
with this new instance. Regular retraining is needed due to changes in data
distribution. Active learning strategies in data streams in addition to being able
to learn an accurate classifier in stationary situations, need to be able to

– balance the labeling budget over time;

– notice changes happening anywhere in the instance space;

– preserve the distribution of the incoming data for detecting changes;

In this paper we develop two such strategies, assuming that the adaptive learn-
ing technique is externally given. Experimental evaluation on real data streams
demonstrates that the proposed approaches effectively handle concept drift while
saving labeling costs as we do not need to label every instance. To the best of
our knowledge this study is the first to address active learning for instance-
incremental streaming data (we preclude methods that learn from a stream in
batches) where historical data cannot be stored in memory.

The paper is organized as follows. Section 2 discusses related work. Section
3 presents our active learning strategies for data streams. In Section 4 we ana-
lytically investigate the properties of the proposed strategies. Section 5 presents
experimental evaluation with real streaming data. Section 6 concludes the study.
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2 Related Work

Online active learning has been a subject of a number of studies, where the
data distribution is assumed to be static [2, 6, 10, 19]. As discussed in the
introduction, static online active learning is not designed to handle changes. As
we will demonstrate in our analysis and experiments, existing strategies are able
to handle drifts if changes happen to be gradual and close to the current decision
boundary; however, the reaction to change might be slow. When changes happen
far from the decision boundary, such methods fail completely. Those situations
require advanced strategies, we develop several such strategies in this study.

The problem of label availability in data streams with concept drift has been
acknowledged in several recent works [11, 13, 21, 22]. Most convert a stationary
active learning or a semi-supervised learning method to an online setting by
partitioning a stream into batches and applying stationary strategies within
each batch. These works differ from our study in two major aspects. First, their
strategies require to inspect a batch of instances at a time, thus they need to
assume that limited re-access to data is possible. In contrast, our stream setting
requires to make labeling decisions online at the time of scanning each instance.

Moreover, the existing active learning or semi-supervised learning strategies
only complement concept drift handling strategies, they are not tailored to han-
dle concept drift directly. It is assumed, that the data within a batch is stationary
and the goal is to train an accurate classifier, while minimizing labeling costs.
Adaptation and drift detection is separate. Thus, these techniques help to learn
an accurate current model with fewer labels, but they are not designed to adapt
to changes faster or with fewer labels. If changes happen far from the decision
boundary, they are likely to be missed. In contrast, we tailor active learning to
handle concept drift directly online and search the instance space explicitly.

Parts of some of the literature are conceptually related to our approach. We
highlight these in the remaining part of this section.

The first group uses active learning strategies [16, 17, 24] with batches. Zhu
et al. [24] build a classifier on a small portion of data within a batch at random
and use uncertainty sampling to label more instances within this batch. A new
classifier in each batch is needed to take into account concept drift. Similarly,
Masud et al. [17] use uncertainty sampling within a batch to request labels. In
addition, they use the unlabeled instances with their predicted labels for training.
Lindstrom et al. [16] use uncertainty sampling to label the most representative
instances within each new batch. They do not explicitly detect changes, instead
they use a sliding window approach, which discards the oldest instances. In
summary, these approaches apply static active learning to batches, which is not
possible in data streams where historical instances cannot be stored in memory.

Note that typically (a real) concept drift refers to changes in the posterior dis-
tributions of data p(y|X), where X contains the observed variables and y is the
corresponding target variable. In other words, real concept drift means that the
unlabeled data distribution does not change, only the class conditional distribu-
tions change. In contrast, data evolution refers to changes in the unconditional
distribution of data p(X).
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A few works integrate active learning and change detection [7, 11] in the
sense that they first detect change and only if change is detected do they ask for
representative true labels. However, only a change in p(X) can be handled this
way. We address real concept drift, which means that p(y|X) changes and these
changes cannot be detected without labels. Thus, these works are not solving the
same problem as our approaches. Additionally, they use pool-based strategies.

Another group of works uses semi-supervised learning approaches to label
some of the unlabeled data automatically [13, 21, 22]. Klinkenberg [13] separates
changes in p(X) from changes in p(y|X) and uses existing semi-supervised tech-
niques to label when p(X) drifts, while a separate non active learning strategy
handles changes in p(y|X). Widyantoro and Yen [21] first verify that a concept
is stable and only then apply semi-supervised techniques for labeling. Woolam et
al. [22] first label some instances within a batch at random and then propagate
those labels to other instances using micro clustering. In both works automated
labeling concerns only the subsets of the learning problem, which are assumed to
be stationary (no real concept drift), which does not correspond to data stream
settings we are addressing, thus they are not directly comparable.

Two related studies [4, 23] address a slightly different problem, they assume
that only a part of the data in a stream is labeled and propose a method to learn
from both labeled and unlabeled data. The problem setting is also different from
that of this paper, as they do not perform active learning (active labeling).

A few works are related to the aspect of variable active learning criterion,
which we introduce as a part of our strategies. Attenberg and Provost [2] in-
troduce active inference as an additional aspect of online active learning. They
maintain a budget per time period in a stream setting, while instead of uncer-
tainty they estimate the utility of labeling an instance, which also takes into
account the expected frequency of seeing a particular instance again. It assumes
a possibility of repeated examples. The labeling threshold is fixed, but it depends
on more than just uncertainty. This work is limited to the stationary setting.

Cesa-Bianchi et al [5] develop an online active learning method for a percep-
tron based on selective sampling using a variable labeling threshold b/(b + |p|),
where b is a parameter and p is the prediction of the perceptron. The threshold
itself is based on certainty expectations, while the labels are queried at ran-
dom. This mechanism could allow adaptation to changes, although they did not
explicitly consider concept drift.

3 Strategies

In this Section we present active learning strategies for data streams. We start
with two basic techniques and discuss their drawbacks. Then we introduce our
strategies in two steps, where each step aims to overcome a challenge posed by
the data stream setting. We start with a formal definition of our setting.
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3.1 Setting

Let Xt be an instance, yt its true label, where t indicates the time when an
instance arrives. X1, X2, . . . , Xt, . . . is then a data stream. The labeling cost is
the same for any instance. We impose a budget B to obtain the true labels,
which is expressed as a fraction of the number of incoming instances. B = 1
means that all arriving instances are labeled, whereas B = 0.2 means that 20%
of the arriving instances are labeled.

Figure 1 shows our framework, that combines active learning strategies with
adaptive learning. In this work we use the change detection technique of [8]:
when the accuracy of the classifier begins to decrease a new classifier is built
and trained with new incoming instances. When a change is detected, the old
classifier is replaced by the new one.

Active Learning Framework

Input: labeling budget B and strategy parameters

1 for each Xt - incoming instance,
2 do if Active Learning Strategy(Xt, B, . . .) = true
3 then request the true label yt of instance Xt

4 train classifier L with (Xt, yt)
5 if Ln exists then train classifier Ln with (Xt, yt)
6 if change warning is signaled
7 then start a new classifier Ln

8 if change is detected
9 then replace classifier L with Ln

Fig. 1. Strategy framework

3.2 Random Strategy

The first (baseline) strategy is naive in the sense that it labels the incoming
instances at random instead of actively deciding which label would be more rel-
evant. For every incoming instance the true label is requested with a probability
B, where B is the budget. See Figure 2 for a formal description.

3.3 Fixed Uncertainty Strategy

Uncertainty sampling is perhaps the simplest and the most common active learn-
ing strategy [20]. The idea is to label the instances for which the current classifier
is the least confident. In an online setting it corresponds to labeling the instances
for which the certainty is below some fixed threshold. A simple way to measure
uncertainty is to use the posterior probability estimates, output by a classifier.
The uncertainty strategy with a fixed threshold is presented in Figure 3.
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Random(Xt, B)

Input: Xt - incoming instance, B -labeling budget.
Output: label ∈ {true, false} indicates whether to request the true label yt.

1 generate a uniform random variable ξt ∈ [0, 1]
2 return ξt < B

Fig. 2. Random strategy

FixedUncertainty(Xt, θ, L)

Input: Xt - incoming instance , θ - labeling threshold, L - trained classifier.
Output: label ∈ {true, false} indicates whether to request the true label yt.

1 ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
2 return PL(ŷt|Xt) < θ

Fig. 3. Fixed uncertainty strategy

3.4 Variable Uncertainty Strategy

One of the challenges with the uncertainty strategy in a streaming data setting is
how to distribute the labeling effort over time. If we use a fixed threshold after
some time a classifier would either exhaust its budget or reach the threshold
certainty. In both cases it will stop learning and thus fail to adapt to changes.

Instead of labeling the instances that are less certain than the threshold we
would like to label the least certain instances within a time interval. Thus we in-
troduce a variable threshold, which adjusts itself depending on the incoming data
to align with the budget. If a classifier becomes more certain (stable situations),
the threshold expands to be able to capture the most uncertain instances. If a
change happens and suddenly a lot of labeling requests appear, then the thresh-
old is contracted to query the most uncertain instances first.

It may seem counter intuitive that we are asking for more labels at certain
situations and fewer labels at changes. In fact, our dynamic threshold assures
that we are asking for the same number of labels in all situations. This is how
we balance the budget as we do not know when or how often changes will be
happening, so we aim to spend the budget uniformly over time.

The uncertainty strategy with a variable threshold is described in Figure 4.

3.5 Uncertainty Strategy with Randomization

The uncertainty strategy always labels the instances that are close to the decision
boundary of the classifier. In data streams changes may happen anywhere in
the instance space. When concept drift happens in labels the classifier will not
notice it without the true labels. In order not to miss concept drift we would
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VariableUncertainty(Xt, L, B, s)

Input: Xt - incoming instance , L trained classifier, B - budget, s - adjusting step.
Output: label ∈ {true, false} indicates whether to request the true label yt.
Starting defaults: total labeling cost u = 0, initial labeling threshold θ = 1.

1 if (u/t < B)
2 then budget is not exceeded,
3 ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
4 if (PL(ŷt|Xt) < θ)
5 then uncertainty below the threshold
6 u = u + 1 labeling costs increase,
7 θ = θ(1 − s) the threshold decreases,
8 return true
9 else certainty is good

10 θ = θ(1 + s) make the uncertainty region wider.
11 return false
12 else budget is exceeded
13 return false

Fig. 4. Uncertainty strategy with a dynamic threshold

VariableRandomizedUncertainty(Xt, L, B, s, δ)

Input: Xt - incoming instance , L trained classifier, B - budget, s - adjusting step,
δ - variance of the threshold randomization.

Output: label ∈ {true, false} indicates whether to request the true label yt.
Starting defaults: total labeling cost u = 0, initial labeling threshold θ = 1.

1 if (u/t < B)
2 then budget is not exceeded,
3 ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
4 θrandomized = θ × η, where η ∈ N (1, δ) is a random multiplier,
5 if (PL(ŷt|Xt) < θrandomized)
6 then uncertainty below the threshold
7 u = u + 1 labeling costs increase,
8 θ = θ(1 − s) the threshold decreases,
9 return true

10 else certainty is good
11 θ = θ(1 + s) make the uncertainty region wider
12 return false
13 else budget is exceeded
14 return false

Fig. 5. Uncertainty strategy with randomization

like, from time to time, to label the instances about which the classifier is very
certain. For that purpose for every instance we randomize the labeling threshold
by multiplying by a normally distributed random variable that follows N (1, δ).
This way we will label the instances that are close to the decision boundary more
often, but occasionally we will also label some distant instances.
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Table 1. Summary of strategies

Controlling Instance space Labeled Data
Budget Coverage Distribution

Random present full iid
Fixed uncertainty no fragment biased
Variable uncertainty handled fragment biased
Randomized uncertainty handled full biased

This strategy trades off labeling some very uncertain instances for labeling
very certain instances, in order not to miss changes. Thus, in stationary situa-
tions this strategy is expected to perform worse than the uncertainty strategy,
but in changing situations it is expected to adapt faster. The uncertainty strategy
with randomization is presented in Figure 5.

Table 1 summarizes the four strategies with respect to the requirements indi-
cated in the introduction. The random strategy satisfies all three requirements.
Randomized uncertainty satisfies budget and coverage, but it produces biased
labeled data. The variable uncertainty satisfies only budget and the fixed uncer-
tainty satisfies none.

4 Analysis of How the Labeling Strategies Learn

In this section we explore the main learning aspects of the strategies: the abil-
ity to notice changes in dynamic situations and to learn accurate classifiers in
stationary situations. In order to demonstrate the behavior of the strategies in
controlled settings we employ synthetic data in 2D. The data is distributed uni-
formly at random in a square, the distribution p(X) does not change over time,
p(y|X) changes. This data represents a binary classification problem. The initial
decision boundary is set at x1 = x2, as illustrated in Figure 6 (left).

Figure 7 shows how the strategies work on the hyperplane problem. The in-
stances that would be labeled by different strategies are visualized. Each strat-
egy labels the same number of instances. The random strategy labels uniformly
from the instance space, while the uncertainty strategy concentrates around the
decision boundary. The randomized uncertainty infuses randomization into the
uncertainty sampling to cover the full instance space.

change

change

original close change remote change

Fig. 6. Data with changes close and far
from the decision boundary

random fixed unc. rand. unc.

Fig. 7. 20% of the true labels queried
with different labeling strategies
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4.1 Ability to Learn Changes

Let us look at how concept drift is handled by our strategies. We investigate
two situations: a change happening close to the decision boundary, and a re-
mote change. Figure 6 (center and right) presents in black the regions in the
instance space that are affected by a change. The center plot illustrates a change
that happens close to the decision boundary. The right plot illustrates a remote
change. In both examples the number of instances that change is the same.

We analyze how well our strategies would notice those changes. Figure 8 (left
and center) plots the proportion of the changed (black) instances queried by each
strategy. The plots can be interpreted as recall of changes, which is computed
as H = qch/Q, where Q is the total number of queried instances and qch is the
number of queried instances that have their labels changed. In this evaluation we
aim to establish a point in time evaluation thus we do not retrain the classifier
after each instance. The fixed uncertainty strategy is omitted, because it does
not have a mechanism to control the labeling budget. Besides, the fixed uncer-
tainty strategy handles the changes in the same way as the variable uncertainty
strategy, only the budget is handled differently.

Comparing the close and the remote change plots we can see, as expected,
that the random strategy performs equally well independently of where changes
occur. On the other hand, the uncertainty strategy is very sensitive to where
changes occur. If changes occur far from the decision boundary, the uncertainty
strategy completely misses them and it will never know that the classifier contin-
ues making mistakes there. However, the uncertainty strategy captures changes
perfectly well if they occur close to the decision boundary, it scores the best of
all (100%). The randomized uncertainty reacts to the close changes worse than
the uncertainty, but it does not miss the remote changes.

4.2 Learning in Stationary Situations

Active learning strategies in data streams need not only handle changes but also
aid the learning to be more accurate. We compare the strategies in terms of
queried uncertainty, assuming that the most informative instances in station-
ary situations lie closest to the decision boundary. Figure 8 (right) plots the
queried uncertainty by each strategy against the labeling budget. The plot can
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Table 2. Summary of the datasets

instances attributes (nominal + numeric) classes labels

Electricity 45312 8 (1+7) 2 original
Cover Type 581012 54 (44+10) 7 original
Airlines 539383 7 (5+2) 2 original

IMDB-E 120919 1000 2 assigned
IMDB-D 120919 1000 2 assigned
Reuters 15564 47236 2 assigned

be interpreted as recall of uncertainty, the higher the better. We measure it as
U = 1 − uq−minu

max u−minu , where uq =
∑

Xqueried p̂(y|X) is the sum of the posterior
probabilities of all the queried instances, minu and max u are the minimum and
the maximum possible uq from our dataset.

The plot confirms that the variable uncertainty always queries the most un-
certain instances, thus it is expected to perform well in stationary situations.
The random strategy recalls the least, except for very small budgets, where the
variable randomized uncertainty strategy recalls even less. This happens because
at small budgets the threshold is very small, therefore nearly all randomization
attempts override the threshold and query further away from the decision bound-
ary than random. The variable randomized uncertainty strategy becomes more
effective as the budget increases. Notice, that the higher the budget, the more
similar the performance, since many of the queried instances overlap.

5 Experimental Evaluation

After analyzing our strategies we empirically evaluate their performance along
with the baselines. We compare five techniques: random (baseline), fixed un-
certainty (baseline), variable uncertainty, variable randomized uncertainty, and
Selective Sampling. Our implementation of Selective Sampling is based on [5],
and uses a variable labeling threshold b/(b+ |p|), where b is a parameter and p is
the prediction of the classifier. The threshold is based on certainty expectations,
the labels are queried at random. As they did not explicitly consider concept
drift, we add change detection to the base classifier to improve its performance.

We evaluate the performance on real streaming classification problems. We
use as default parameters s = 0.01 and δ = 1. All our experiments are performed
using the MOA data stream software suite [3]. MOA is an open source software
framework in Java designed for on-line settings as data streams. We use in our
experiments an evaluation setting based on prequential evaluation: each time we
get an instance, first we test it, and if we decide to pay the cost of its label then
we use it to train the classifier.

5.1 Datasets

We use six classification datasets as presented in Table 2. Electricity data [9] is
a popular benchmark in evaluating streaming classifiers. The task is to predict
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a rise or a fall in electricity price (demand) in New South Wales (Australia),
given recent consumption and prices in the same and neighboring regions. Cover
Type data [1] is also often used as a benchmark for evaluating stream classifiers.
The task is to predict forest cover type from cartographic variables. As the
original coordinates were not available, we ordered the dataset using the elevation
feature. Inspired by [12] we constructed an Airlines dataset2 using the raw data
from US flight control. The task is to predict whether a given flight will be
delayed, given the information of the scheduled departure.

IMDB data originates from the MEKA repository3. The instances are TF-IDF
representations of movie annotations. Originally the data had multiple labels
that represent categories of movies. We construct binary labels in the following
way. At a given time we select categories of interest to an imaginary user, the
movies of that category get a positive label. After some time the interest changes.
We introduce three changes in the data stream (after 25, 50 and 75 thousand
instances). We construct two labelings: for IMDB-E (easy) only one category is
interesting at a time; for IMDB-D (difficult) five related categories are interesting
at a time, for instance: crime, war, documentary, history and biography are
interesting at the same time.

The Reuters data is from [15]. We formed labels from the original categories
of the news articles in the following way. In the first half of the data stream
legal/judicial is considered to be relevant (+). In the second half the share listings
category was considered to be relevant. The categories were selected to make a
large enough positive class (nearly 20% of instances had a positive label).

The first three datasets (prediction datasets) have original labels. We do ex-
pect concept drift, but it is not known with certainty when and if changes take
place. The other three datasets (textual datasets) represent recommendation
tasks with streaming data. Every instance is a document in TF-IDF representa-
tion. We form the labels of interest from the categories of the documents.

5.2 Results on Prediction Datasets

We use Naive Bayes as the base classifier for the three prediction datasets. Fig-
ure 9 plots the accuracy of a given strategy as a function of the labeling budget.
Fixed uncertainty is not included in this figure, since it fails by a large margin. In
the data stream scenario it gives around 50%−60% accuracy, which is equivalent
to predicting that all labels are negative.

Our strategies (variable and randomized uncertainty) outperform the baseline
strategies (random in the plots and the fixed uncertainty not in the plots) and
selective sampling as follows. We observe that the variable uncertainty strategy is
the most accurate on the Airlines data and on a large part of the Electricity data.
In stationary situations or when changes happen close to the decision boundary
we expect the variable uncertainty to perform the best. For the Electricity data
the randomized uncertainty and the selective sampling perform well at small

2 Our dataset is available at http://www.cs.waikato.ac.nz/~abifet/active
3 http://meka.sourceforge.net/

http://www.cs.waikato.ac.nz/~abifet/active
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Fig. 9. Accuracies given a budget on prediction datasets

budgets. That is explainable, as at small budgets variable uncertainty samples
only a few instances that are very close to the decision boundary. In such a
case randomized uncertainty helps to capture changes better. But as soon as the
budget increases, variable uncertainty labels more instances and those include
the changes. All the plots exhibit rising accuracy as the budget increases, which
is to be expected. If there was no upward tendency, then we would conclude that
we have excess data and we should be able to achieve a sufficient accuracy by a
simple random subsampling.

On the forest cover dataset, randomized uncertainty outperforms the other
methods. This learning problem is complex (seven classes), and changes may
not happen sufficiently close to the decision boundary, so randomization based
methods are best. At small budgets, selective sampling performs well, and when
budgets get larger its performance is similar to the random strategy. The variable
uncertainty strategy performs well for Airlines, as apparently the data is not
changing. The dataset covers only one month, which is a short period for changes
to become manifest. Thus randomization of querying strategies does not pay off
in this case. Even though more than the minimum number of labels needed, is
requested, randomized uncertainty still outperforms the baselines (random and
fixed uncertainty). This performance is consistent with our expectations.

5.3 Results on Textual Datasets

For textual datasets we use the Multinomial Naive Bayes classifier [18]. The
classification tasks in these textual datasets are hard and often the results are
close to the majority vote, which would mean no recommendation is given by
a classifier. Therefore we are interested in balanced accuracy of the classifiers,
which is given by the geometric mean GA = (A1 × A2 × . . . Ac)1/c, where Ai

is the testing accuracy on class i and c is the number of classes. Note that the
geometric accuracy of the majority vote classifier would be zero, as accuracy on
the classes other than the majority would be zero. The accuracy of a perfectly
correct classifier would be one. If the accuracies of a classifier are balanced across
the classes, then the geometric accuracy would be equal to the normal accuracy.

Figure 10 presents the geometric accuracies of the three textual datasets.
There are several implications following from these results. First, the strategies
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that use a variable threshold (selective sampling, variable uncertainty, and ran-
domized uncertainty strategy) outperform the fixed threshold strategies (fixed
uncertainty), as expected in the data stream setting. Second, the strategies with
randomization mostly outperform the strategies without randomization, which
suggests that the changes that occur are far from the decision boundaries and
there is a justified need for querying tailored to data streams rather than con-
ventional uncertainty sampling. That supports our strategies. Note that as the
selective sampling strategy is implemented in our experiments using change de-
tection, it shows good performance on these datasets. However, there is always
at least one of the new strategies that outperforms it.

On IMDB-E the random strategy performs the best, while on IMDB-D our
randomized uncertainty is the best. This different performance can be explained
by the nature of the labels. In IMDB-E one category forms the positive label.
These categories do not overlap much, as, for instance, science fiction and sports
may have little in common. Thus, the decision boundary changes completely
and the change occurs far from the decision boundary. Therefore the random
strategy is optimal. That is consistent with our simulation findings. In IMDB-D
five categories make a positive label at a time. With a larger space for positive
labels it is also likely that there is shared vocabulary in the interests before and
after the drift. Thus, the drift happens closer to the decision boundary and thus
our randomized uncertainty strategy performs better than the fully random one,
which is also in line with our reasoning behind the strategies. The randomized
uncertainty strategy performs best on the Reuters data as well, while variable
uncertainty comes second. The changes that are happening may not be that far
from each other, the concepts before and after the drift may be related.

In the textual datasets we know exactly where the concept drift points are.
The progress of the accuracies (prequential) of our strategies and their behavior
around the change points Figures 11 and 12. In this active learning experiment
we use a fixed 20% budget.

From Figure 11 we can clearly see that when more changes happen, the base-
line fixed uncertainty fails to react. The variable uncertainty eventually reacts,
but slowly. That demonstrates the need for labeling across all the instance space.

In Figure 12 we closely inspect the behavior with Reuters data. At the start
of learning (left) the strategies that use randomization (random and randomized
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Fig. 10. Accuracies given a budget on textual drifting datasets
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uncertainty) learn faster. This happens because simple uncertainty strategies
learn a classifier from a few points and this classifier becomes very confident
about its own predictions and does not require to learn further. At the stable
situation (middle) the strategies without randomization perform better than the
strategies with randomization, as expected. There are no changes, thus random-
ization can be seen as a waste of labeling effort. Fixed uncertainty performs well
in stable situations, provided its threshold is set appropriately. At change we see
that the strategies with randomization react faster than expected. We also see
that the fixed uncertainty strategy fails to adapt. The results at change justifies
the need for variable thresholds and randomization of labeling efforts.
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Fig. 11. Progress of accuracies on IMDB drifting datasets
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5.4 Efficiency

These active strategies reduce the time and space needed for learning, as the
classifiers are trained with a smaller number of instances. We can see these active
learning strategies as a way to speed up the training of classifiers: only using
30% or 40 % of the instances we may get only a small decrease on accuracy. For
example, in our experiments, labeling all instances (B = 1), we see an increase of
5% for the Electricity dataset, 12% for the Cover Type dataset and no increase
for the Airlines dataset. On textual data, we obtain an increase of 12% points
on the Reuters data set and no change on the IMDB datasets. These results
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show that these strategies may be a good way to speed up the training process
of classifiers.

We introduced new strategies for active learning tailored to data streams
when concept drift is expected. Different strategies perform best in different
situations. Our recommendation is to use the variable uncertainty strategy if
mild to moderate concept drifts are expected. If significant drifts are expected
then we recommend using randomized uncertainty. In practice we find that drifts
can be captured reliably even though the assumption of i.i.d. data is violated.

6 Conclusion

We proposed active learning strategies for streaming data when changes in the
data distribution are expected. Our strategies are equipped with mechanisms to
control and distribute the labeling budget over time, to balance the labeling for
learning more accurate classifiers and to detect changes.

Experimental results demonstrate that the new techniques are especially effec-
tive when the labeling budget is small. The best performing technique depends
on what changes are expected. Variable uncertainty performs well in many real
cases where the drift is not that strongly expressed. If more significant drift is ex-
pected (as in the textual experiments) then the randomized uncertainty prevails,
since it is able to query over all the instance space.

This work can be considered as the first step in active learning in the data
stream setting. An immediate extension would be to place a grid on the instance
space and maintain individual budgets for each region. In such a case it should
be possible to dynamically redistribute the labeling budget to the regions where
changes are suspected.
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