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Abstract

The goal of active learning is to minimize the cost of training an accurate model by
allowing the learner to choose which instances are labeled for training. However,
most research in active learning to date has assumed that the cost of acquiring
labels is the same for all instances. In domains where labeling costs may vary,
a reduction in the number of labeled instances does not guarantee a reduction in
cost. To better understand the nature of actual labeling costs in such domains, we
present a detailed empirical study of active learning with annotation costs in four
real-world domains involving human annotators.

1 Introduction

Traditional supervised learning algorithms use whatever labeled data is available to induce a model.
An active learning algorithm, by contrast, may choose which instances are labeled and added to
the training set. Typically, a learner begins with a small set of labeled instances, selects a few
informative instances from a pool of unlabeled data, and query for labels from an oracle (e.g., a
human annotator). The goal is to reduce the total labeling cost incurred to train an accurate model.

Most previous work in active learning has assumed a fixed cost for acquiring each label, i.e., all
queries are equally expensive for the oracle. However, consider a task that involves classifying or
extracting information from text documents; such documents can vary considerably in length and
the complexity of language used. These variables most likely affect the amount of work required
to label different instances. Also consider that the queries that are most valuable to the learner may
be the most difficult or ambiguous cases, and therefore the most expensive for an oracle to label
accurately. These issues have serious implications for using active learning in practice. We argue
that, in order to truly reduce the labeling cost required to build an accurate model, the notion of
annotation cost must be better understood and incorporated into the active learning process.

In some problem domains, the cost required to label an instance is known before the learner makes
a query. For example, if labels are acquired by executing a biological experiment, then the cost of
a query might be the price of the materials used [9], which is presumably fixed and known to the
learner. In this paper, we are concerned with reducing annotation costs that are not known in advance.
Specifically, we investigate reducing annotation time for tasks involving human annotators.

The vast majority of research in active learning has not considered that instances may vary in label-
ing cost. Some methods have been developed for the situation in which an active classifier may incur
a cost to obtain additional feature values at classification time [6]. Our research, in contrast, is fo-
cused on settings in which unlabeled instances (and their feature descriptions) are readily available,
but the labeling process incurs a cost at training time. One proposed approach for reducing human
annotation effort in active learning involves using the current learned model to assist in the labeling



of query instances in structured-output tasks like parsing [1] or named entity recognition [4]. How-
ever, these methods do not actually represent or reason about costs. Instead, they attempt to reduce
the number of annotation actions required for a query that has already been selected.

The prior work most closely related to ours is a group of methods that explicitly account for varying
label costs in active learning. One such cost-sensitive query strategy was proposed by Margineantu
[13], but differs from ours in that it assumes that labeling costs are known for each instance; the paper
also provides no empirical evaluation using real-world data sets. Kapoor et al. [7] have developed
an approach that takes into account both labeling costs and estimated misclassification costs. They
applied their method in a voicemail classification task, but instead of using real cost information,
their experiments make the simplifying assumption that the cost of labeling a message is a linear
function of its length (e.g., ten cents per second). King et al. [9] present the only work that, to our
knowledge, uses active learning in an attempt to reduce real labeling costs. They describe a “robot
scientist” which can execute a series of autonomous biological experiments to discover metabolic
pathways, with the objective of minimizing the cost of materials used. In contrast to the tasks we
consider, the labeling cost of each instance in this domain is known prior to querying an instance.

In this investigation, we present a detailed analysis of four data sets for which we have measured
the actual annotation cost (labeling time, and in some cases labeling actions) incurred by humans
annotators. We then attempt to answer several important questions about the role of such annotation
costs in real-world active learning.

2 Data Sets and Annotation Methodology

Because most active learning research has not been concerned with reducing real annotation cost, we
are not aware of any data sets with real cost information. We contacted the organizers for at least five
benchmark efforts involving human annotators to try to obtain cost data for their respective data sets.
While some could provide rough estimates about the average annotation time per instance, none of
them logged actual annotation times (or any other form of cost) for individual instances. Therefore,
we conducted several annotation experiments of our own in which these costs are recorded.

CKB News Corpus. The present work was partially motivated by a collaborative project called
Community Knowledge Base (CKB). The goal of this project is to build a software system for
local newsrooms that can monitor local and regional news feeds, automatically extract information,
and maintain a database of key players in the local community. The system provides access to a
structured model of the community’s social network for journalists researching news stories.

For an initial version of the CKB system, we focused on learning to extract four entities (actor,
role, organization, location) and six binary relations among them (actor-role, actor-organization,
organization-location, etc.). We began by training a named entity recognition (NER) system using
a conditional random field (CRF) [10] on the CoNLL-2003 corpus [15], augmented with a small set
of articles annotated for the additional role entity (which is not part of that corpus). For this version
of the system, we collaborated with the Reynolds Journalism Institute at the University of Missouri.
Textual sources consisted of articles published over a year in the Columbia Missourian, a working
daily newspaper published by the school. After filtering documents for text encoding errors and
outliers in length, the final pool consisted of 1,984 articles. The NER model described above was
used to automatically pre-annotate this pool of articles.

Articles were then labeled by five University of Missouri journalism students. Figure 1 shows the
interactive web-based annotation system used for (i) adding entity annotations or editing automatic
pre-annotations and (ii) adding relation annotations. Documents were selected from the pool in a
random order, and each was presented to one annotator, thus no two people labeled the same article.
The annotation system logged both the time elapsed during the labeling process, and the number of
labeling “actions” taken for each article (label an entity, clear an incorrect entity, mark a putative
relation, etc.). The resulting corpus consists of 358 labeled articles.

SIVAL Image Repository. In previous work [17], we presented a framework for active learning
in multiple-instance (MI) problem domains [5]. In an MI learning task, instances are naturally
organized into bags, and it is the bags, rather than individual instances, that are labeled for training.
MI learners assume that every instance in a bag labeled negative is actually negative, whereas only
one instance in a bag labeled positive needs to be positive.



Figure 1: A screenshot of the CKB labeling interface. Article text appears in the window on the left, where
annotators can highlight entities and label them with a word-processor style formatting menu. As the entities
are labeled, candidate relations among them are dynamically generated in the window to the right, grouped by
paragraph. Users then click on these relations to indicate which ones are true (in dark grey).

Figure 2: A screenshot of the SIVAL labeling interface. Annotators move the cursor over segments in the
processed image on the left, clicking on those belonging to the target object. In this example, the highlighted
segment belongs to the product label of a WD40 can. The original reference image is shown on the right.

One application for the MI setting is content-based image retrieval (CBIR). In this task, images
are represented as bags and instances correspond to processed, segmented regions of the image. A
bag representing a given image is positive if the image contains some object of interest. The MI
paradigm is appropriate here because only a few regions of an image may be part of a particular
object, such as the WD40 can shown in Figure 2. An advantage of the MI representation here is
that it is significantly easier to label an entire image than it is to label each segment. However, we
have demonstrated that an MI learning algorithm can improve significantly if it is allowed to actively
query for the labels of specific instances inside a bag. The CBIR task is applicable here because it
is possible (though expensive) to acquire these instance-level labels.



Since no MI data sets with instance-level annotations existed, we augmented the SIVAL repository
[14] by manually adding instance labels. The data set consists of 1500 images labeled for 25 objects
(60 images each) photographed in a variety of positions, orientations, locations, and lighting condi-
tions. Each image (bag) consists of about 30 segments (instances). Figure 2 shows the web-based
interface used in the annotation process. Images were labeled by three members of our research
group in an arbitrary order, and annotation times for each image were logged. As with the CKB
corpus, images were not redundantly labeled by multiple annotators.

Speculative Text Corpus. There has been a growing interest recently in handling subjectivity in
natural language tasks. Following work by Light et al. [12], we annotated a corpus of biomedical
abstracts for statements that use language that is speculative vs. definite in nature. For our corpus,
we selected 100 PubMed1 abstracts from the GENIA corpus [8] for annotation. Since previous
work indicates that many speculative statements appear toward the end of abstracts, we excluded
all abstracts that were truncated for length by PubMed. All 850 resulting sentences were labeled
by three members of our research group using a simple web-based interface, and annotation times
for each sentence were logged. Unlike the previous two data sets, all sentences were redundantly
labeled by all three annotators in order to gather data on inter-annotator agreement. Although the
ordering was randomized, all annotators saw the sentences in the same sequence.

SigIE Email Corpus. We also created a corpus for the task of extracting contact details from
email signature lines [16]. For this, we selected 250 signatures from the Sig+Reply corpus [3]
and manually added annotations for twelve address book fields (e.g., name, phone, jobtitle). All
annotations were done by the first author, in a random order, using a modified version of the CKB
labeling interface. As with CKB, both annotation times and actions were logged.

3 Analysis and Experiments

In this section, we consider six questions that are aimed at understanding how real annotation costs
can be learned and exploited by active learning systems.

Are annotation times variable for a given task or domain? If our goal in active learning is to
reduce the total time required to train an accurate model, then this first question is critical. If times
are approximately constant, our goal can be achieved by simply minimizing the number of instances
required, as most work in active learning has done. If these times vary significantly, however, then
this variation should be taken into account by the learner.

The answer to this question, however, is complicated. Figure 3 shows histograms characterizing
the distribution of annotation times for each domain. For the CKB corpus, the majority of articles
took from 56 seconds to just over 16 minutes (≈1000 seconds), but ranged up to 1.73 hours (6275
seconds). SIVAL appears to have two peaks in its distribution, possibly because some objects such as
apple are simple (with fewer segments to be labeled), while others like wd40can are more complex
(composed of many segments, requiring more time). Most images required less than a minute, but
some took as long as 3.4 minutes (204 seconds). The Spec corpus went very quickly, with only
7.6 seconds on average and no sentence taking longer than a minute. The distribution of SigIE is
similar to SIVAL, but with a single mode and fewer apparent outliers. For all data sets, the standard
deviation is more than half the mean (in the case of CKB, even greater), which demonstrates a fairly
high degree of variability. But where does this variance come from? Is it dependent on the annotator,
the nature of the task, or is it simply due to random noise? The rest of this section is aimed at better
understanding this variance and, more importantly, how it can be utilized by the active learner.

Do times vary from one annotator to the next? Figure 4 provides a more detailed look at the
annotation time distributions for each annotator (each identified by a unique ID, e.g., CKB1 and
CKB2 are annotators for the CKB corpus). At a glance, we can see that some annotators look quite
different from their neighbors. Some are generally faster or slower, some have a larger spread in
their annotation times, and some appear more prone to outliers.

We conduct two-sided Kolmogorov-Smirnov (KS) significance tests to see if these apparent differ-
ences are real. For the CKB corpus, four distribution pairs result in statistically significant differ-
ences at the 95% level: CKB1-2, 1-3, 2-4, and 2-5. (After Bonferroni correction, however, only

1http://www.ncbi.nlm.nih.gov/pubmed/
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Figure 3: Histograms illustrating the distribution of annotation times for each data set. Mean annotation times
(µ) and standard deviations (σ) are also reported.
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Figure 4: Box plots showing per-annotator labeling time distributions for each data set. A box represents the
middle 50% of annotation times, and the median is marked with a thick black line. Box heights are scaled in
proportion to the number of instances labeled. Whiskers on either side span the 1st and 4th quartiles of each
distribution, up to 1.5 times the inner-quartile range (i.e., box width). Circles indicate possible outliers.

CKB1-2 remains significant.) For the SIVAL and Spec data sets, all differences are significant. We
conclude from these results that annotation behavior can vary substantially from one annotator to
the next. We argue that, if we wish to leverage annotation cost information into the active learning
process, and annotators exhibit these unique trends, then perhaps annotation cost should be modeled
on a per-annotator basis (we will return to this idea later on).

Are annotation times stationary? It is possible that annotator behavior can change over time.
If this is the case, any modeling of annotation time should be able to account for this variation.
Figure 5 plots each annotator’s average labeling time per instance as a function of the number of
instances labeled thus far (all instances are considered in the order they were actually labeled). As
the figure shows, most annotators are able to work somewhat faster as they progress, although the
most significant gains seem to be during the first few annotations. Presumably, this is because they
are unfamiliar with both the task and the annotation interface early on, but are able to adapt quickly.
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The notable exception of SIVAL1 slowing down is because the annotator’s first few images depicted
simple objects that generally took less time than more typical images. CKB1 and CKB4 decelerate
slightly as well, although they remain much faster on average than at the beginning. These data
indicate that, while most annotators demonstrate a rapid speed-up early during labeling, the “burn-
in” period is brief, and annotation times are relatively stationary thereafter.

How stochastic are annotation times? There are two kinds of noise we might encounter when
measuring annotation time. The first, which we call jitter, is the cumulative effect of small human
and/or machine delays, such as momentary fatigue or computer latency. If the same instance were
labeled multiple times under similar conditions, we would expect to see minor differences in an-
notation time due jitter. The second type of noise, which we call pause, arises from unexpected
interruptions such as a phone call or taking a lunch break. Labeling times subject to pause should
be faster under normal circumstances.

We consider two analyses to try to determine the extent to which jitter and pause factor into two
of our data sets. First, since each instance in the Spec corpus was labeled by all three annotators,
we can assess how well their labeling times correlate with one another. We might think of these re-
dundant labelings as a surrogate for instances being labeled multiple times under similar conditions.
Figure 6(a) shows a scatterplot of annotation times in this corpus for the three annotators. Although
there is a positive correlation among annotators, the correlation is not strong (pairwise correlation
coefficients are between 0.258 and 0.328). This result suggests that jitter has a fairly large effect on
labeling times for this data set. This is probably because the labeling times are short in this domain,
leaving more room for such stochastic effects.

Our second analysis considers the relationship between annotation time and the number of “actions”
for each query in the CKB corpus, as shown in Figure 6(b). If we assume that the time required



to annotate an article is proportional the the number of actions taken, we would expect a strong
correlation between them. Indeed, there is a fairly linear relationship. However, a few articles took
much longer than the number of actions would imply, suggesting that the annotator was somehow
distracted for an extended period. We argue that these large departures from the expected annotation
time are indicative of pause. Note that some annotators seem more prone to pause than others. For
example, CKB1 and CKB3 annotated all of the extreme points in the above figure (as well as the
extreme outliers for CKB in Figure 4). The correlation coefficient between actions and time for both
of these annotators is only 0.108, whereas the other annotators are all between 0.624 and 0.744.

In practice, there is little that can be done about jitter, and we conjecture that its effect on annotation
time is minimal anyway. However, if we wish to reason about annotation time and utilize this
information in active learning, our methods should be able to detect and remain robust to pause.

Can annotation times be accurately predicted? To reduce the total annotation cost in active
learning, we argue that query costs should be taken into account by the learner. Unlike the forms of
cost previously considered by others [7, 9], knowledge about the labeling time for each instance in
our domains is not available to the learner before querying. Therefore, we consider whether or not
these unknown annotation times can be accurately predicted.

We approach this problem as a regression learning task, where each query candidate is described by
a few simple numerical features. For the CKB corpus, we use seven features, such as the number
of words, entities, candidate relations, paragraphs, etc. Note that some of these features depend on
quantities that are unknown at query time, such as the number of entities or relations in an article. To
handle this, we use the current task-model predictions to estimate these quantities (details for task-
models, which are trained alongside the cost-model, are given in the next section). For SIVAL, we
use five features: the min, max, mean, and standard deviation of the image segment sizes (in pixels),
plus the task-model’s predicted number of positive segments. For Spec, we use four features: the
number of ASCII characters, words, and unique features used by the classification task-model (we
use a “bag-of-words” representation, subject to stop-word removal and stemming), plus this task-
model’s uncertainty (i.e., entropy) about the class label. For SigIE, we use four features: the number
of entities, lines, and characters, plus the percentage of characters that are non-alphanumeric. We
emphasize that, for all domains, we made little effort to “engineer” these features. Predicting annota-
tion times could valuable if it can be done with few training instances, and with a minimum of human
effort. Therefore, we run these experiments using our initial intuitions about easy-to-compute, fairly
domain-independent features.

We have experimented with several regression learning algorithms using these representations, and
found the SMO algorithm [18] for support vector regression to be the most accurate. To evaluate the
accuracy of the cost-model’s prediction p against the true annotation time t, we use the correlation
coefficient2 r =

P
i(pi−µp)(ti−µt)

(n−1)σpσt
, where µt and σt are the mean and standard deviation of t,

respectively. We plot learning curves averaged using ten-fold cross-validation (five-fold for CKB).
Following previous work on SIVAL [17], experiments in that domain are done on a binary per-class
basis and averaged over 20 independent runs. Half the positive images are used for the training pool
and the other half are held aside for evaluation.

Results for the annotation-time prediction experiments are shown in Figure 7. These plots show
that, in general, annotation times appear to be fairly learnable. We emphasize that where this is the
case, they can be learned from only a few instances. One exception is the SIVAL data set, which
seems generally unlearnable using our representation (for most image objects we tested, correla-
tion is nearly zero). On the other hand, the CKB2 cost-model reaches a correlation of 0.626, the
Spec(combined) model achieves 0.587, and the SigIE model reaches 0.852 (the most accurate by
far). To show that these learned cost-models are better than simple linear functions of length (as
considered by Kapoor et al. [7]), we report correlation coefficients between annotation time and
the document length (in characters) for the following: CKB2 = 0.291, Spec(combined) = 0.572,
and SigIE = 0.455. Other simple estimators we tried (e.g., number of words, lines, or sentences)
produce similar results. This demonstrates that at least the CKB2 and SigIE cost-models produce
significantly more accurate estimates of cost than a simple heuristic approach.

2We have also evaluated these cost-models using relative absolute error, but omit these results here due to
space and because they are consistent with the correlation coefficient results.
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Figure 7: Learning curves for predicting annotation time in terms of correlation coefficient. CKB plots show
three curves: annotator-specific models for CKB1 and CKB2, plus all annotators pooled together. Spec plots
include a model that predicts the combined time for all annotators, compared to each annotator-specific model.

We also see that the cost-model predicting CKB2-specific labeling times is more accurate than the
one predicting times for CKB1, or for all annotations pooled together. We know from Figure 4 that
labeling behavior varies greatly from one annotator to the next. We conclude that these differences
can have an acute impact on how learnable labeling behavior is. We noted earlier that CKB1 was
prone to a type of noise called pause, while CKB2 is not. This probably widens the gap in accuracy
between their two models: since the CKB1-specific learner does not detect and handle pause, it
may be prone to learn this noise. We see some variation in learnability among Spec annotators as
well, though it is far less profound. Interestingly, the cost-model that aims to predict the combined
annotation time of all Spec annotators is the most accurate. We hypothesize that this is because the
combined annotation time factors out some of the effects of jitter, the other type of noise.

Can we improve active learning by utilizing cost information? So far, we have presented an
extensive analysis of the nature and learnability of annotation time as a labeling cost. We now
consider whether or not predicted annotation times can benefit an active learner by reducing the
amount of time required to achieve a certain level of accuracy.

A common approach to active learning is uncertainty sampling [11], in which the learner queries
the instances whose labelings are least certain. In this study, we use probabilistic models for which
uncertainty can be estimated using the entropy over the label posteriors. Let the uncertainty φ of
an instance x be: φ(x) = −

∑
i P (yi|x; θ) log P (yi|x; θ), where each yi is a possible labeling of x

according to the task-model θ. The best query, then, is the instance with the greatest value of φ(x).

For the CKB corpus, we use a CRF trained with a typical NER feature set [15] to extract entities. The
CRF parses one sentence at a time, and we dynamically generate a set of candidate relations based
on the predicted entities. These relations are described with contextual features (e.g., entity labels
and the bag-of-words between them), and then classified with a maximum entropy model [2]. We
treat relation extraction as a seven-label classification task: the six legal relations plus no-relation.
Unlike the typical active learning setting, a query in the CKB domain is an article, which in fact
is a set of instances: an entity sequence (plus several candidate relations) per sentence. For sim-
plicity, we treat each instance in article X as independent, thus the article uncertainty is given by
φ(X ) =

∑
x∈X φ(x), the sum of all its instance entropies. Following previous work on active

learning for sequence labeling [16], we approximate φ(x) for the input sequence x using only the
N -best parses, rather than enumerating all possibly label sequences y. We also generate candidate
relations at query time based on the most likely parse of each entity sequence. For Spec, we train a
maximum entropy model using bag-of-words features subject to stop-word filtering and stemming.
Since a query in this domain corresponds to a single instance x, estimating φ(x) is straightforward.
For SigIE, we use the same feature set as in CKB (minus syntactic features). A query for this task is
a single sequence x, thus estimating φ(x) is straightforward with the N -best approximation.

We compare standard entropy-based query selection with a simple “bang for your buck” cost-
sensitive approach, where entropy is divided by the predicted labeling time for an instance. We
employ our cost-models from before, which are trained alongside these task-models (using only
the labeled instances) to predict the labeling time. We also compare against two baselines: the
cost-sensitive method using known annotation times, and random sampling. The task-models are
evaluated with the F1 measure and averaged using ten-fold cross-validation (five-fold for CKB).
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Results for these active learning experiments are shown in Figure 8. For the CKB and SigIE corpora,
the standard entropy-based strategy does not reduce the time required to achieve the same accuracy
as random sampling. However, it is important to note that when these curves are instead plotted as a
function the number of queries (not shown here), entropy does produce better learning curves. This
indicates that naı̈ve uncertainty sampling is prone to select informative, but time-consuming queries
for these problem domains, resulting in no net reduction in cost.

While our cost-sensitive approach using predicted annotation times does not outperform the random
baseline for CKB, we do see significant gains when the annotation time is known. This indicates
that better learning curves can be achieved if labeling time can be predicted accurately and utilized
appropriately. We note that, while we only report the CKB2 relation subtask here, results for CKB1
and both their entity subtasks are nearly identical. For the Spec corpus, standard entropy-based
active learning does produce better curves, and in this case our cost-sensitive variants are roughly
equivalent. We surmise that this is because annotation times are indeed approximately constant
(with observed variations being due to jitter), thus cost information is of little value. Curves for the
SigIE task are interesting because cost-sensitive active learning with known costs actually performs
worse than random. We suspect that the greedy approach we use here may not properly utilize cost
information for this task. Another explanation is that shorter instances may actually contain less
valuable information. For example, a brief email signature might only contain name and email
fields and is therefore quick to annotate, but lacks important rare fields such as jobtitle or phone.
This result underscores the importance of understanding the relationship between the annotation
cost of an instance and its overall value to the learner.

4 Conclusions and Future Work

To date, most work in active learning has assumed that the cost of acquiring a label is the same for all
instances. Some recent work has considered cases where labeling costs are variable, but these have
either assumed that the cost is known for each instance [9, 13] or can be approximated by a simple
estimator [7]. In this paper, we have presented an extensive empirical study of annotation costs in
four real-world text and image domains. To our knowledge, this is the first empirical investigation of
annotation costs in a real setting. Our analysis provides several conclusions that have implications
for active learning in domains where labeling is done by human annotators:

• In most of the problem domains we consider, annotation costs are not (approximately)
constant across instances, and can instead vary considerably.

• Consequently, active learning approaches which ignore cost information may perform no
better than random instance labeling. However, improved learning curves are achievable if
an active learner can take these variable costs into account appropriately.

• In some domains, the cost for annotating an instance may not be intrinsic, but instead vary
according to the person doing the annotation.

• In some domains, the measured cost for an annotation may include a stochastic component.
The effects of this seem to depend, in part, on the typical time required to label an instance,
and the proficiency of the annotators.

• In some domains, we can accurately learn to predict annotation costs, even after seeing
only a few training examples.



This last result suggests that, even when annotation costs are not known before querying, an active
learner may be able to profitably reason about them. We propose exploiting this by training a cost-
model to predict annotation costs while simultaneously training the actual task-model. However, the
simple “bang for your buck” cost-sensitive approach considered here does not appear to capture the
necessary aspects of the problem. A main focus in future work will be to investigate cost-sensitive
active learning strategies that are more robust when given approximate, predicted annotation costs.
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