
Active Object Recognition in Parametric
Eigenspace�

Hermann Borotschnig, Lucas Paletta, Manfred Prantl and Axel Pinz
Institute for Computer Graphics and Vision,

Technical University Graz,
Münzgrabenstr. 11, A-8010 Graz, Austria,
[last name]@icg.tu-graz.ac.at

Abstract

We present an efficient method within an active vision framework for rec-
ognizing objects which are ambiguous from certain viewpoints. The system
is allowed to reposition the camera to capture additional views and, there-
fore, to resolve the classification result obtained from a single view. The ap-
proach uses an appearance based object representation, namely the paramet-
ric eigenspace, and augments it by probability distributions. This captures
possible variations in the input images due to errors in the pre-processing
chain or the imaging system. Furthermore, the use of probability distribu-
tions gives us a gauge to view planning. View planning is shown to be of
great use in reducing the number of images to be captured when compared to
a random strategy.

1 Introduction

Most computer vision systems found in the literature perform object recognition on the
basis of the information gathered from a single image. Typically, a set of features is
extracted and matched against object models stored in a database and much research in
computer vision has gone in the direction of finding features that are capable of discrim-
inating objects [1]. However, this approach faces problems once the features available
from a single view are simply not sufficient to determine the identity of the observed ob-
ject. Such a case happens, for example, if there are objects in the database which look very
similar from certain views (ambiguous objects); a difficulty that is compounded when we
have large object databases.

A solution to this problem is to utilize the information contained in multiple sensor
observations.Active recognition[2, 12] provides the framework for collecting evidence
until we obtain a sufficient level of confidence in one object hypothesis. There have been
several approaches to explore the merits of this framework, for example, to the tasks of
remote-sensing [10] and object recognition [3, 9]. From the viewpoint of active recog-
nition the work most closely related to ours is probably that by Hutchinson and Kak [4]
and by Callari and Ferrie [2]. Hutchinson and Kak describe an active object recognition
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system based on Dempster-Shafer belief accumulation. The action which minimizes a
newly defined measure of ambiguity is performed next. They use various actively con-
trolled sensors, most prominently a range-finder and a CCD-camera. The experiments
are performed in a blocks-world environment. Callari and Ferrie base their active object
recognition system on model-based shape, pose and position reconstructions from range
data. They estimate Bayesian probabilities with neural nets and choose those steps that
minimize the expected ambiguity measured by Shannon entropy. Previous work has also
been reported in planning sensing strategies. Murase and Nayar [6] have presented an ap-
proach for illumination planning in object recognition by searching regions in eigenspace
where object-manifolds are best separated. A conceptually similar strategy will be fol-
lowed below. However, Murase and Nayar have limited their approach to an off-line
planning phase using no active steps.

Active recognition accumulates evidence collected from a multitude of sensor obser-
vations and thus, in a sense, moves the burden of object recognition slightly away from
the process used to recognize a single view to the process of integrating the classification
results of multiple views. Nevertheless, the system still has to provide tentative object hy-
potheses for a single view (see [11] for a recent review on research in object recognition).

The system we present in this paper uses a modified version of Murase’s and Nayar’s
[7] appearance based object recognition system to provide object classifications for a
single view and augments it by active recognition components. Murase’s and Nayar’s
method was chosen because it does not only result in object classification but also gives
accurate pose estimation (a prerequisite for active object recognition).

2 Object recognition in parametric eigenspace

Appearance based approaches to object recognition, and especially the eigenspace method,
have experienced a renewed interest in the computer vision community [13, 8, 7] due to
their ability to handle combined effects of shape, pose, reflection properties and illumi-
nation. Furthermore, appearance based object representations can be obtained through an
automatic learning procedure and do not require the explicit specification of object mod-
els. As the eigenspace object recognition method proposed by Murase and Nayar forms
the basis for our recognition system, we shall give a brief description of their approach in
the remainder of this section (more detail can be found in [7]).

The eigenspace approach requires an off-line learning phase during which images
of all objects from many different views are used to construct the eigenspace. In sub-
sequent recognition runs the test images are projected into the learned eigenspace and the
closest model point is determined. In a preprocessing step it is ensured that all images
of all objects are of the same size and that they are normalized with regard to overall
brightness changes due to variations in the ambient illumination or aperture setting of the
imaging system. These normalized images can then be written as a vectorx by reading
pixel brightness values in a raster scan manner, i.e.,x = (x1; : : : ; xN )

T with N being
the number of pixels in an image.X := (x1;1;x2;1; : : : ;xM;P ) denotes a set of images
with M being the number of models (objects) andP being the number of images used
to sample the variations in pose or other parameters for each model1. Next, we define
theN � N covariance matrixQ := XXT and determine the eigenvectorsei and the

1In order to simplify notation we assumeX having zero mean.
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corresponding eigenvalues�i. We assume that the number of images,MP , is much
smaller than the number of pixels in an image,N , and thus efficient methods to calculate
the firstMP eigenvectors can be used (see [7] for a discussion of various numerical
techniques). SinceQ is real and symmetric, we may assume that< ei; ej >= Æij . We
sort the eigenvectors in descending order of eigenvalues. The firstk eigenvectors are then
used to represent the image setX to a sufficient2 degree of accuracy:xi;j �

Pk

s=1 gses,
with gs =< es;xi;j >. We call the vectorgi;j := (g1; : : : ; gk) the projection ofxi;j
into the eigenspace. Under small variations of the parametersj for a fixed objecti the
imagexi;j will usually not be altered drastically. Thus for each objecti the projections
of consecutive imagesxi;j are located on piece-wise smooth manifolds in eigenspace
parameterized byj.

In order to recover the eigenspace coordinatesgy of an image vectory during the
recognition stage,y is projected into the eigenspace, i.e.,gy = (e1; e2; : : : ; ek)

Ty. The
objectm that has minimum distancedm between its manifoldgi;j andgy is assumed to
be the object in question:dm = miniminj kgy � gi;jk. This gives us both: an object
hypothesis and a pose estimation. In order to improve the pose estimation Nayar and
Murase have suggested to use also individual object eigenspaces that are built by taking
only images from one specific object for all values of the parametersj. Once the object
hypothesis has been obtained using the universal eigenspace the imagey is also projected
into the eigenspace of objectm and a better estimate of the parameterj is obtained.

3 Probability distributions in eigenspace

Before going on to discuss active fusion in the context of eigenspace object recognition
we extend Nayar and Murase’s concept of manifolds by introducing probability densities
in eigenspace (Moghaddam and Pentland [5] also used probability densities in eigenspace
for the task of face detection and recognition). Let us denote byp(gjoi; 'j) the likelihood
of ending up at pointg in the eigenspace of all objects projecting an image of objectoi
with pose parameters'j . 3 The likelihood is estimated from a set of sample images with
fixed oi; 'j . The samples capture the inaccuracies in the parameters' such as location
and orientation of the objects, fluctuations in imaging conditions such as moderate light
variations, pan,tilt and zoom errors of the camera and segmentation errors. With the rule
of conditional probabilities we obtain

P (oi; 'j jg) =
p(gjoi; 'j)P ('j joi)P (oi)

p(g)
(1)

In our experimentsP ('j joi) andP (oi) will be uniformly distributed. Given the vectorg
in eigenspace the conditional probability for seeing objectoi is

P (oijg) =
X
j

P (oi; 'j jg): (2)

Nayar and Murase’s approach consists in finding an approximate solution forom =
argmaxi P (oijg) by searching for the minimum distance to the next manifold. We can

2Sufficient in the sense ofsufficient for disambiguating various objects. Quantitatively we demandP
k

i=1
�i=Trace(Q) > threshold.

3We use capitalP to indicate probabilities and lower casep to indicate probability densities.
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restate this approach in the above framework and thereby make explicit the underlying
assumptions. We obtain Nayar and Murase’s algorithm if we

1. estimateP (oi; 'j jg) = f(kgi('j)� gk) with f(x) > f(y) , x < y. Thus they
assume that the mean of the distribution lies at the one captured or interpolated po-
sitiongi('j). The distributions are radially symmetric and share the same variance
for all objectsoi and all poses'j . With this estimation the search for minimum
distance can be restated as a search for maximum posterior probability:

argmax
i;j

P (oi; 'j jg) = argmin
i;j
kgi('j)� gk :

2. In the calculation of the object hypothesis the sum in equation (2) is approximated
by its largest term:

P (oijg) � max
j
P (oi; 'j jg)) argmax

i
P (oijg) = argmin

i
min
j
kgi('j)� gk :

The first approximation may be error-prone as the variance and shape of the proba-
bility distributions in eigenspace may differ from point to point. In our experiments we
have found it necessary to modelp(gjoi; 'j) with a multivariate normal distribution. The
second approximation may lead to mistakes in case only a few points of the closest mani-
fold lie near tog while a lot of points of the second-closest manifold are located not much
further away.

4 Active object recognition

Active steps in object recognition will lead to striking improvements if the object database
contains objects that share similar views. The key process to disambiguate such objects
is a planned movement of the camera to a new viewpoint from which the objects appear
distinct. We will tackle this problem now within the framework of eigenspace based object
recognition. In order to emphasize the major ideas only one degree of freedom (rotation
around z-axis) is assumed in the following. Note, however, that the following discussion
on active object recognition is quite general and can be extended to any number of degrees
of freedom. Furthermore, it is not limited to the eigenspace recognition approach but its
overall steps can also be adapted to other appearance based object recognition techniques.

4.1 View classification and pose estimation

During active recognition step numbern a camera movement is performed to a new view-
ing position at which an imageIn is captured. The viewing position n is known to the
system through n = � 1+ ::+� n where� k indicates the movement performed at
stepk. Processing of the imageIn consists of figure-ground segmentation, normalization
(in scale and brightness) and projection into the eigenspace, thereby obtaining the vector
gn = gn(In).

Given input imageIn we seek from the object recognition system on the one hand
a classification result for the object hypothesesP (oijIn) while on the other hand a pos-
sibly separate pose estimator should deliverP ('nj joi; In). The superscript'nj is used
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to indicate that the estimation has been obtained after processing imageIn at hard-
ware position n. In eigenspace recognition we obtain through eq. (1) the quantity
P (oi; '

n
j jIn) := P (oi; '

n
j jgn) from the probability distributions in the eigenspace of

all objects. From that quantity we can calculateP (oijIn) := P (oijgn) as indicated by
eq. (2). For the experiments described below the pose estimation obtained by using the
eigenspace of all objects has turned out to be sufficiently accurate. Therefore we use
P ('nj joi; In) = P (oi; '

n
j jIn)=P (oijIn).

In order to ensure consistency when fusing pose estimations obtained at different
hardware-positions each pose estimation has to be transformed to a fixed set of coor-
dinates of the hardware setup. We use the quantityP ('j joi; In;  n) to denote the proba-
bility of having the object pose'j at the fixed hardware position = 0 after processing
of In. Since the real imageIn has been captured at position n this probability is related
to P ('nj joi; In) throughP (oi; 'j jIn;  n) := P (oi; '

n
j +  njIn). It is P (oi; 'j jIn;  n)

that will be used for fusion. For ease of notation we will omit the dependence on n in
the following and distinguish the two probabilitiesP (oi; 'j jIn) andP (oi; 'nj jIn) solely
through the superscript on'nj .

4.2 Information integration

The currently obtained probabilitiesP (oijIn) andP ('j joi; In) for object hypothesisoi
and pose hypothesis'j are used to update the overall probabilitiesP (oijI1; ::; In) and
P ('j joi; I1; ::; In). For the purpose of updating, the outcome of individual observations
is assumed to be conditionally independent givenoi and we obtain (assuming equal priors)

P (oijI1; ::; In) / P (oijI1; ::; In�1)P (oijIn) (3)

P ('j joi; I1; ::; In) / P ('j joi; I1; ::; In�1)P ('j joi; In) (4)

P (oi; 'j jI1; ::; In) = P ('j joi; I1; ::; In)P (oijI1; ::; In) (5)

4.3 View planning

View planning consists in attributing a scoresn(� ) to each possible movement� of
the camera. The movement obtaining the highest score will be selected next:

� n+1 := argmax
� 

sn(� ) (6)

The score measures the utility of action� , taking into account the expected reduction
of entropy for the object hypotheses. We denote entropy by

H(oijg1; ::;gn) := �
X
oi

P (oijg1; ::;gn) logP (oijg1; ::;gn) (7)

whereP (oijg1; ::;gn) = P (oijI1; ::; In) as each of the real imagesIk translates deter-
ministically into an eigenspace vectorgk = gk(Ik). Other factors may be taken into
account such as the cost of performing an action. For the purpose of demonstrating the
principles of active fusion in object recognition, we have restricted attention to the average
entropy reduction using

sn(� ) :=
X
oi;'j

P (oi; 'j jI1; ::; In) �H(� ; oi; 'j ; I1; ::; In): (8)
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The term�H measures the entropy loss to be expected, ifoi; 'j were the correct object
and pose hypotheses and step� is performed. In the calculation of the scoresn(� )
this entropy loss is weighted by the probabilityP (oi; 'j jI1; ::; In) for oi; 'j being the
correct hypotheses. The expected entropy loss is again an average quantity given by

�H(� ; oi; 'j ; I1; ::; In) :=

H(oijg1; ::;gn)�

Z



p(gjoi; 'j +  n +� )H(oijg1; ::;gn;g)dg (9)

The integration runs over the whole eigenspace
. Note thatH(oijg1; ::;gn;g) on the
right hand side of eq. (9) implies a complete tentative fusion step performed with the
hypothetically obtained eigenvectorg at positionoi; 'j +  n +� . Usually evaluation
of the averages in eq. (8) and (9) will be time consuming. Restricting attention only to the
most probable initial positionsoi; 'j in eq. (8) and efficient sampling of the average in eq.
(9) are reasonable simplifications. Once a set of samplesgs has been fixed the likelihoods
on the right hand side of eq. (9) and the probabilitiesP (oi; 'j jgs) needed to calculate
H(oijg1; ::;gs) can be computed off-line, thereby increasing the speed of planning con-
siderably. Alternatively one may implicitly learn a useful strategy from experience [9] but
this requires an extensive training phase beforehand.

In order to avoid capturing views from similar viewpoints over and over again the
score as calculated with eq. (8) is multiplied by a mask that is zero at the already visited
locations and rises to1 as the distance from these locations increases.
The process terminates if entropyH(oijg1; ::;gn) is lower than a pre-specified value or
no more reasonable actions can be found (maximum score too low).
                                                                                                

o1 o2 o3 o4 o5 o6 o7 o8                                                                                    

o7                                                                                    

o8

Figure 1: Each of the objects (top row) is modeled by a set of 2-D views (below, for object
o1). A marker is attached at the rear side of objecto8 to discriminate it from objecto7
(bottom right).

5 Experiments

The proposed recognition system was tested with8 objects (Figure 1) of similar appear-
ance concerning shape, reflectance and color. For comparison reasons, two objectso7
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ando8 are identical but discriminated by a white marker which is attached at the rear
side of objecto8. The items were rotated on a computer-controlled turn-table by5Æ in-
tervals, with constant illumination and fixed distance to the camera. The object region is
automatically segmented from the background using a combined brightness and gradient
threshold operator, while pixels classified as background are set to zero gray level. Im-
ages are then rescaled to100 � 100 pixels and projected to an eigenspace of dimension
3 (see section 6 for comments on the unusually low dimensionality). For each view, ad-
ditional samples are collected, emulating possible segmentation errors. The object region
in the normalized image is shifted into a randomly selected direction by3% of the image
dimension, as proposed in [6].

The sample distribution in eigenspace, drawn for a single object, is depicted in Fig-
ure 2a. The significant overlap between manifolds of all objects, computed by interpola-
tion between the means of pose distributions (Figure 2b), visualizes the overall ambiguity
in the representation.

For a probabilistic interpretation of the data, the likelihood of a sampleg, p(gjoi; 'j),
given specific objectoi and pose'j , is modeled by a multivariate Gaussian density
N(�i;j ;�i;j), where mean�i;j and covariance�i;j are estimated from the data that have
been corrupted by segmentation errors. From this estimate both object (eq. (2), (3)) and
pose (eq. (2), (4), (5)) hypotheses are derived, assuming uniform probability of the priors.
For objecto7 the ambiguity in the classification of object membership is demonstrated

−0.6 −0.4 −0.2 0 0.2 0.4

−0.4
−0.2

0
0.2

0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

e1
e2

e3

(a) Sample distribution

−0.6 −0.4 −0.2 0 0.2 0.4

−0.5

0

0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

e1
e2

e3

(b) Manifolds

−0.4
−0.2

0
0.2

0.4

−0.3−0.25−0.2−0.15−0.1−0.0500.050.1
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

e1
e2

e3

o7

o890°

170°

(c) Marker distance

Figure 2: Eigenspace representation (a) of object1 with the interpolated manifold (line)
and samples (dots, emulating segmentation errors); (b) manifolds of all8 objects; (c)
distance between the manifolds of two similar objects introduced by a discriminative
marker feature.

in the distribution of entropies over different poses in Figure 3a. The minimum at�170Æ

indicates the most discriminative view which contributes to the distinction from objecto8
due to the attached marker. The local minimum at�0Æ specifies a pose where the similar
objectso7 ando8 are favored whereas the others are sorted out. (Figure 3b).

Table 1 depicts the probabilities for the object hypotheses in a selected run that fin-
ished after three steps obtaining an entropy of0:17 (threshold0:2) and the correct object
and pose estimations. Objecto7 had been placed on the turn-table with pose0Æ. Note
that the run demonstrates a hard test for the proposed method. The initial conditions
have been chosen such that the first image when projected into the3(!)�dimensional
eigenspace does not favor the correct hypotheses. Consequently, object recognition rely-
ing on a single image would favor erroneously objecto3 at pose0 (pose estimations are
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Figure 3: (a) The average entropy of the estimated posteriorsp(oij'j ;g) of the samplesg
at each pose'j of objecto7 (error bars denote standard deviations). (b) The corresponding
means of the confidences ino7 indicate the evidence provided by the views.

not depicted in table 1). Only additional images can clarify the situation.
A set of test runs has been performed. The average number of steps required to find

the correct answer has been2:6. This number has to be compared to12:8, the average
number of steps required to find the correct answer when using a random strategy. The
high number of steps in the random strategy is due to the highly overlapping probability
distributions in three dimensions. Random placement often ends in regions where no
object hypothesis is clearly favored and thus “confuses” the system.

6 Conclusions

We have presented an active object recognition system for single object scenes. Depend-
ing on the uncertainty in the current object classification the recognition task acquires
new sensor measurements in a planned manner until the confidence in a certain hypothe-
sis obtains a pre-defined level or another termination criterion is reached. The well known
object recognition approach using eigenspace representations was augmented by proba-
bility distributions in order to capture possible variations in the input images due to errors
in the pre-processing chain. Furthermore, probabilistic object classifications (instead of
hard decisions) can be used as a gauge to perform view planning. View planning is based
on the expected reduction in Shannon entropy over object hypotheses given a new view-
point.

The experimental results lead to the following conclusions:

1. The dimension of the eigenspace can be lowered considerably, if active recognition
is guiding the object classification phase. This fact opens the way to the use of
very large object databases containing e.g.500 objects at72 (i.e., 5Æ rotation)
views where eigenspace construction is feasible with todays computing resources
only if its dimension stays low enough (around200 = 0:5% of 36; 000 images).
The traditional eigenspace methods are likely to face problems if the eigenspace
dimensionality is too low relative to the number of objects represented (due to the
overlapping manifolds).
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2. Even objects sharing most of their views can be disambiguated by an active move-
ment that places the camera such that the differences between the objects become
apparent. That is, active recognition tries to identify those regions in eigenspace
where the manifold representations are well separated.

3. The planning phase is necessary and beneficial as random placement of the camera
leads to distinctively worse results.
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Figure 4: (a) Sample pose sequence actuated by the planning system (see Table 1). A
comparison of averaged trial lengths (b) between a random (top) and the presented look-
ahead policy (below) illustrates the improved performance.

 0 = 0Æ  1 = 290Æ  2 = 125Æ  3 = 170Æ

oi P (oijg0) Pf P (oijg1) Pf P (oijg2) Pf P (oijg3) Pf
1 0.001 0.001 0.000 0.000 0.139 0.000 0.000 0.000
2 0.026 0.026 0.000 0.000 0.000 0.000 0.000 0.000
3 0.314 0.314 0.097 0.203 0.055 0.074 0.091 0.013
4 0.027 0.027 0.096 0.017 0.097 0.011 0.002 0.000
5 0.000 0.000 0.098 0.000 0.335 0.000 0.032 0.000
6 0.307 0.307 0.015 0.031 0.009 0.001 0.224 0.000
7 0.171 0.171 0.354 0.403 0.224 0.597 0.822 0.967
8 0.153 0.153 0.338 0.344 0.139 0.315 0.032 0.019

Table 1: Probabilities for object hypotheses in one run (see Figure 4).Pf are the fused
probabilitiesP (oijg1; ::;gn).

References
[1] I. Biederman. Recognition-by-components: A theory of human image understanding.Psy-

chological Review, 2(94):115–147, 1987.

[2] F. G. Callari and F. P. Ferrie. Autonomous Recognition: Driven by Ambiguity. InProc. Int.
Conf. Computer Vision and Pattern Recognition, pages 701–707, 1996.

[3] K.D. Gremban and K. Ikeuchi. Planning Multiple Observations for Object Recognition.In-
ternational Journal of Computer Vision, 12(2/3):137–172, 1994.



638 British Machine Vision Conference

[4] S.A. Hutchinson and A.C. Kak. Multisensor Strategies Using Dempster-Shafer Belief Accu-
mulation. In M.A. Abidi and R.C. Gonzalez, editors,Data Fusion in Robotics and Machine
Intelligence, chapter 4, pages 165–209. Academic Press, 1992.

[5] B. Moghaddam and A. Pentland. Probabilistic Visual Learning for Object Recognition.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(7):696–710, July 1997.

[6] H. Murase and Shree K. Nayar. Illumination Planning for Object Recognition.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 16(12):1219–1227, 1994.

[7] Hiroshi Murase and Shree K. Nayar. Visual Learning and Recognition of 3-D Objects from
Appearance.International Journal of Computer Vision, 14(1):5–24, January 1995.

[8] S. Nayar, H. Murase, and S. Nene. General Learning Algorithm for Robot Vision. In SPIE,
editor, Neural and Stochastic Methods in Image and Signal Processing, volume 2304, July
1994.

[9] L. Paletta, M. Prantl, and A.Pinz. Reinforcement Learning for Autonomous Three-
Dimensional Object Recognition. InProc. 6th Symposium on Intelligent Robotic Systems.
Edinburgh, UK,, 1998. in print.

[10] A. Pinz, M. Prantl, H. Ganster, and Hermann Kopp-Borotschnig. Active Fusion - A New
Method Applied to Remote Sensing Image Interpretation.Pattern Recognition Letters,
17(13):1349–1359, 1996. Special issue on ‘Soft Computing in Remote Sensing Data Analy-
sis’.

[11] Arthur R. Pope. Model-Based Object Recognition: A Survey of Recent Research. Technical
Report 94-04, The University of British Columbia - Department of Computer Science, January
1994.

[12] M. Prantl, H. Borotschnig, H. Ganster, D. Sinclair, and A. Pinz. Object Recognition by Active
Fusion. InIntelligent Robots and Computer Vision XV: Algorithms, Techniques, Active Vision,
and Materials Handling, volume 2904, pages 320–330. SPIE, 1996.

[13] M. Turk and A. Pentland. Eigenfaces for Recognition.J. Cognitive Neuroscience, 3(1), 1991.


