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Abstract
We extend the traditional active learning framework to el feedback on features in addition
to labeling instances, and we execute a careful study offfaete of feature selection and human
feedback on features in the setting of text categorizati®or experiments on a variety of cate-
gorization tasks indicate that there is significant potdnti improving classifier performance by
feature re-weighting, beyond that achieved via memberghgries alone (traditional active learn-
ing) if we have access to araclethat can point to the important (most predictive) featu@ar
experiments on human subjects indicate that human feediraékature relevance can identify a
sufficient proportion of the most relevant features (ove¥50 our experiments). We find that
on average, labeling a feature takes much less time thafingl®edocument. We devise an al-
gorithm that interleaves labeling features and documehishwsignificantly accelerates standard
active learning in our simulation experiments. Featurdliaek can complement traditional active
learning in applications such as news filtering, e-mailgifasation, and personalization, where the
human teacher can have significant knowledge on the relewafrfeatures.
Keywords: active learning, feature selection, relevance feedbach) feedback, text classifica-
tion

1. Introduction

Automated text categorization has typically been tackled as a supervisethmbaarning problem
(Sebastiani, 2002; Lewis, 1998). The training data should be fairesemtative of the test data
in order to learn a fairly accurate classifier. In document classificati@revbategories can be as
broad asports this means that a large amount of training data would be needed. The trdatang
is often labeled by editors who are paid to do the job. Now consider a soevizgre a user wants
to organize documents on their desktop into categories of their choice.séhenight be willing to
engage in some amount of interaction to train the system, but may be less willingt@$aimuch
data as a paid editor. To build a generic text categorization system thatleatridalmost arbitrary
categories based on an end user’s changing needs and prefefenesample in applications such
as news filtering and e-mail classification, the system should extract anlangieer of features. In

x. This work was done in part when the author was at Yahoo! Research.
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e-mail classification for example, any subset of the features extractedtifre subject, the sender,
and the text in the body of the message could be highly relevant. While algostichsas Winnow
(Littlestone, 1988) and Support Vector Machines (SVMs) (Joachin@3)1&re robust in the pres-
ence of large numbers of features, these algorithms still require a stiklséamount of labeled data
to achieve adequate performance.

Techniques such as active learning (Cohn et al., 1994), semi-sugbte&rning (Zhu, 2005),
and transduction (Joachims, 1999) have been pursued with condédsmabess in reducing labeling
requirements. In the standard active learning paradigm, learning pi®seguentially, with the
learning algorithm actively asking for thabels(categories) of some instances from a teacher (also
referred to as membership queries). The objective is to ask the teacheelttheemost informative
instances in order to reduce labeling costs and accelerate the learningn St categorization
applications in particular, active learning might be perceived to be too glspecially since the
teacher may have much prior knowledge on relevance of features ftaskheSuch knowledge may
be more effectively communicated to the learner than mere labeling of whalendmts. There has
been very little work in supervised learning in which the teacher is queristdmething other than
whole instances.

One possibility is to ask the user questions about features. That usersseful prior knowl-
edge which can be used to access information is evident in information edtidasks. In the infor-
mation retrieval setting, the user issues a query, that is, states a few (featises) indicating her
information need. Thereafter, feedback which may be either at a tertnraci@cument level may
be incorporated. In fact, even in traditional supervised learning, therednay use keyword based
search to locate the initial training instandesHowever, traditional supervised learning tends to
ignore this knowledge of features that the user has, once a set of gamstances have been ob-
tained. In experiments in this paper we study the benefits and costs oEféaddback via humans
on active learning.

We try to find a marriage between approaches to incorporating useragediom machine
learning and information retrieval and show that active learning should thefold process — at
the term-level and at the document-level. We find that people have a godibmfor important
features in text classification tasks, since features are typically wandstha categories to learn
may often be approximated by some disjunction or conjunction of a subset fefdtures. We show
that human knowledge on features can indeed increase active leaffitigney and accelerate
training significantly in the initial stages of learning. This has applications in e¢taskification
and news filtering where the user has knowledge of the relevancetafdeand a willingness to
label some (as few as possible) documents in order to build a system thadtesuitseds.

This paper extends our previous work in employing such a two-tieredaplpto active learning
(Raghavan et al., 2005). We state the active learning problems that wesadzthd present our
approach to use feedback on both features and instances to solvelfens in Section 2. We
give the details of the implementations in Section 3. In Section 4 we describetthardhmetrics
we will use to evaluate the performance of active learning. We obtain & sértee extent of the
improvement possible via feature feedback by defining and using adeatacle. The oracle and
the experiments are described in Section 2, and the results are reportdiimS. In section 6 we
show that humans can indeed identify useful features. Furthermorfinavihat labeling a feature

1. Seehttp://projects.|dc. upenn. edu/ TDT4/ Annot ation/ | abel _i nstructions. htd. The annotators at the
LDC (Linguistic Data Consortium, home-pagéttp://| dc. upenn. edu) use a combination of techniques like
nearest neighbors and creative search to annotate corpora fapteDetection and Tracking (Allan, 2002) task.
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takes one fifth of the time of labeling a document. In Section 6.2 we show thatthariichosen
features significantly accelerate learning in experiments that simulate huetdbafk in an active
learning loop. We discuss related work in Section 7 and conclude in Section 8

Standard Active Learning
Input: T (Total number of feedback iterationg), (Pool of unlabeled instances), irsize (humber

of random feedback iterations)
Output: #1 (Model)

t=1, uo=u; Mg=NULL; Teacher /

1. Whilet < init_size Teye T
a. (X, uy) = InstanceSelectionfio, u;_1, random) ’ \\|
b. Teacher assigns labglto X; I nstance Sel ection X
d. af; = trainclassifier{ (X, Y;)|i = 1...t}, 26;_1) i

c.t++

2. Whilet <T M
a. (X, ut) = InstanceSelection{/t_1, U1, uncertair
b. Teacher assigns labglto X
c. My = trainclassifier{ (X, Yi)|i = 1...t}, M¢_1)
dt+-+

Returnatt

Steps 1,2

Figure 1: Algorithm and block diagram for traditional active learning wehttre system asks for
feedback on instances onlgystem J.

2. Active Learning

For background on the use of machine learning in automated text categoriaa well as active
learning, we refer the reader to the works of Sebastiani (2002) anwis laand Catlett (1994). Ac-
tive learning techniques are sequential learning methods that are dégigeeduce manual training
costs in achieving adequate learning performance. Active learning metthatse costs by request-
ing training feedback selectively and intelligently frorteacher The teacher is a human in the text
categorization domain. The teacher may also be calledgbeespecially when the teacher training
the model is the same as the person using it, for example a user who is trairrepagdized news
filtering system. Traditionally in active learning the teacher is askethbership querieshich are
guestions on the class labels or categories of selected instances (dteimuem case).

The teacher is sometimes referred to as an oracle in the literature (Baunaagdl992). We
will also use the term oracle to refer to a source that gives feedbaclstamaes and/or features, but
in this paper we make a distinction between teacher and oracle. We will eetherverm teacher
or user to refer to a real human, whose feedback may not be perieolyeiuse the term oracle to
refer to a source whose feedback is (close to) perfect for speadtivg learning. See Section 2.1
for a longer discussion of the distinction between the two.
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A typical algorithm for active learning and a block diagram are shown inféid.. Aninstance
X (which is a document in our case) belongs tolass Y. X is represented as a vectar...xy of
features whereN is the total number of features. The features we use for documents &is,wo
bi-grams (adjacent pairs of words) and tri-grams (adjacent triples wfsycsince these have consis-
tently been found to work well for topic classification. The value the number of occurrences
of termi in documeniX. We work on binaryone-versus-restlassification. Therefore the value of
Y for each learning problem of interest is either -1 or 1, signaling whetteeingtance belongs to
the category of interest, or not. An instance in the document collectiomabeledf the algorithm
does not know itdabel (Y value). The active learner may have access to all or a subset of the
unlabeled instances. This subset is calledathbel (denoted byu).

Active Learning Augmented with Feature Feedback

Input: T (Total number of feedback iterationg), (Pool of unlabeled instances), irsize (number
of random feedback iterations)
Output: a1 (Model)

t:1’u0:u'M0:NULL’ t <=init_size ~ >
1. Whilet < init_size 4 N
a(X, i) = InstanceSelection{/o, U;_1,random
b. Teacher assigns labglto X
c. My = trainclassifier{ (X, Y;)|i = 1...t}, Mi_1) ‘
d.t++ et e
2. Whilet <T ' ' |

I nstance Sel ection

Step 1

a. (X, Up)=

InstanceSelectionfs;_1, U1, uncertain
b. Teacher assigns labglto X
c. My = trainclassifier{ (X, Yi)|i = 1...t}, M¢_1)
d.i. {F1,...,F;} = FeatureSelectionf;,uy)

' e
Feature Sel ection

Teacher/
Oacle

|

I nstance Sel ection

Step 2

ii. Teacher selectéF, ...~} C {F4,....Ft}
e. Incorporate-eatureFeedbackd(;, {Fi, ..., F})
c.t++
Returnaf+.

Figure 2: An active learning system where feedback on features iseajsested{ystem 2.

The algorithm begins by training the classifier or mogelon some initial set of labeled in-
stances of sizmit_size The subscripton 4, u, X andY correspond to the value whémstances
have been labeled. The initial set is picked by a random sampling pracéstap 1) fromu. The
parameterandomis passed to it. Sometimes one may use keyword based search or someather pr
cedure in place of random sampling. Next, active learning begins. nieation of active learning
the learner selects an instance frarmusing some criteriong.g, a measure of informativeness) and
asks the teacher to label it (step 2.a). In a popular active learning methtst] ancertainty sam-
pling, the classifier selects the mastcertaininstance (Lewis and Catlett, 1994), for a given model
(M) and a pool of unlabeled instanceas)( The newly labeled instance is added to the set of labeled
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instances and the classifier is retrained (step 2.c). The teacher is qagdtd of T times. The

train_classifiersubroutine uses the labeled data as training, as well as the maddearned in a

previous iteration, allowing for the case of incremental training (DomenaodiGunopulos, 2001)
or the case when the model may be initialized by prior knowledge (Wu andriS20684).

We will also consider the variant in which instances are picked uniformhamatilom in all
iterations, which we caltandom samplingit is equivalent to regular supervised learning on a
random sample of data). In the pseudo-code in Figure 1, random saroptiggponds to the case
wheninit _size> T.

2.1 Our Proposal: Feature Feedback and Instance Feedback in Tareth

In this paper we propose to extend the traditional active learning frarkdvengage the teacher in
providing feedback on features in addition to instances. A realization ofifihésis system 2 shown

in Figure 2, where the active learner not only queries the teacher oricamative document, but
also presents a list df features for the teacher to judge (step 2.d) at each iteration. The simplest
implementation of such a system can consist of one wheteX| (the length of the documeix),

and where the user is simply asked to highlight relevant words or ph¢fesgares) or passages
while reading the document in order to label the document (step 2b), akiretsydiem in the
paper by Croft and Das (1990). In our experiments, individual featare presented to the user for
selection. Section 6.3 provides the details of our method.

In our proposed system the teacher is asked two types of questionsietdpership queries
and (2) questions about the relevance of features. A relevant éeigthiighly likely to help dis-
criminate the positive class from the negative class. In this paper we aimeordee whether a
human teacher can answer the latter type of question sufficiently effigcsivehat active learn-
ing is accelerated significantly. A human and a classifier probably usedifégyent processes to
categorize instances. A human may use her understanding of the sentétige the document,
which probably involves some reasoning and use of knowledge, in trdesike the categorization
decision, while a (statistical) classifier, certainly of the kind that we use in #pemp simply uses
patterns of occurrences of the features (phrases). Therefagat clear whether a human teacher
can considerably accelerate the training of a statistical classifier, beymipie active learning, by
providing feedback on features.

Before we address that issue, we determine whether feature feartbraa&celerate active learn-
ing in an idealized setting. We seek to get a sense of the room for improveWemtill then exam-
ine how actual human teachers can approximate this ideal. Towards thizgoafine a (feature)
oracle We use the oracle to obtain an upper bound on the performance ofapoged two-tiered
approach. The oracle knows the correct answer needed by thanlpaftgorithm. For example the
word ct is a highly relevant feature for classifying Reuters news articles oeadha@ngscategory
and our oracle would be able to determine that this feature is relevant veked.aHowever, a
teacher (human) who did not understand tttastood forcentsmay not be able to identifgt as
relevant (we will see this exact example in Section 6.1). Therefore, #tideoand teacher may
differ in their answers to questions about features, that is, questidgpa{2) above. We assume
that the oracle and the teacher always agree on the labels of documergsgbastions of type (1)
above. After showing the usefulness of oracle feature selection, wthesilshow that humans can
emulate the oracle for feature feedback to an extent that results in sighificgrovements over
traditional active learning.
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2.2 Extent of Speed Up Possible: Oracle Experiments

We perform two types of experiments with the oracle. In the first kind, theler&nowing the
allotted timeT, picks the best subset of features to improve, as much as possibletftireyaace of
active learning. The procedure is shown in Figure 3. In Figure Interporate Feature Feedback
subroutine is called to initialize the model. When System 3 is used with a user in$témdoracle
itis equivalent to a scenario where prior knowledge is used to initialize thsifiex (Schapire et al.,
2002; Wu and Srihari, 2004; Godbole et al., 2004; Jones, 2005)edtidd 3.4 we describe how
this oracle isapproximatedn our experiments.

Use of Feature Feedback Before Active Learning
Input: T (Total number of feedback iterationg), (Pool of unlabeled instances)jt_size(number
of random feedback iterations)

Output: 1 (Model)

t=1;Uo=u; Mog=NULL;
l.a.{F1,...,F;} = FeatureSelection(o)

b. Oracle selectéF1,..,K} C {F4,....,Ft} renenorr | remture sorection { . J
2.IncorporateFeatureFeedbacki/o, {Fu, ..., F}) oagle
3. Whilet < init_size SEE b |

a. (X, ut)=InstanceSelectionfs;_1, u_1,random |

b. Oracle assigns lab¥] to X : T e

c. My = trainclassifier{ (X, Yi)|i = 1...t}, M¢_1) |

dt++ I nstance Sel ection ,__[ M }
4. Whilet <T

Step 3,4

a. (X, uy)=InstanceSelectionf; 1, U;_1,uncertain
b. Oracle assigns lab¥] to X
c. My = trainclassifier{ (X, Yi)|i = 1...t}, M;_1)
d.t++

Returnast

Figure 3: An active learning system where feature selection is donegaegiance selectiorsf/s-
tem 3). This is one of the two set-ups used in our oracle experiments descriBedtion
2.2. The second set-up is shown in Figure 4.

The second type of experiment is a slight variation designed to isolate &ut efforacle feature
selection on example selection versus model selection during active leamthgse experiments,
active learning proceeds normally with all the features available, butadftee instances are picked
(afterT iterations), the best set &ffeatures that improve the resulting trained classifier the most
are picked and the resulting performance is reported. This is showmagthbally and with pseudo-
code in Figure 4. We note that even when starting with the same initial set dédaimstances,
the classifiers learned during active learning, hyperplanes in our itatieese two systems may
be different as they are learned in different spaces (using difféeature subset sizes). Besides,
the set of labeled instances is small, so the learning algorithm may not be alhel thdi best
“unique” hyperplane. In turn, the instances picked subsequentlygladtive learning may differ
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substantially as both the spaces the instances reside in and the learniéiérdasay be different.
The classifier learned in the feature reduced space may have bettex@ooulead to better choice
of instances to label during active learning, though this is not guaramiettte benefits may be
negligible. In short, the trajectory of the active learning process, th#tiesnstances labeled and
classifiers learned, can be different in the two regimes, which may leacdstasuially different
active learning performance. In Section 5 we provide the details of tixpssiments.

Systems 3 and 4 can also be used with a teacher (a human) instead oflan leoa@an actual
use in practice, we prefer an approach that combines feature selentiognséance selectiore(g,
as proposed in Section 2.1) because it also allows the system to benafithieancrease in the
knowledge of the teacher or the process may help remind the teachetl@oséfulness of features
as she reads the documents. For example, the teacher who did not khotstbad forcentsmay
realize that the word is indeed relevant upon reading documents conttiriterm. We will discuss
these related approaches in Section 7.

Use of Feature Feedback After Active Learning

Input: T (Total number of feedback iterationg), (Pool of unlabeled instances, irize (number
of random feedback iterations)
Output: a1 (Model)

t=1, uo=u; Myg=NULL;

1. Whilet < init_size
a. X = InstanceSelectionf/o, u;_1,random )
b. Oracle assigns lab¥] to X; Teacher | Instance Selection { M }
c. My = trainclassifier{ (X, Yi)|i = 1...t}, M¢_1)
c.t++

2. Whilet <T
a. (X, Uy) = InstanceSelectionf/;_1, Ut_1,instance
b. Oracle assigns lab¥] to X;
c. My = trainclassifier{ (X, Yi)|i = 1...t}, M¢_1) Feature Sel ection ﬁ[ . J
dt++ Step 4,5

3. a.{F1,...,F¢} = FeatureSelectionf/T, ur)
b. Oracle select§F1,.., K} C {F4,....,Ft}

4. IncorporateFeatureFeedbacktsr, {F,...,F})

Step 1,2

- — - =

Returnaft

Figure 4: An active learning system where feature selection is donerestance selectiorsystem
4). This is one of the two set-ups used in our oracle experiments descriBedtion 2.2.
The first set-up is shown in Figure 3.
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3. Implementation

In this section we give implementation details for our experiments. While ouoappiis applicable
to a variety of machine learning algorithms and feature selection approaohegs/e the details of
our implementation. We use Support Vector Machines (SVMs) as the machimedeclassifier,
uncertainty sampling as our approach to active learning and informatioagtie feature selection
technique. We also give details on how we construct the approximatedeaaaie.

3.1 Classifier: Support Vector Machines

We use support vector machines (SVMs) in our experiments (the modsla Support Vector Ma-
chine (SVM)) (Joachims, 1998). An SVM learning algorithm tries to find jpenglane of maximum
margin that separates the data into one of two clagées{—1,+1}). A linear SVM is a binary
classifier given as

F(X) = signwe X +b), (1)

wherew is the vector of weights anldlis a threshold, both learned by the SVM learning algorithm.

SVMs are considered to be state-of-the-art classifiers in the domainsdhddscribed in Sec-
tion 4.1 and have been found to be fairly robust even in the presencengfr@dundant and irrele-
vant features (Brank et al., 2002; Rose et al., 2002.). Our SVM implet@miases the LibSVM
toolkit (Chang and Lin).

3.2 Active Learning: Uncertainty Sampling

Uncertainty sampling (Lewis and Catlett, 1994) is a type of active learning iohathe instance
that the teacher is queried on is the unlabeled instance that the classifiertisrmoedain about.
In the case of a naive Bayes classifier, this is the instance which is almastyelikely to be in
either of the two classes in a binary classification setting. When the classdieS¥ M, unlabeled
instances closest to the margin are chosen as queries (Schohn and2@@®nTong and Koller,
2002). This results in the version space being split approximately in hdifteae an instance is
gueried. We use a pool size of 500 in our experiments, such that foriestance selection, we
look at a new random sample of 500 instances from the unlabeled dataurAtiethods start out
with two randomly picked instances, one in the positive class and one in tla¢iveeglass. Each
subsequent instance is picked through uncertainty sampling.

3.3 Feature Selection: Information Gain

We could have chosen any one of several methods for the orderirgpanirés (Sebastiani, 2002;
Brank et al., 2002). Information gain is a common measure for rankingrésasund has been found
to be quite effective (Sebastiani, 2002; Brank et al., 2002), and issgabguick to compute.
Information gain is given as
P(c,T)
IG = P(c,1)log =———~—-~— (2)
CG{ZJ.,Jrl}TG{ZQl} P(C) T)

wherec denotes the class label (+1 or -1) from section 3.1, =aisd0 or 1 indicating the presence
or absence of a feature respectively. We used information gain wdrenevneeded to do feature
selection.
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3.4 Construction of the Approximate Feature Oracle

The (feature) oracle in our experiments has access to the labels of alhdats in the data-set
(hence the name oracle) and uses this information to return a ranked lestafds sorted in de-
creasing order of importance. We use information gain for feature rgrdinte it is easy to com-
pute, especially with a large number of training instances. Other featurdiselenethods €.g,
forward selection) may somewhat increase our upper bound estimatssfainess of oracle fea-
ture feedback. Such improvements will further motivate the idea of usingrieteedback, but we
don’t expect the improvements to be very high. In our oracle experimemstsut off the ranked
list (therefore obtaining a feature subset) at the point that yields thedtigiierage active learning
performance. The next section describes our experiments andrparfoe measures.

4. Experimental Set Up

We will now describe our data sets and our data collection methodology feriexents which use
teacher feedback on featuresVe then describe our evaluation framework.

4.1 Data Sets

Our test bed for this paper comes from three domains. The first dat@rsssts of the 10 most
frequent classes from the Reuters-21578 corpus (Rose et al.,)200% 12,902 documents are
Reuters news articles categorized based on topics suehramgsandacquisitions The Reuters
corpus is a standard benchmark for text categorization. The secopmasds the 20-Newsgroups
data set collected by Lang (1995). It has 20,000 documents which stiagmon 20 Usenet news-
groups. This is a slightly harder problem because it has a large vocabolapared to the Reuters
corpus (news articles tend to be more formal and terse) and it has mamyeéots in each category
which are tangentially related to the topic. The topics reside in a hierarchy vadtder topics like
sportsandcomputersat the top level which are further divided into narrower subdivisiorms.ex-
ample,sportsencompasses more focused groups tigeeballandhockey There are 20 categories
at the lowest level of the hierarchy.

The third corpus is the TDT3 corpus (Allan, 2002) . We used 10 topies flee TDT3 corpus
which has 67,111 documents in three languages from both broadcaseasevire sources. The
Linguistic Data Consortium (LDC) provides the output of an automatic speecgnizer (ASR) for
the broadcast news sources. Similarly they provide the machine translatiabhslocuments that
are not originally in English. We use the ASR and machine translated docuimentexperiments.
The noise in the ASR and machine translation output makes the TDT corpiculaaty difficult
to work with. The topics in the TDT corpus are based on news events., Tlaascane Mitch
and hurricane George would be two different topics and developingssifita to separate the two
classes is seemingly a more difficult problem. The two classes would havefaeclminmon words
especially with regard to lives lost, rescue operations etc. For exampieptdestormanddamage
each respectively occur in 50% and 27% of the documents on hurricétoch &hd in 75% and
54% of the documents on hurricane George. These common words aabfpyraseful to detect a
generic topic likehurricanebut are not that useful in discriminating hurricane Mitch from hurricane
George. However, we think it would be fairly trivial for a human to point Mitch and George
as two keywords of importance which could then accelerate learning. ohe Mitch occurs in

2. The data sets have been made availabietgi: // ciir. cs. umss. edu/ ~hena/ dat a/ j ml r 2006/ .
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42% documents on hurricane Mitch and in 0 documents on hurricane Gesirgarly, the word
George appears in 0.05% documents on the topic of hurricane Mitch an&imBte documents
on hurricane George.

For all three corpora we consider each topic as a one-versudassification problem, giving
us a total of 40 such problems listed in Appendix A. We also pick two pairs sifyeeonfusable
classes from the 20-Newsgroups domain to obtain two binary classificatbteprs viz. baseball
vs hockeyandautomobiles vs motorcyclesn all we have 42 classification problems. As features
we use words, bi-grams and trigrams obtained after stopping and stemmingevRbrtier stemmer
(Porter, 1980) in the Rainbow toolkit (McCallum, 1996).

4.2 Data for Whether Humans Can Emulate the Oracle

We picked five classification problems which we thought were perceptiblatm-axpert and also
represented the broad spectrum of problems from our set of 42 atasisifi problems. We took the
two binary classification problems and from the remaining 40 one-veesigproblems we chose
three garnings hurricane Mitchandtalk.politics.mideagt For a given classification problem we
took the top 20 features as ranked by information gain on the entire lab¢léfeseandomly mixed
these with features which are much lower in the ranked list. We showed eaclone feature at a
time and gave them two optionsrelevantandnot-relevant/don’t knowA feature is relevant if it
helps discriminate the positive or the negative class. We measured the timetihéoader to label
each feature. We did not show the user all the features as a list, thoughahibe easier, as lists
provide some context and serve as a summary. Hence we expect thaetwad provides an upper
bound on the time it takes a user to judge a feature. The instructions givemndartbtator are given
in Appendix B.

Similarly, we obtain judgments on fifteen documents in each of five categoaesAfgendix
C). In this case we gave the user three choices — Class 1, Class 2kBon:tWe randomly sampled
documents such that at least five documents belonged to each classvé\mhwlete judgments
on all the documents for all three data sets. The main purpose of obtaininghdotjudgments
was to determine how much time it would take a person to judge documents. Weredimpéame
it takes a user to judge a feature with the time it takes a user to judge a documemhe&gure
the precision and recall of the user’s ability to label features. We askgbeta first label the
features and then documents, so that the feature labeling procesesaueibenefit due to the fact
that the user has viewed relevant documents. In the learning procesavweeroposed, though,
the user would be labeling documents and features simultaneously, so theauseé indeed be
influenced by the documents she reads. Hence, we expect that the fiedtels we obtained by
our experimental method are worse in terms of precision and recall thaeghsetting. We could
in practice ask users to highlight terms as they read documents. Experiménissdirection have
been conducted in information retrieval (Croft and Das, 1990).

Our users (participants) were six graduate students and two employaes$ndbrmation Tech-
nology company, none of whom were authors of this paper. Of the gtadiudents, five were
in computer science and one from public health. All our users were familthrtixe use of com-
puters. Five users understood the problem of document classificattamohe had worked with
these corpora. One of our users was not a native speaker of Engl&htopics were distributed
randomly, and without considering user expertise, so that each usan gwerage of two to three
topics. There were overlapping topics between users such that eachlwiplabeled by two to
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three users on average. A feedback form asking the users sonmmgsiebout the difficulty of the
task was handed out at the end (see Appendix D).

4.3 Evaluation

Thedeficiencymeasure was proposed by Baram et al. (2003) as a measure of tdeofpeeactive
learning algorithm, useful for comparing different active learning algors. Baram et al. defined
deficiency in terms of accuracy. Accuracy is a reasonable measuegfofipance when the positive
class is a sizable portion of the total. Since this is not the case for all the dassiiiproblems we
have chosen, we modify the definition of deficiency, and define it in ternisedfl score (harmonic
mean of precision and recall). For deficiency a lower value is better. Aslseereport on th&1
scores, for which higher values are better, for consistency and @#eiretation of our charts and
tables we definefficiency= 1 — deficiency Efficiency has a range from 0 to 1, and a larger value
indicates a faster rate of learning. Thus, in all our reports higher vahaeisetter.

Let F1;(RAND) be the averagE1 achieved by an algorithm when it is trained torandomly
picked instances arfell; (ACT) be the averagE 1 obtained using actively picked instances.

Efficiency, Et is defined as

Si_»(F1u(RAND) — F1(ACT))
5 ,(F1u(RAND) — F1;(RAND))’

Er = (3)

F1u(RAND) is theF1 obtained with a large numbeM] of randomly picked instances. The
valueF 1y (RAND) represents the performance of a classifier with a large amount of traiatag d
and can be considered the optimal performance under supervisethdeafvith large amounts of
training data, we expect the performance of a classifier trained usivg &irning to be about the
same as a classifier trained using random sampling. However, we wouldlike Eearning to ap-
proach this level aguicklyas possible. The metric therefore takes into consideration how far the per-
formance is from the optimal performance by computing the differérigg(RAND) — F1;(ACT)
and F1y(RAND) — F1;(RAND). The metric compares this difference whiedocuments have
been actively picked to the difference whetiocuments have been randomly picked for increasing
number of training documents

Since we are concerned with the beginning of the learning curve, we & a= 42 number
of documents have been sampled. For expedience, we did not meadorenpace at every point
from 2 to 42 labeled documents, but compute the summation at discrete inteneasuring-1
after each additional five documents have been labele®,7,12,17...42. For this paper we take
M = 1000, that is, we consider the optimal random-learning performance ttidieea after the
classifier has seen 1000 labeled instances. In our experifRéy(ie) is the averagé& 1 computed
over 10 trials. In addition to efficiency we repéri; for some values df.

To understand the intuition behind efficiency, we can draw the activeitgacarve by plotting
F1;(ACT) for increasing values df as shown in Figure 5(a). Similarly we can draw the random
learning curve by measurirfgl;(RAND) for increasing values df F1ly is a straight line repre-
senting the best achievable performance. Then efficiency is one mintatithef the solid colored
area to the spotted area. The higher the efficiency, the better the activiadealgorithm. We aim
to maximize both efficiency anB1. In some of our experiments we obtain efficiencies exceeding
1. This is due to using a finiti: it is possible that a classifier produced by active learning on 42 or
fewer instances may do better than a classifier trained on a random sara@@d instances.
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(a) Efficiency (b) The best feature set size increases as the training data in-
creases.

Figure 5: The figure on the left (a) illustrateficiency the performance metric which captures
rate of learning. The figure on the right illustrates tharning surface The plot is a

measure oF1 as a function of the number of features and training documents. The

dotted line traces the region of maximufi. With few training documents, aggressive
feature selection (few features) are needed to maintain high accuraeythitk dark
band illustrates traditional active learning.

5. Results: Experiments with an Oracle

In this section we seek the answer to the following questions:
e Can feature feedback significantly boost active learning perforntance

e Should we use feature feedback during the entire active learninggsrioath instance selec-
tion, and model selection) or only for model selection?

To measure how much gain we can get from feature feedback we canmad#ias impact of the
oracle (which has knowledge of the best set of features) on actim@rga This gives us an upper
bound on how useful feature feedback is for active learning. Thémeimext section we go on to
measure the extent to which humans can emulate the oracle.

We will use systems 3 and 4 (described in Section 2.2) to help understandsiivera to the
above questions.

5.1 Improvements to Active Learning with Feature Selection

Following the algorithm for system 3 (see Section 2.2, Figure 3)f letN (the total number of
features) and let us assume that the oracle selectls thest important features (by information
gain) in step 1.b, which is used to initialize the model in step 2. Random samplipg(ajein this
particular implementation, does not use any of the feature information or the miidel. Then
in step 3.c, we prune the data set by retaining only the chkdeatures for each instance. We
now perform active learning on the instances in this reduced featuce ¢ptep 4). We evaluate
these experiments at many points in the two-dimensional space of numbatuwEf versus num-
ber of labeled documentsby measuring the F1 scor&1;(ACT,k). We can similarly measure
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E42(K) F17(ACT,k) F122(ACT,K) F11000
Data Set k k n k k m k k p

Reuters 0.59| 0.68 | 11179.3| 0.36| 0.48 | 8481.1| 0.580| 0.66 | 11851.6| 0.73
20NG 0.40 | 0.66 41.5| 0.07| 0.22 48.3| 0.21| 0.29 487.1 0.45

TDT 0.26] 0.34| 1275.7[ 0.19] 0.29] 11288] 0.28| 0.41| 10416.1] 0.75
[BasvsHock] 0.29] 055]  25]059] 0.70] 25| 0.78] 0.83] 200] 0.96]
[AutovsMot. [ 0.68] 0.32] 125|043 0.72] 62] 0.76] 086] 31| 0.90]

Table 1: Improvements in efficienciz1l; andF 1, using an oracle to select the most important
features (Figure 3). We show results for each metribl gtotal number of features for
a particular data set) and at feature set sizes for which the scores xirainea (, m
and p for E4», F7, andF, respectively). For each of the three metrics, figures in bold
are statistically significant improvements over uncertainty sampling using alrésa(the
corresponding columns with feature set size of N). We see that with o sbcuments
labeled F1;) the optimal number of features is smaller (8481.1 on average), while with
more documents labeled, (22 documents labeleé& fgp) the optimal number of features
is larger (11851.6 on average). When 1000 documents are lalbelgsd) using the entire
feature set leads to better scores with ffemeasure. This suggests that our best active-
learning algorithm would adjust the feature set size according to the nushbeining
documents available.

performance in the reduced feature space when instances are mckinnly. Thus we can com-
pute efficiency in the reduced feature spac&agk). When f = k = N the algorithm reduces to
traditional active learning (Figure 1).

Figure 5(b) shows a plot df1;(ACT,k) for different values of the number of featuresind
number of labeled training instandesfor theearningscategory in Reuters. The dotted curve traces
the maximumi for each value of. Thex, y andz axes denotg, t andF 1;(ACT,k) respectively.
The number of labeled training instandesanges from 2 to 42 in increments of 5. The number
of features used for classificatidnhas values from 3378 (all features), 33372, 333784 to
32. The dark band represents the case when all features are ussdnéthod of learning in one
dimension is representative of traditional active learning. Clearly whenuhdber of documents is
few, performance is better when there is a smaller number of featurese Asithber of documents
increases the number of features needed to maintain high accuracysegré&aom the figure it is
obvious that we can get a big boost in accuracy by starting with fewarrssaand then increasing
the complexity of the model as the number of labeled documents increase.

Table 1 captures the behavior of all the problems in the Reuters corpustiadre is an oracle to
do the feature selection. The second coluka (N) in Table 1 shows the efficiency obtained using
uncertainty sampling and alN( features. The third columtk & n) indicates the average efficiency
obtained using uncertainty sampling and a reduced subset of featheefedfure set siaeat which
this efficiency is attained is shown in column four. For each classificatidvigmmg we identify the
feature set size which optimizes the efficiency, that is, optimizes the rateieh wlassification
performance under active learning approaches learning with all ofitae @his optimal feature set
size for active learning is given by
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n = argmaxEs2(k).

Figure 6 shows the efficienciesti(N) andE4z(n) for the individual problems in the three corpora.
In many cased42(N) is much less tha&aa(n).

Column 5 k= N) in Table 1 shows the value &1;(ACT,N): the F1 score with seven in-
stances selected using active learning, when all features are usédnrC® shows the average
F1;(ACT,m) using a reduced feature subset. As for efficiency the best feathsetssize 1fy) for
each classification problem is obtained as the feature subset size afRh{&CT, k) is maximum.
For example in Figure 5(b) at seven instances the B&st obtained with 512 features. Figure 7
shows the values d¥1; computed using all) features and using a reduced subsetfféatures
for individual problems.

Columns 7, 8, and 9 in Table 1 show similar results Fdb2(ACT, k) with the best feature
subset size dt= 22 being denoted bp. The values for individual problems is illustrated in Figure
8. The last column shows11900( RAND).

All 42 of our classification problems exhibit behavior as in Figure 5(b): dHoclassification
problemsn, mandp are less than the maximum number of features. Also, for 31 of 42 cases
(that is, the number of features optimal for seven labeled instantés|ess than the number of
features optimal for 22 labeled instanc@$,meaning that as the number of labeled instantes (
increases, the complexity of the classifier also needs to increase. lNev28groups, for all classes
we observe that efficienc¥;1; andF 1,, are best at very small feature subset sizes. For Reuters
and TDT there are classes for which a large number of features becorogamypvery early (for
example:trade, Bin Laden indictment, NBA labor dispUtes

5.2 Feature Selection for Instance Selection or Model Selection

As mentioned in Section 2.2 the difference between systems 3 and 4 is in thatfealection
precedes active learning in the former, and the best feature submiid m a retrospective manner,
while it follows active learning in the latter. The two systems when used witheof@ature selection
will help us understand the extent to which oracle feedback aids diffasects of the active
learning process. Figure 9 compares the results of using system 4 stiedhsy on the Reuters
corpus.

There is hardly any difference between systems 3 and 4, especidiforAll other data sets
exhibit the same behavior. Thely,; and E4» values are slightly better for the method that does
feature selection before active learning (system 3) but it is not significdifferent (determined
using a t-test at the 0.05 level of confidence) from the method whereégaituning is done after
instance selection (system 4). Thus, our experimental results suggestishsome benefit for
instance selection but most of the benefit from oracle feature selectimescfsom improving the
model learned (model selection).

5.3 Discussion: Why Does Feature Selection Help?

Intuitively, with limited labeled data, there is little evidence to prefer one featuee another, so
the learner has to spread the feature weights more or less evenly on raamg$e In other words,
the learner has to remain conservative. Feature/dimension reductiondmathe allows the learner
to “focus” on dimensions that matter, rather than being overwhelmed with muselimensions
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Figure 6: Improvements in efficiency using an oracle to select the most impde@tures. For
each problem we show efficiency Mt(total number of features for a particular data set)
on the right and efficiency at the feature set sizes for which the effigisnmaximized
(n) on the left. The class keys are given in Appendix A.

1669



RAGHAVAN, MADANI AND JONES

1 T T T T T T T T T

- [
0.9 |:| F1(m)[ 0.9F |:| F1,(m)[

08 1 08l

0.7

06

F1,

05

0.4

03

0.2

0.1

Category Category

(a) Reuters (b) TDT

-
0.9 [ FL,m

0.8 J

1

0.7 b

0.6 B

F1,

0.5F B

04f .

0.3 b

0.2 b

0.1 b

0 2 4 6 8 10 12 14 16 18 20
Category

(c) 20 Newsgroups

Figure 7: Improvements ifr1; using an oracle to select the most important features. For each
problem we showF1; at N (total number of features for a particular data set) on the
left and F 17 at the feature set sizes for which théd; is maximized () on the right.
Remember, the objective is to maximigé&;. The class keys are given in Appendix A.
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right at the outset of learning. Oracle feature reduction allows the letrr@essign higher weights
to fewer features. This tends to improve accuracy, since the oracleéeskfeatures are the actual
most predictive features. Oracle feature reduction may also improve ¢estatection as the learner
obtains instances to query that are important for finding better weights éeethuiees that matter. As
the number of labeled instances increases, feature selection beconiepl@sant, as the learning
algorithm becomes better capable of finding the discriminating hyperplaat@eweights) on its
own. We experimented with filter based methods for feature selection, widamotl work very
well (we got tiny or no improvements). This is expected given such limited trgisén sizes, and
is consistent with most previous findings (Sebastiani, 2002). Next wendiek if humans can
identify thesamportant features

6. Results: Experiments with a Human (Teacher)

Consider our introductory example of the editor who was looking for traimisgances for the
topic hurricane Mitch From a human perspective the wotdsricang Mitch etc may be important
features in documents discussing this topic. Given a large number of dotautaleeled as on-topic
and off-topic, and given a classifier trained on these documents, thsifilamay also find these
features to be most relevant. With little labeled data (say two labeled instaneedasisifier may
not be able to determine the discriminating features. While in general in machmélg the source
of labels is not important to us, in active learning scenarios in which wecexipe labels to come
from humans we have valid questions to pose:

1. Can humans label features as well as documents? In other wordsaaret that are impor-
tant to the classifier perceptible to a human?

2. If the feature labels people provide are imperfect, is the feedback atiéfizial to active
learning?

We address the first question in the following section. Our concern in tipisrpa asking people
to give feedback on features, or word n-grams, as well as entirentus. We may expect this to
be more efficient, since documents are often long and may contain redundaelevant content,
and results from our oracle experiments indicate great potential in doingréeselection. We
then move on to discuss a real system which employs a two-tiered appriodatument feedback
and feature feedback like the system in Figure 2 which we evaluate usingi@agon: we obtain
feedback on features and documents apriori, and use the judgmentsagediio measure the
effectiveness of our approach. We employed this approach ratheotf@where an actual user
labels features and documents in tandem because our approach alltevsunsmany repeated
trials of our experiments, enabling us to do significance testing. Given éhéiawe demonstrated
the effectiveness of our algorithm, we reserve a more realistic evaluatibrawrue human in the
loop for future work.

6.1 Can Humans Emulate the Oracle?

We evaluated user feature labeling by calculating their average precisibreaall at identifying
the top 20 features as ranked by an oracle using information gain on the labtiled set. Table
2 shows these results. For comparison we have also provided the preaisiaecall (against the
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Class Precision Recall Avg. Time (secs)| kappa
Problem Hum. | @50 | Hum. | @50 | Feat.| Docs
baseball vs hockey| 0.42 | 0.30 | 0.70 | 0.30 | 2.83 | 12.60 0.503
auto vs motorcycle | 0.54 | 0.25| 0.81 | 0.25 | 3.56 | 19.84 0.741
earnings 0.53 | 0.20 | 0.66 | 0.25| 2.97 | 13.00 0.495
talk.politics.mideast 0.68 | 0.35 | 0.55 | 0.35 | 2.38 | 12.93 0.801
hurricane Mitch 0.72 | 0.65| 0.56 | 0.65 | 2.38 | 13.19 0.857
Average 0.580| 0.35| 0.65 | 0.38 | 2.82 | 14.31 0.68

Table 2: Ability of users to identify important features. Precision and Regainst an oracle,
of users (Hum.) and an active learner which has seen 50 documenty. (@&t that
precision and recall denote the ability of the user to recognize the oratleds and are
not measures of classification accuracy. Average labeling times forésatnd documents
are also shown. All numbers are averaged over users.

same oracle ranking of top 20 features) obtained using 50 labeled instgncked using uncer-
tainty sampling) denoted by @50. Precision and recall of our participantghs $upporting our
hypothesis that features that a classifier finds to be relevant aftegsetnge number of labeled
instances are obvious to a human after seeing little or no labeled data (the datebaing true
of our experiments). Additionally the precision and recall @50 is significdotler than that of
humans, indicating that a classifier like an SVM needs to see much more data befan find
discriminatory features.

Table 2 also shows the times taken for labeling features and documents.e@gehumans
take five times longer to label one document than to label one feature. Notedhares may be
even easier to label if they are shown in context — as lists, with relevasages etc. We measured
whether document length influences document labeling time. We found the tle ¢orrelated
by r = 0.289 which indicates a small increase in time for a large increase in length.tarasd
deviations for precision and recall are 0.14 and 0.15 respectivel\erBift users vary significantly
in precision, recall and the total number of features labeled relevann e post-labeling survey
we are inclined to believe that this is due to individual caution exercisedgith@labeling process.

We also measure the extent to which our users tend to agree with eachbmibethee importance
of features. For this we use the kappa statistic (Cohen, 1960) which issuraghat quantifies the
agreement between annotators that independently classify a set of €itibes case the features)
into classes (relevant versus non-relevant/don’t know). Kappaéndy:

kappa= (Po— Pc)/(1— pc) 4)

Wherep, is the observed proportion of agreement gids the agreement due to chance (Cohen,
1960; Landis and Koch, 1977). Landis and Koch (1977) providela tfibing guidelines about how
to interpret kappa values. We find a value of 0.68 to be the average kappss the five categories
in our user study. According to Landis and Koch (1977) this indicatestanbal agreement.

We obtained judgments on a handful of documents for each user. Wehassdjudgments to
measure time. Some of our users had difficulty judging documents. For exdomiee earnings
category, one of our users had very low agreement with the true Reategories. This person did
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not have a finance background and could not distinguish well betwer@ings and acquisitions,
often confusing the two. But this user did quite a good job of identifyinguideftures. She
missed only six of 20 of the relevant features and had only five false aldarhesfeatures that she
marked relevant, when used in the human-in-the-loop algorithm resultedeffieiency of 0.29.
This is still an improvement over traditional uncertainty sampling which has @esftiy of 0.10.
These results can be explained by looking at the question posed to thatannd/hen it came to
features, the question was on the discriminative power of the featureseHeunser did not have to
determine whether the worddareswas pertinent t@arningsor not but rather she only needed to
indicate whether the word was likely to be discriminatory. Additionally, one ofusers suggested
that terms shown in context would have carried more meaning. The usehatsthe did not realize
the termct stood forcentsuntil she read the documents. But since she was made to judge terms
before documents this user’s judgment had marked thedeas non-relevant/don’t know.

Some of the highlights of the post-labeling survey are as follows. On averseys found the
ease of labeling features to be 3.8 (where 0 is most difficult and 5 is veyy aad documents 4.2. In
general users with poor prior knowledge found the feature labelingegsovery hard. The average
expertise (5=expert) was 2.4, indicating that most users felt they had litthaidcknowledge for
the tasks they were assigned. We now proceed to see how to use féatheted as relevant by our
naive users in active learning.

6.2 Using Human Feature Feedback simultaneously with Document Febdck in Active
Learning

We saw in Section 5 that feature selection coupled with uncertainty sampliaeg g#/big gains in
performance when there are few labeled instances. In Section 6.1 wiaaamwmans can discern
discriminative features with reasonable accuracy. We now describ@ppuoach of applying term
and document level feedback simultaneously in active learning. In Seztfowe discussed the
possible cognitive advantages of an interleaved approach of feateatien and instance selection.
Additionally, we found that feature selection does not hurt uncertaimypbag and may aid it. In
the following section we describe an implementation for system 2.

6.3 Implementation

Following Figure 2, the features to be displayed to the user (in step 2.d.i) atepl features
obtained by ordering the features by information gain. More specificaklytrained the SVM
classifier on these labeled instances. Then to compute information gain, we used the five top
ranked (farthest from the margin on the positive side) documents froomthéeled set in addition

to thet labeled documents. Using the unlabeled data for term level feedbackyiceammon

in information retrieval and is called pseudo-relevance feedback (S48&8). The user labels

k > 0 of the f features as relevant or discriminative (step 2.d.ii). If a user has labdéadae in a
previous iteration, we don’t show the user that feature again (thé &op picked from the unlabeled
features). We sett to 10 in our experiments.

We incorporate feature feedback (step 2.e) as follows.Skets;...sy be a vector containing
weights of relevant features. If a feature numbat is presented to the user is labeled as relevant
then we set = a, otherwises, = b, wherea andb are parameters of the system. For edah the
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labeled and unlabeled sets we multiplyby s to getx. In other words, we scale all the features
that the user indicated as relevantdgnd the rest of the features byWe seta= 10 andb = 1.3

By scaling the important features lywe are forcing the classifier to assign higher weights to
these features. We demonstrate the intuition with the following example. Comslisherar SVM,
N = 2 and two data point&; = (1,2) andXz = (2,1) with labels+1 and—1 respectively. An SVM
trained on this input learns a classifier with= (—0.599,4+-0.599). Thus, both features are deemed
equally discriminative by the learned classifier. If feature 1 is indicated todre discriminative
by our user, then by our metho{{ = (10,2) and X; = (20,1) andw’ = (0.043 —0.0043), thus
f1 is assigned a much higher weight in the learned classifier. Now, this is & V&o$ion of the
feature selection mechanism of section 5. But in that case the oracle kaése#i set of features.
Those experiments may be viewed as a special case Wwhef® We expect that human feedback
is imperfect and we do not want to zero-out potentially relevant features

6.4 Simulating User Feedback

We use the relevance judgments on features obtained as described im $ettio simulate the
user in each iteration. At each iteration of the algorithm, if a feature that septed had been
marked by the user as relevant, in the relevance judgment experimentspoétih@us section, we
mark the value of that feature as 1 in the ve&oil he vectors is noisier (less complete) than the
case where we would have obtained relevance judgments on featuneg tihér actual execution
of the algorithm. This is because in addition to mistakes made by the user, weutose those
features that the user might have considered relevant, had she lesentpd that feature when we
were collecting relevance judgments for a relatively small subset of &=atum a real life scenario
this might correspond to the lazy user who labels few features as relvdi¢aves some features
unlabeled in addition to making mistakes.

To make our experiments repeatable (to compute average performanfoe emavenience) we
simulate user interaction as follows. For each classification problem we maénliairof features
that a user might have considered relevant had she been presentiditine. For these lists we
used the judgments obtained in Section 4.2. Thus for each of the five clasifiproblems we
had two or three such lists, one per user who judged that topic. For thBT@opics we have topic
descriptions as provided by the LDC. These topic descriptions containsnafrpeople, places and
organizations that are key players in this topic in addition to other keywdiésused the words
in these topic descriptions to be equal to the list of relevant features. Hlean these lists we
can perform the simulated HiLhgman in the Loopexperiments for 15 classification problems.
Figure 10 shows the performance of the HIL experiments. Like beforeep@rt efficiency Esp),
the F1 score with 7 labeled documentsly), and theF 1 score with 22 labeled documenislty)
for each of uncertainty sampling (Unc), oracle feature selection withrtaioty sampling (Ora)
and the Human in the Loop (HIL) algorithm. As a baseline we also reporttsefun the case
when the top 20 features as obtained by the information gain oracle aretinphg simulated
HIL experiments (this represents what a user with 100% precision aad vemuld obtain by our
method). The oracle is (as expected) much better than plain uncertainty sgymglirall three
measures, validating the effectiveness of our proposed system S2dtiofhe performance of the
HIL experiments is almost as good as the oracle, indicating that user idghaugh imperfect)

3. We picked our algorithm’s parameters based on a quick test on ttpies {baseball, earnings, and acquisitions)
using the oracle features of Section 5
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can help improve performance significantly. The plot on the right is BfHIL) for hurricane
Mitch. As a comparisofr 1;(ACT) is shown. The HIL values are much higher than for uncertainty
sampling.

Dataset E4o F1; F1,o

Unc | Ora | HIL | Unc | Ora | HIL | Unc | Ora | HIL
Baseball 0.29| 0.59| 0.54| 0.49| 0.63| 0.60| 0.63| 0.79| 0.70
Earnings 0.10| 0.36| 0.36| 0.61| 0.79| 0.73| 0.80| 0.85| 0.86

Auto vs Motor | 0.18 | 0.66 | 0.40 | 0.35| 0.62 | 0.60| 0.71| 0.83 | 0.73

Hurr. Mitch 0.11| 0.62| 0.62| 0.04| 0.46| 0.60 | 0.08 | 0.63 | 0.58

mideast 0.51|0.72| 0.72] 0.14| 0.28 | 0.29| 0.32| 0.49 | 0.49

TDT (avg) 0.14| 0.23| 0.11| 0.09| 0.21| 0.24| 0.18| 0.32| 0.22
@)
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(b) The graph shows the learning curves Furricane Mitch (6th row of

the above table) with the x-axis being the number of labeled documents and

y-axisF1(HIL).

Figure 10: Improvements due to human feature selection. Fllheand F 15, scores in the table
show the points on the curves where 7 and 22 documents have been |athelatiffer-
ence between no feature feedback (Unc) and human-labeled fe@tlir¢ss greatest
with few documents labeled, but persists up to 42 documents labeled.

When to stop asking for labels on both features and documents and switelyedn documents
remains an area for future work. We provide some initial results in thisde@amnsider that we ask
for both document and feature feedback up tterations and after that we only ask for document
feedback. Figure 11 shows the active learning curves for diffaralioies ofj for the hurricane
Mitch problem in the TDT corpus. The case whieg 0 represents traditional uncertainty sampling.
When j = 5 there is improvement over the case when 0, and whenj = 10 there is even more
improvement. Beyongl = 10 there is little gain in obtaining feature feedback. It seems that relevant
features are usually spotted in very early iterations. We see similar beliavimther problems in
our domains. For thauto vs motorcycleproblem, the user has been asked to label 75% of the
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oracle features (averaged over multiple iterations and multiple users) atpsumnteor the other.
The most informative words (as determined by the oracledrandbike are asked of the user in
very early iterations. The label faar is always (100% of the times) asked, and 70% of the time the
label for this word is asked to the user in the first iteration itself. This is clde#bwed by the word
bike which the user is queried about within the first five iterations 80% of the timest kébevant
features are asked within 10 iterations which makes us believe that wetearstdp feature level
feedback in around 10 iterations.

0.9

08 [

07

F1 o6

05 [

5 10 15 20 25 30 35 40
number of training documents

Figure 11: Human Feature Selection Furricane Mitchfor different amounts of feature feedback.
The legend indicates the number of iteratiofsfor which there was both feature and
document feedback, after which only document feedback was asked e line at
the bottom, labeled = 0 corresponds to regular uncertainty sampling or the case when
feature feedback was asked for O iterations. The line correspondipg o iterations
is significantly better than whep= 0. All other casesj = 10 ... j = 40 are clumped at
the top.

7. Related Work

Our work is related to a number of areas including query learning, actareitey, use of (prior)
knowledge and feature selection in machine learning, term-relevandeaiged information re-
trieval, and human-computer interaction.

Term level feedback has been studied in information retrieval (AnicR32Croft and Das,
1990; Belkin et al., 2001). Many participants in the TREC HARD track (Wiees and Buckland,
2005) generate clarification forms for users to refine or disambiguategbheny. Many of the
effective forms are composed of lists of terms and the user is asked to nmasas relevant or not,
and some have found that term level feedback is more effective thamamt level feedback (Diaz
and Allan, 2005). The TREC interactive task has focused on issuasiieg the kinds of questions
that can be asked of the user. They find that users are happy to ufacesavhich ask the user to
reformulate their queries through a list of suggested terms. They also findstirs are willing to
mark both positive and negative terms (Belkin et al., 2001).
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Our proposed method is an instance of query-based learning and amsiert®f standard
(“pool-based”) active learning which focuses on selective samplingpstinces from a pool of
unlabeled data alone (Cohn et al., 1994). Although query-based lgatambe very powerful in
theory (Angluin, 1992), arbitrary queries may be difficult to answer axcfpce (Baum and Lang,
1992). Hence the popularity of pool-based methods, and the motivatictuidying the effective-
ness and ease of predictive feature identification by humans in our dpplieaea. To best of our
knowledge, all prior work on query learning and active learning fedumn variants of membership
queries, that is, requesting the label of a possibly synthesized inst@uecavork is unique in the
field of active learning as we extend the query model to include featurekhasvdocument level
feedback.

Feature feedback may be viewed as the teacher providing evidenceegpkamation for the
learner on the reasoning behind the labeling. The field of explanati@dbaarning, however,
concerns itself on a deductive rather than an inductive learning tasky, oise instance and a given
domain theory to generalize (Mitchell et al., 1986; DeJong and Moon&§)19

Feature selection can lead to improvements in the performance (accuraciiespace or time
efficiency of the classifier. When there are sufficient labeled instantest state of the art learning
algorithms are able to distinguish the relevant features from the irrelemast(@rank et al., 2002).
Hence there is little improvement in performance with an additional featuretiselemmponent.
When there are few labeled instances, working with a small set of relantes tends to be more
useful. This phenomenon has been referred to in statistics as the Huggreenenon (Hughes,
1968). Weight regularization may be viewed as a soft version of feawleztion: for best per-
formance, in general the smaller the training set, the smaller the total weigli tibtwed to be
spread over the features. Unfortunately, to do automatic feature selaatlhrwe need sufficient
training data, leading to a chicken-and-egg problem. Fortunately, in dotwiassification users
have the intuition to point out a small subset of useful features which waeildeneficial when
there are few labeled instances.

Budgeted learning also works on identifying the predictive features glainactive learning
setting, but in this case the feature values are unknown and there ista fiosling each feature’s
value for each instance of interest (such as the outcome of blood tesimdiddual) (Lizotte et al.,
2003). That human prior knowledge can accelerate learning has besstigated by Pazzani and
Kibler (1992), but our work differs in techniques (they use prior klealge to generate horn-clause
rules) and application domains. Beineke et al. (2004) use human priaéahge of co-occurrence
of words, at feature generation time, to improve classification of procwiews. None of this
work, however, considers the use of prior knowledge in the activpésdial) learning setting.

Our study of the human factors (such as quality of feedback and coslspia major differen-
tiating theme between our work from previous work in incorporating primvwkedge for training.
Past work has not addressed this issue, or might have assumed axpathine learning taking a
role in training the system (Schapire et al., 2002; Wu and Srihari, 200dh@e et al., 2004; Jones,
2005). We only assume knowledge about the topic of interest. Our algoriteaiioiques and the
studied modes of interaction also differ somewhat and are worth furtihepadson. Jones (2005)
also used single feature-set labeling in the context of active learningustrewas queried on a
feature rather than the whole instance. The labeled feature was tak@naay &or the label of any
instance containing that feature, so a single feature labeling potentially dalveley documents
(similar to thesoftlabeling technique discussed next). This was found to be more econongnal th
whole-instance labeling for some tasks. The instances in this work consfsiaty two features (a
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noun-phrase and a context), so labeling one feature is equivalenelintabalf an instance. Our
work differs in that our instances (documents) contain many featuresiéjvand we combine both
feature labeling and document labeling. Our work also differs in that weheslabeled features for
feature selection and feature re-weighting, rather than as proxiesd¢antent labels.

Both Wu and Srihari (2004) and Schapire et al. (2002) assume thatipioaviedge is given at
the outset which leads to a “soft” labeling of the unlabeled data. This extedinglis incorporated
into training via modified boosting or SVM training. By soft labeling, we mean ttteadabels,
generated via prior knowledge, are not certain and a method that usdesn$ormation may for
example assign low confidences to such labellings or lower the misclassificatts compared
to misclassification costs for instances labeled directly by a human. Howewaur scheme the
user is labeling documents and features in an interactive and interleasledrfa We expect that
our proposed interactive mode has an advantage over requestingrmieledge from the outset,
as it may be easier for the user to identify or recall relevant features Valhiéding documents in
the collection and being presented with candidate features. Our methodliofjsthie dimensions
and training (without using the unlabeled data) has an advantage ovdalseifng in situations
where one may not have access to much unlabeled data, for example intaskssuch as filtering
news streams and categorizing personal emails. Furthermore, we simplifigehie task in that
our technique does not require the user to specify whether the featposits/ely or negatively
correlated with the category, just whether the user thinks the featurevamela predictive. On the
other hand, in the presence of ample unlabeled data, soft labeling methodsmoigheffectively
incorporate the information available in the unlabeled data. Both approestpgise extra param-
eters specifying how much to scale the dimensions or the confidence or mifécédi®n costs to
assign to the generated labellings, though some fixed parameter settings rkdgnwoost cases,
or automated methods could be designed.

The work of Godbole et al. (2004) emphasizes system issues and$foonsnulti-class train-
ing rather than a careful analysis of effects of feature selection antefficacy. Their pro-
posed method is attractive in that it treats features as single term documertisrttee labeled by
humans, but they also study labeling features before documents (anthamy‘oracle” setting,
without using actual human annotators). They do not observe much ismpents using their par-
ticular method over standard active learning in the single domain (Reuteydgsi®n. Finally, we
mention another method of incorporating prior knowledge that has much similarityr method
of differential scaling of dimensions: differential weightings of featuregeature weight initial-
izations when using online methods such as Winnow. A better understarfdifigative ways of
incorporating (prior) knowledge in various learning scenarios is a pingiiesearch direction.

8. Conclusions and Future Work

We have demonstrated experimentally that for learning with few labeled examptal (oracle-

based) feature selection is extremely useful. As the number of exampleasest the “vocabulary”
of the system, in other words, the effective feature set size for befirpmnce, also needs to
increase. A teacher, who may not necessarily be knowledgeable in radeaming, but has prior
knowledge on the relevance of the features, can help accelerate triiaisgstem by pointing out
the potentially important features for the system to focus on. We conductser study to see how
well naive users performed as compared to a feature oracle in the dofriaixt categorization.

Our technique weighted the features marked relevant by the users mothéhather features. We
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used our users’ outputs in realistically simulatagman in the loopxperiments and observed a
significant increase in learning performance with our techniques oviergidéive learning.
In summary, our contributions are:

1. We demonstrated that access to a feature importance oracle can impfomaaece (thé-1
score) significantly over uncertainty sampling, even with as few as 7 exaratleled.

2. We found that even naive users can provide effective feedimatke most relevant features
(about 60% accuracy of the oracle in our experiments).

3. We measured the manual costs of relevance feedback on feattges kabeling documents:
we found that feature feedback takes about one fifth of the time takendyment labeling
on average.

4. We devised a method of simultaneously soliciting class labels and featdimfdethat im-
proves classifier performance significantly over soliciting class labelgalon

Consider a user who is interested in training a personalized news filterdihagrd news stories
on topics of their interest as and when they appear in the news. The ysebably willing to
engage in some form of interaction in order to train the system to better suinter Similarly
a user wanting to organize their e-mail into folders may be willing to train the e-ritail &is long
as training is not too time consuming. Both the news filter and the e-malil filter arevdmnt clas-
sification systems. The idea of using as few documents as possible forgreiagsifiers has been
studied in semi-supervised learning and active learning. In this papexterded the traditional
active learning setting which concerns the issue of minimal feedback apdsed an approach
where the user provides feedback on features as well as documeatshdiWed that such an ap-
proach has good potential in significantly decreasing the overall améimtecaction required for
training the system.

This paper points to three promising inter-related questions for furthéoratipn. The first
guestion concerns what to ask from the user. In general, the activetdss to make decisions at
various time points during active learning regarding the choice of fe&dtfar example, whether
to ask for feedback on a document or on a feature, or even whethepasking questions all
together (ask nothing), appropriate for a scenario where no addifeedtback is likely to improve
performance significantly. This involves some implicit or explicit assessni¢he@xpected bene-
fits and costs of different kinds of feedback. Furthermore, theraltamate kinds of feedback that
are potentially useful — feedback on clusters of features for exampkesdcond question involves
human computer interaction issues and seeks to explore how to translattheviesrner needs to
know, into a question, or a user interface, that the human teacher ¢yrueaerstand. In our case,
the learner asked the teacher labels on word features and documehtsf tdich required little
effort on the part of the teacher to understand what was being akeoh.o Our subjects did in-
deed find labeling words without context a little hard, and suggested thbdanight have helped.
An attractive alternative or complementary method of soliciting feature fedbasking users to
highlight some relevant or predictive terms as they read a document. iEbgpes in this direction
have been conducted in information retrieval (Croft and Das, 199®).tAird question is about the
choice of learning algorithms for effectively incorporating these alterftatas of feedback. We
explored one method in this paper and discussed alternatives in Secti@iafedrto the above is
better understanding and quantifying the potential of active learningheelavith feature feedback
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as a function of various aspects of the learning problem, such as meaduhe difficulty of the
category that one seeks to learn.
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Appendix A. Class Key

The class key for the Reuters corpus is given below:

1. earnings 2. acquisitions 3. money-fx 4. crude 5. trade 6. interestvh@at
8. corn 9. money supply 10. gold

The class key for the 20 Newsgroups corpus is given below:

1. alt.atheism 2. comp.graphics 3. comp.os.wind.misc 4. comp.sys.ibm.pc.hw
5. comp.sys.mac.hw 6. comp.windows.x 7. misc.forsale 8. rec.autos

9. rec.motorcycles 10. rec.sport.baseball 11. rec.sport.hockey iX2yst

13. sci.electronics 14. sci.med 15. sci.space 16. soc.rel.christian

17. talk.politics.guns  18. talk.politics.mideast 19. talk.politics.misc  20. talk.religion.misc

Similarly the class key for the TDT corpus is:

1. Cambodian government coalition 2. Hurricane Mitch 3. Pinochet Trial
4. Chukwu Octuplets 5. Bin Laden Indictment 6. NBA Labor Disputes
7. Congolese Rebels 8. APEC Summit Meeting 9. Anti-Doping Proposals

10. Car Bomb in Jerusalem

Appendix B. Instructions for Annotating Features

Class 1: Documents from the Usenet newsgroups that discuss baseball
Class 2: Documents from the Usenet newsgroups that discuss hockey

Instructions: You will be shown a list of features one at a time. For eaaturfe you will be
asked to determine whether it is relevant or not for the given classificatabiem. If it is relevant
to Class 1 or to Class 2, mark the radio button which says “Relevant”. If ittisatevant or you
don’t know whether the feature is relevant mark DONT KNOW correspugig

A feature is relevant if it helps discriminate between documents in Class dsvdoguments in
Class 2. Features are words, pairs of words (bi grams) and so amk dtha bi gram as a pair of
words that may occur in close proximity to each other For every featurgaskelf the following
guestion: “Is this more likely to occur in a document in Class 1 as opposedds M. If that is the
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case mark the feature as relevant. If the reverse is true then again méghtime as relevant. If the
feature is not really relevant, for example “banana” may make no sensgrig to find documents
in either class mark the “Not relevant/Don’t know” option. DO NOT use asources(the web,
encyclopedias etc) to determine your answer. If you are not sure sitighytiee “Don’t Know”
option

The time between which you are shown a feature and you hit the submit butioreds So do
not do anything else in this time. After you submit, A THANK YOU page is displaydal may
take a break here before you proceed to the next feature.

To modify the last annotation use the browsers BACK button.

To begin annotating click here

Appendix C. Instructions for Annotating Documents

Class 1: Documents from the Usenet newsgroups that discuss baseball
Class 2: Documents from the Usenet newsgroups that discuss hockey

Instructions: You will be shown a list of documents one at a time. For eachndents you will
be asked to determine whether it belongs to class 1 or class 2. You alsthieawption to mark
a document as DONT KNOW. Read as much of the document as is needed ecamakormed
judgment. The time between which you are shown a document and you hithihét sautton is
timed. So do not do anything else in this time. After you submit, A THANK YOU pagksislayed.
You may take a break here before you proceed to the next document.

To modify the last annotation use the browsers BACK button

To begin annotating click here

Appendix D. End of Labeling Survey

Please take 2 minutes to fill out the following:

1. How easy was it to mark features?
(a) On an integer scale of 1-5 (1=very difficult, 5=very easy) (b) R&ma

2. How easy was it to mark documents?
(a) On an integer scale of 1-5 (1=very difficult, 5=very easy) (b) R&ma

3. For each of the following tasks please state your domain knowledgei{goly did relevance
assessments for them) on a scale of 1-5 (1=very little, 5=expert):
(a) Baseball versus Hockey. (b) Earnings versus All.
(c) Automobiles versus Motorcycles. (d) Hurricane Mitch versus all.
(e) Middle eastern crisis versus all.

4. Your Internet connection
(a) DSL/Cable (b) TL LAN (c) Dial-up
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