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Active Online System Identification of Switch Mode
DC–DC Power Converter Based on Efficient

Recursive DCD-IIR Adaptive Filter
Maher Algreer, Matthew Armstrong, and Damian Giaouris

Abstract—This paper introduces a novel technique for online
system identification. Specific attention is given to the parame-
ter estimation of dc–dc switched-mode power converters; however,
the proposed method can be applied to many alternative appli-
cations where efficient and accurate parameter estimation is re-
quired. The proposed technique is computationally efficient, based
on a dichotomous coordinate descent algorithm, and uses an infi-
nite impulse response adaptive filter as the plant model. The sys-
tem identification technique reduces the computational complex-
ity of existing recursive least squares algorithms. Importantly, the
proposed method is also able to identify the parameters quickly
and accurately, thus offering an efficient hardware solution that
is well suited to real-time applications. Simulation analysis and
validation based on experimental data obtained from a prototype
synchronous dc–dc buck converter is presented. Results clearly
demonstrate that the estimated parameters of the dc–dc converter
are a very close match to those of the experimental system. The
approach can be directly embedded into adaptive and self-tuning
digital controllers to improve the control performance of a wide
range of industrial and commercial applications.

Index Terms—Adaptive filter, dichotomous coordinate descent
(DCD), infinite impulse response (IIR) adaptive filter, recursive
least squares (RLS), switch mode dc–dc power converter, system
identification.

I. INTRODUCTION

MANY industrial and consumer devices rely on switched-
mode power converters (SMPCs) to provide a reliable,

well-regulated, dc power supply. A poorly performing power
supply can potentially compromise the characteristic behavior,
efficiency, and operating range of the device. To ensure accurate
regulation of the SMPC, optimal control of the power con-
verter output is required. However, SMPC uncertainties, such
as component tolerances, unpredictable load changes, variation
in ambient conditions, and ageing effects, affect the perfor-
mance of the controller over time [1]–[3]. To compensate for
these time-varying problems, there is now increasing interest
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in employing real-time adaptive control techniques in SMPC
applications. Here, the controller tuning is based upon online
system identification (parameter estimation) techniques and ad-
justed according to regular parameter updates.

Clearly, for a high-performance controller with good dynamic
performance, accurate estimation of the system parameters is
essential [4]. Normally, in digitally controlled systems, a dis-
crete transfer function model of the plant is used for the control
design [4], [5]. The actual form of the transfer function, and
the numerical values of its coefficients, is dependent upon the
individual parameters of the plant to be controlled. It is the fun-
damental role of the system identification process to evaluate
each coefficient of the transfer function [6]. In many applica-
tions, it is very important that the coefficients are calculated
as accurately as possible, since this will ultimately determine
the closed-loop controller response. However, in SMPC appli-
cations, it is also necessary to acquire the system parameters
rapidly. The time constants in pulse width modulation (PWM)
switched power converters are often very short, and it is not
uncommon for abrupt load changes to be observed. Any sys-
tem identification scheme must be able to respond appropriately
to these characteristics. However, achieving improved accuracy
and/or speed also implies the need for a faster, more powerful
microprocessor platform. This is not always viable in SMPC
applications, especially small, high volume systems, where it is
essential to keep system costs low and competitive. Therefore,
there is a need for computationally light system identification
schemes which enable these advanced techniques to be per-
formed on lower cost hardware. This paper aims to address this
issue by presenting a method of SMPC system identification.

II. SYSTEM IDENTIFICATION METHODS

When identifying the model of an unknown system, there
are two system identification approaches that can be used: para-
metric and nonparametric estimation techniques [7]–[9]. Recent
research demonstrates several productive parametric and non-
parametric system identification techniques for power electronic
converter applications. Nonparametric methods often use spec-
tral analysis and correlation analysis to estimate the frequency
response or impulse response of the system. The behavior of the
system is then estimated from the frequency response without
using any parametric modeling [7]–[9]. In SMPC applications,
nonparametric methods often consider perturbing the duty cycle
with a frequency rich input signal; for example, a pseudo ran-
dom binary sequence (PRBS) [9]. Typically, Fourier transform
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methods are then applied to find the frequency response of the
system. Unfortunately, the identification process can take signif-
icant amounts of time to complete and may need to process long
data sequences [2]. In addition, during the identification pro-
cess, the system operates in open loop without regulation [10].
Therefore, Barkley and Santi [11] developed a technique where
the discrete dynamic system can be identified without having
to run open loop during the identification process. Following
on from this, Roinila et al. [12] proposed a new method based
on Fourier amplitude spectrum, using a maximum length PRBS
to improve the sensitivity to disturbances in the system. While
these methods are fairly straight forward to implement, design-
ing a controller using nonparametric system identification meth-
ods is usually limited to frequency response methods only.

In parametric techniques, a model structure is proposed [9]
and the parameters of the model are identified using information
extracted from the system [7]. Therefore, in parametric identifi-
cation, it is necessary to define the order and overall structure of
the system model (number of poles, zeros) prior to estimating
the plant [8]. The selected candidate model is always application
dependent and its complexity is often subject to the approxima-
tions which can be made. For example, a dc–dc buck converter
can be represented as a second-order infinite impulse response
(IIR) filter [13]. This provides an “average model” of the con-
verter and will characterize the basic operation of the system.
It will not, however, show the PWM switching frequency com-
ponent in the output voltage. Provided the switching behavior
is not of immediate concern, the second order candidate model
will suffice. Once the model has been chosen, several approaches
can be used to identify the system parameters; for instance, least
mean squares, recursive least squares (RLS), maximum likeli-
hood, and subspace methods [7], [14]. Recursive identification
methods are a very familiar approach in online applications.
However, these methods, and in particular RLS, are not fully
exploited in low-cost, low-power SMPCs due to the computa-
tional complexity of the identification algorithm, which may
require a high-specification microprocessor to successfully im-
plement. Clearly, this is not desirable from an industry point of
view where minimal cost and low complexity are key design
drivers. Zhenyu and Prodic [10] present a hardware-efficient
online parametric estimation technique based on inserting limit
cycle oscillations (LCO) [15] into the output response of the
power converter during steady-state operation. Amplitude and
frequency information are then extracted from the LCO signal to
find the dc–dc converter parameters (corner frequency and qual-
ity factor) [16]. While hardware efficient, this method results in
lower system identification accuracy [15].

Pitel and Krein [13] introduce a real-time parametric iden-
tification method using a classical RLS technique. It identifies
the parameters of an open-loop buck converter during abrupt
load changes from the control signal to inductor current transfer
function. This study accurately estimates the parameters during
initial start-up of the system, and during relatively slow load
changes. Algreer et al. [6] successfully adopted a method from
the telecommunication field (originally presented by Chang
et al. [17]) using fuzzy variable forgetting factor RLS to iden-
tify abrupt load changes in a closed-loop dc–dc converter. Miao

Fig. 1. Proposed closed-loop adaptive IIR identification method using DCD-
RLS algorithm.

et al. [4] present a dual identification approach; here, paramet-
ric and nonparametric methods are combined to estimate the
parameters of an SMPC and then to directly design a digital
controller. Implementing two methods is clearly more complex
and computationally heavy for online system identification pur-
poses. Therefore, it is more suited to offline scenarios. Peretz
and Bin-Yaakov [2] also propose an offline system identifica-
tion approach to determine an open-loop, time-domain model
of a dc–dc converter. The iterative least square minimization
approach (Steiglitz and McBride method) is used to estimate
system parameters and then to design the digital controller di-
rectly by the Ragazzini method [18], [19].

Unfortunately, in many of the methods presented, significant
signal processing is required to implement these schemes and
this ultimately has a cost penalty for the target application.
Furthermore, the computational complexity impacts upon time
of execution in the microprocessor, and this in turn makes it
difficult to adopt in continuous parameter estimation for adaptive
control applications [20]. For this reason, in this paper an RLS
algorithm is implemented using a fast, computationally light,
hardware efficient, adaptive algorithm, known as dichotomous
coordinate descent (DCD) [21]. This algorithm has previously
been developed for use in the field of telecommunications. Here,
we adapt the algorithm and apply it for the first time in the system
identification of power electronic circuits.

III. SYSTEM IDENTIFICATION OF DC–DC CONVERTER USING

ADAPTIVE IIR/DCD-RLS ALGORITHM

Fig. 1 illustrates a block diagram of the proposed identifica-
tion scheme. Here, a closed-loop dc–dc buck converter is con-
trolled via a digital PID compensator. In addition, a real-time
system identification algorithm is inserted alongside the con-
troller, continually updating the parameters of a discrete model
of the buck converter system on a sample by sample basis. The
identification system can be enabled and disabled on demand
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during operation. For example, it may be applied at start-up, at
regular set intervals, or enabled on detection of a system change
such as a variation in the system load. Monitoring the voltage
loop error is one simple way to detect a system change and
enable the system identification process. When enabled, a small
high-order excitation signal is injected into the control loop.
This is required to improve the convergence time of the adap-
tive filter; this is the time to obtain optimal filter tap weights
for accurate parameter estimation. For all online identification
methods, some form of system perturbation is essential for the
estimation process [22]. In this scheme, the PRBS is selected.
As shown in Fig. 1, the PRBS signal is added to the PID con-
troller output signal, dcomp (n). This creates a control signal d′(n)
with a superimposed persistent excitation component. Once ap-
plied to the PWM, a small disturbance in the output duty cycle
c(t) is generated. In this way, the duty cycle command signal
at steady state will vary between dcomp (n) ± ΔPRBS (n). Here,
the steady-state duty cycle is 0.33 and the magnitude of PRBS
signal is given as ΔPRBS = ± 0.025; therefore, a change of
approximately equal to 33% ± 2.5% in duty cycle signal will be
observed. This will cause an excitation signal in the buck con-
verter output voltage vout(t). During this process, the excited
output control signal and output voltage are sampled (d′(n) and
vout(n) in Fig. 1). Practically, in order to focus the identifica-
tion on the frequency range of interest and remove unwanted
high-frequency measurement noise, the inputs to the DCD-RLS
algorithm require filtering prior to identification. This can be ac-
complished by designing a digital low-pass, or bandpass, filter.
In addition, offset in the input signals must be removed as the
RLS algorithm assumes zero mean values in the input signals.
In dc–dc SMPC applications, it is easier to remove offsets on a
cycle-by-cycle basis from the input signals, where steady-state
average values of the regulated output voltage and the average
duty-cycle ratio are known. At each time instance, the average
value of the input signal is directly subtracted from the excited
signal. A low-pass filter can also be used to remove the offset
from the input signals; however, this will add more computation
to the overall system, which is not essential in the online system
identification process. Once the samples have been processed,
they are passed to the identification algorithm (DCD-RLS block
in Fig. 1) to estimate the system parameters and update the
discrete IIR filter model of the SMPC.

An adaptive filter can have different structures depending
upon its application, which may be noise cancellation, signal
prediction, or system identification [23], [24]. In this paper, we
employ an adaptive IIR filter for system identification. An adap-
tive filter may be defined as a “self-designing” filter [23], where
the filter coefficients are continuously varying until the objec-
tive function is achieved [24]. As shown in Fig. 2, the adaptive
filter consists of two key components, the digital filter and the
adaptive filter algorithm, which are used to vary the tap-weight
coefficients in real time. In system identification, a major con-
cern is minimizing the prediction error signal ep (n). Ideally, we
want this signal to equal zero, indicating excellent parameter
estimation. However, practical issues such as measurement er-
rors, unwanted noise, quantization, and delay times make this
difficult to achieve. By minimizing the prediction error signal,

Fig. 2. Generic adaptive system identification block diagram.

the output signal of the filter ŷ(n) (estimated signal) approxi-
mately equals the output of the unknown system d(n) (desired
signal). Here, the desired signal is the sampled output voltage
of the dc–dc converter. Based on this, we can write [23]

ŷ(n) =
N∑

k=1

wkx(n − k) = wx (1)

w = [w1 w2 · · · wN ]

x = [x(n − 1) x(n − 2) · · · x(n − N) ]T (2)

where the prefiltered input signal x(n) is continuously adapted
in response to the filter weight update [25]. The model of the
unknown plant system (in this case, the dc–dc converter system)
is defined by the transfer function of the adaptive filter. How-
ever, defining the digital filter coefficients requires analytical
calculation of the linear system equations.

This can be achieved using Wiener equations but requires
considerable computational effort [26]. Alternative methods,
such as the Levinson–Durbin algorithm, can help to reduce the
mathematical burden. Adaptive approaches can also be used to
optimally calculate the tap weights and further trim the compu-
tational load [22], [23], [26]. Here, we employ an adaptive DCD-
RLS algorithm to continuously adjust the filter coefficients and
minimize eP (n). The error prediction is defined as [23]

eP (n) = d(n) − ŷ(n) = d(n) −
N∑

k=1

wkx(n − k). (3)

According to (3), the error prediction signal is determined
by applying the input signal to the digital filter to produce an
estimation output signal ŷ(n). The prediction error is then the
difference between the desired signal, d(n), and this generated
estimation output signal [25]. When the prediction error is min-
imized, the adaptive filter tap weights reach steady state and
no longer require updating. However, if any parameters of the
plant change, the prediction error will deviate from the mini-
mum point and the adaptive algorithm will start to determine the
new filter tap weights in response to this change. To minimize
the error signal, the adaptive algorithm must solve a series of
linear equations to estimate the vector coefficients w where [27]

w = R−1β. (4)

Here, R is an autocorrelation matrix of size N × N, and β is
an elements vector of length N. R and β are continually updated
at each sample interval n. For the proposed DCD-RLS, R(n) and
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β(n) may be described as follows [21]:

R(n) = λR(n − 1) + x(n)xT (n)

β(n) = λβ(n − 1) + d(n)x(n). (5)

In (5), λ is a forgetting factor that applies a weighting to pre-
viously calculated elements of R and β. When λ = 1, the system
behaves like a classical RLS algorithm. d(n) is the scalar desired
signal, which relates the actual adaptive filter output estimation
ŷ(n) to the estimation error e(n), according to e(n) = d(n) – ŷ(n).
Importantly, from a practical point of view, it is possible to find
vector coefficients w without any mathematical division opera-
tions [21]. It will be shown in the following analysis that each
divisor can be set as a power of two; thus, all division processes
can conveniently be replaced with a computationally efficient
shift right register.

IV. RLS AND DCD ALGORITHM THEORY

Least squares estimation techniques are fundamental in adap-
tive signal processing applications. In real-time applications
[27], the solution is normally based on matrix inversion, which is
computationally heavy and presents implementation difficulties.
However, there are alternative algorithms for solving the linear
equations expressed in (4). Amongst them, the DCD algorithm
appears to be a particularly effective method [21], [27], [28]. At-
tractively, the computation is based on an efficient, fixed-point,
iterative approach with no explicit division operations [28]. This
makes it very appropriate for real-time hardware implementa-
tion. The computational requirement of the DCD algorithm de-
pends mainly upon the number of iterations Nu used to update
the parameters. The iteration number also determines the speed
and accuracy of the process [27]. This section describes the op-
eration of the DCD algorithm in an exponentially weighted RLS
method.

A. Exponentially Weighted RLS Algorithm

Exponentially weighted recursive least squares (ERLS) is
commonly used in dynamic systems to track time-varying pa-
rameters [23]. The ERLS algorithm minimizes the weighted
sum of the squared error [21]

Emin(n) = λn+1wT (n)
∏

w(n)

+
n∑

k=0

λn−k [d(k) − wT (n)x(k)]2 . (6)

Here, λ is again a forgetting factor, where 0 < λ < 1. It ensures
that past samples are gradually “forgotten” if the operating point
of the system is constantly changing [23]. Π is a regulation
matrix, usually selected as Π = δ× IN . IN is an N × N identity
matrix, and δ is a small positive parameter (often referred to
as the regulation parameter) [21]. At each sample, the ERLS
solves the linear equation described in (4). Table I summarizes
the steps to find the parameter vector w [21].

As mentioned earlier, direct methods require a complex ma-
trix inversion operation to solve the linear equation in (4). How-
ever, in this method (first proposed by Zakharov et al. [21] in the

TABLE I
ERLS ALGORITHM

field of communications), an alternative solution is presented by
converting (4) into a sequence of auxiliary normal equations that
can be solved using iterative techniques. First, at time instance
(n − 1), the solution to the system equation R(n − 1) w(n −
1) = β(n − 1) can be approximated; the approximate solution
is ŵ(n−1). The residual vector of this solution can be written
as [21]

r(n − 1) = β(n − 1) − R(n − 1)ŵ(n − 1). (7)

The system in (4) is then solved at each time instance n. From
which

ΔR(n) = R(n) − R(n − 1),Δβ(n) = β(n) − β(n − 1),

and Δw(n) = w(n) − ŵ(n − 1). (8)

Then, by using the previous solution ŵ(n− 1) and the residual
vector r (n − 1), a solution for ŵ(n) in (4) is found

R(n)[ŵ(n − 1) + Δw(n)] = β(n). (9)

From (7)–(9) with respect to the unknown vector Δw, the
system equations can then be represented as [21]

R(n)Δw(n)=β(n) − R(n)ŵ(n − 1)

=β(n) − R(n − 1)ŵ(n − 1) − ΔR(n)ŵ(n − 1)

=r(n − 1) + Δβ(n) − ΔR(n)ŵ(n − 1). (10)

From this, one can find a solution Δŵ of the auxiliary system
equations

R(n)Δw(n) = βo(n) (11)

where

βo(n) = r(n − 1) + Δβ(n) − ΔR(n)ŵ(n − 1). (12)

The approximate solution of the original system (4) can then
be determined as

ŵ(n) = ŵ(n − 1) + Δŵ(n). (13)

Considering (12), this approach requires vector r(n) to be
known at each time instance n. However, it can be shown that
the residual vector for the solution Δŵ(n) to the auxiliary system
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(4) is actually equal to r(n). Therefore [21]

r(n) = β(n) − R(n)ŵ(n)

= βo(n) − R(n)Δŵ(n). (14)

At each time instance n, this approach requires a solution to
an auxiliary problem (11) which deals with the increment of the
filter weights Δw(n) rather than the actual filter weights w(n),
as described in the original problem, (4) [21]. This approach
is preferable since it takes into account the accuracy of the
previous solution through the residual vector r(n – 1), as well as
the variation of the problem to currently be solved through the
increments ΔR(n) and Δβ(n). It requires similar computational
effort to the conventional method and will typically converge on
an accurate solution within a small number of iterations [21].
In the ERLS algorithm, the autocorrelation matrix and cross-
correlation are computed as in (5). The cross-correlation vector
βo (n) is expressed in terms of the filter inputs x(n) and the
desired signal d(n). By inserting (5) into (8), this yields [21]

ΔR(n) = (λ − 1)R(n − 1) + x(n)xT (n)

Δβ(n) = (λ − 1)β(n − 1) + d(n)x(n). (15)

From (7) and (15), we achieve

ΔR(n)ŵ(n − 1)=(λ − 1)[β(n − 1) − r(n − 1)] + d(n)ŷ(n).
(16)

Then, based on (1) and (16), the vector βo (n) can be described
as

βo(n) = λr(n − 1) + ep(n)x(n). (17)

Table I also shows the computational effort of each step.
The overall complexity of the algorithm can be shown to
be 2N2+3N+Mn multiplications and N2+3N+An additions,
where N is the filter order and Mn and An are the number of
multiplications and additions required to solve the linear equa-
tion in step 5. These numbers depend significantly on the specific
algorithms chosen to solve this particular step [21]. For example,
matrix inversion lemma is one familiar technique to complete
the division process in step 5. In this paper, we consider the
use of the DCD algorithm to achieve a computationally light
solution to solving this problem.

B. DCD Algorithm

In order to solve the linear equations in step 5 of Table I, the
DCD algorithm typically offers a computationally efficient so-
lution compared to many other iterative approaches [21], [27],
[28]. It is based on an iterative approach to estimating N pa-
rameters within an estimation parameters vector Δŵ. The DCD
algorithm begins to evaluate the residual vector and, based on
its amplitude, will update the parameters vector. Initially, each
parameter is assumed to reside within a defined amplitude range
[–H, H]. The iteration step size d is chosen such that it equals H.
Then, during each pass of the algorithm, the step size is halved
(d = d/2, step 1). This divide-by-two process is very important
from a hardware point of view. It allows a division operation
to be replaced with a more computationally efficient shift reg-
ister [28]. In fixed-point implementations, the filter coefficients

TABLE II
CYCLIC DCD ALGORITHM DESCRIPTION

are represented by a series of bits M. The exact representation
(number of bits) depends on the accuracy required by the appli-
cation. The algorithm starts the iterative search from the most
significant bit Mb for each element in the parameters vector
Δŵ. Once complete, the algorithm determines the next most
significant bit, Mb−1 , and so on until M0 . At this point, the
binary representation of M is fully updated. In floating point
implementations, a subtle variation is employed. Rather than
updating individual bits, an iterative loop is configured with M
iterations.

Table II shows the operational steps of the cyclic DCD al-
gorithm [21], [28]. Step 1: On each pass of the algorithm, the
step size is reduced until the update is complete and the required
level of accuracy is reached [28]. Steps 2 and 3: The magnitude
of the residual vector r is analyzed during each iteration. Two
outcomes are possible: 1) an unsuccessful iteration, where the
condition set out in step 3 is not met. In this case, the step size
is unchanged and the solution is not updated. 2) A successful
iteration, where the condition in step 3 is met. Here, the step size
is halved and the solution in steps 4 and 5 is updated [21]. Steps
4 and 5: If the residual is sufficiently large (Step 3: successful
iteration), one element of the parameter vector is updated by
adding or subtracting the value of d, depending upon the polar-
ity of rn . Following this, the residual vector r is updated (Step
5). The algorithm repeats this process until all elements in the
residual vector r become small enough that the set condition in
step 3 results in an unsuccessful iteration [28] or the number
of iterations reaches a predefined limit number Nu [21]. The
iteration limit may be used to control the execution time of the
algorithm [22].

As shown in Table II, a major advantage of the fixed-point
DCD algorithm is that both multiplication and division opera-
tions can be avoided. This is advantageous from a digital hard-
ware implementation point of view. However, in the worst case,
the number of additions is still An = N (2Nu + M – 1) + Nu [21].
Therefore, if Nu � M, the complexity of the DCD can be ap-
proximated by 2NNu . However, if Nu is small and Nu � M, the
term NM will dominate the DCD computational effort [21]. The
dominant term will be application specific. Here, in the system
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TABLE III
LEADING DCD ALGORITHM DESCRIPTION

identification of a dc–dc converter, it is found that the second
case is generally true, Nu �M. For this reason, we consider a re-
fined form of the DCD algorithm (also proposed by Zakharov et
al. [21]) to further trim the computational complexity-Leading
DCD. In this particular version of the algorithm, it is possible
to eliminate the NM dominant term. Table III summarizes the
operational steps of the Leading DCD algorithm [21].

V. DISCRETE MODELING OF DC–DC CONVERTER AND

ADAPTIVE IIR FILTER

Discrete time modeling of an SMPC is essential for a para-
metric identification process. The primary candidate model for
system identification in this paper is the voltage transfer func-
tion (control-to-output transfer function). Starting with the state-
space equivalent model of the buck converter circuit in contin-
uous current mode, it can be shown that the control signal d′(s)
to output voltage vout(s) transfer function is described as fol-
lows [29], [30]:

Gdv (s) =
vout(s)
d‘(s)

=
Vin (CRcs + 1)

s2LC
(

Ro +Rc

Ro +RL

)
+ s

(
RcC + C

(
Ro RL

Ro +RL

)
+ L

Ro +RL

)
+ 1

(18)

where Vin is the input voltage, C is the output capacitance, L is
output inductance, Ro is the load resistance, RL is inductance
equivalent resistance (ESR), and Rc is the capacitance ESR. The
average continuous-time transfer function described in (18) can
be converted to a discrete equivalent model using conventional
continuous to discrete transformation methods, resulting in a
second-order discrete transfer function

Gdv (z) =
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 . (19)

Here, b1 , b2 , a1 , and a2 are the parameters to be identified.
They all depend on circuit component values and the sampling
frequency. The input–output relation given in (19) may also
be described as a linear difference equation. Several methods
exist to obtain this [13], [14]. Here, an autoregressive-moving-

Fig. 3. System identification based adaptive IIR filter using equation error
block diagram.

average (ARMA) model is used, as it is a good match to the IIR
filter form [23]. From this, it is possible to derive the following
difference equation:

vout(n) + a1vout(n − 1) + a2vout(n − 2)

= b1d
′(n − 1) + b2d

′(n − 2). (20)

In this paper, an IIR adaptive filter is employed to model the
SMPC. However, the DCD-RLS algorithm described in Section
IV is normally applied with FIR adaptive filters. For this reason,
an equation error approach [23] is used whereby an IIR filter is
effectively derived from an equation error structure of two FIR
filters, as shown in Fig. 3. In the equation error structure, the
input of the second FIR filter is assumed to be approximately
equal to the desired signal, as illustrated in Fig. 3. The second
FIR filter does not use past adaptive filter output samples as in
the output error structure. Instead, it uses the delayed samples
of the desired signal [23], [24]

ŷ(n) =
M∑

k=0

bk (n)d′(n − k) +
N∑

k=1

ak (n)vout(n − k). (21)

And the error output is defined as

êe(n) = vout(n) − ŷ(n). (22)

Practically, observing the input and output of the unknown
system is required for the identification algorithm. Conse-
quently, the same data vector that is used in the basic ARMA
model structure system is observed in the equation error scheme.
However, the update sequence for each FIR filter in Fig. 3 is not
optimal using the DCD algorithm. Each filter requires an in-
dependent input data vector and adaptive algorithm to update
a separate autocorrelation and cross-correlation matrix, as de-
fined previously in (5). Accordingly, the overall complexity of
the adaptive filter is increased. For this reason, we simplify by
combining the input and output data from the unknown system
into a single data and parameters vector (23). In order to match
the ARMA model in (20) with the general form of IIR filter in
(21), N = M = 2 and b0 = 0. As a result, the data and parameters
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vectors can be described as

ϕϕ(n) =

[ vout(n − 1) · · · vout(n − k) d′(n − 1) · · · d′(n − k) ]

w = [−a1 · · · −an b1 · · · bn ]T . (23)

This allows the filter parameters to be arranged in a single
correlation matrix

R1 =
[

rd ′(0) rd ′(1)
rd ′(1) rd ′(0)

]
, R2 =

[
rvout(0) rvout(1)
rvout(1) rvout(0)

]
,

⇓

RT =

⎡

⎢⎣

rvout(0) rvout(1) rd ′(0) rd ′(1)
rvout(1) rvout(0) rvout(1) rd ′(0)
rd ′(0) rvout(1) rvout(0) rvout(1)
rd ′(1) rd ′(0) rvout(1) rvout(0)

⎤

⎥⎦ . (24)

Equation (24) represents the complete correlation matrix RT

of the equation error IIR filter; R1 shows the input correlation
matrix of the feed-forward FIR filter and R2 represents the
output correlation matrix of the feed-back FIR filter. In this
simple way, a single DCD algorithm can successfully be used
to update all tap weights of an IIR filter.

VI. MODEL EXAMPLE AND SIMULATION RESULTS

Usually, system identification performance is measured using
particular metrics such as convergence time, parameter accu-
racy, and prediction error [13]. These metrics determine how
closely the identified model matches the actual system transfer
function [6], and they are used to evaluate the proposed method
in this paper. To test the concept of the proposed DCD-RLS
identification scheme (see Fig. 1), a voltage controlled syn-
chronous dc–dc buck SMPC circuit has been simulated using
MATLAB/Simulink. The circuit parameters of the buck con-
verter are Ro = 5 Ω, RL = 68 mΩ, Rc = 25 mΩ, L = 220 μH,
C = 330 μF, Vo = 3.3 V, Vin = 10 V, Hv = 0.5 (voltage sen-
sor), and Rdson = 3.5 mΩ. The shunt resistance (RS = 5 mΩ)
is added to measure the inductor current; thus, the equivalent
series resistance Rq = RL + RS + Rdson = 76.5 mΩ. The buck
converter is switched at 20 kHz and the output voltage is also
sampled at the same switching frequency rate. Consequently,
the control-to-output voltage discrete transfer function of the
SMPC can be calculated as follows:

Gdv (z) =
0.226z−1 + 0.1118z−2

1 − 1.914z−1 + 0.949z−2 . (25)

For the exponentially weighted DCD-RLS algorithm, the pa-
rameters are as follows: Nu = 1, H = 1, M = 8 , λ = 0.95, and
δ = 0.001. For completeness, the simulation model includes
all digital effects, such as ADC quantization and sample/hold
delays. To present the viability of the proposed DCD-RLS al-
gorithm, an equivalent system based on a conventional expo-
nentially weighted RLS (using matrix inversion lemma) is also
simulated. This algorithm is summarized in Table IV [23]. In
Table IV, ϕ(n) is the data vector (regression vector), ŵ(n) is the
estimated tap weights , ε(n) is a priori error (prediction error),
P(n) is an N×N inverse correlation matrix, k(n) is an N×1 adap-

TABLE IV
EXPONENTIALLY WEIGHTED RECURSIVE LEAST ALGORITHM-BASED MATRIX

INVERSION LEMMA

Fig. 4. System identification flowchart.

tation gain vector, and λ is the forgetting factor [23]. The same
settings and initial conditions are used for both DCD-RLS and
conventional RLS algorithms.

For a regulated SMPC, the digital PID gains are tuned using
a well-recognized pole-zero matching technique [10], [31]. The
PID controller is expressed as follows:

Gc(z) =
q0 + q1z

−1 + q2z
−2

1 − z−1 (26)

where q0 = 3.9, q1 =−6.89, and q2 = 3.1. Based on the system
in Fig. 1, the system identification sequence is described by
the flowchart in Fig. 4, while the corresponding step-by-step
results are illustrated in Fig. 5. Initially, the system is operating
normally and is regulated by the PID compensator. When the
identification process is enabled [see Fig. 5(e)], a 9-bit PRBS
is injected into the feedback loop as a frequency rich excitation
signal. Here, as an example, the PRBS signal is injected during
the steady-state period for 20 ms [see Fig. 5(a) and (b)]. This
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Fig. 5. Identification sequence. (a) Output voltage during ID. (b) Control
signal during ID. (c) Voltage model parameters ID. (d) Voltage error prediction.
(e) ID-enable signal.

is sufficient to determine the parameter convergence time. The
PRBS sampling frequency fPRBS is selected as 20 kHz. From
this, the maximum PRBS pulse length is 511 (L = 2n −1), and
the magnitude of PRBS signal is ΔPRBS = ± 0.025. This is
sufficiently small to cause excitation in the PWM output, but
not enough to significantly compromise the normal operation of
the SMPC; the output voltage ripple caused by this perturbation
signal is approximately ±1.5% of the dc output voltage, as
shown in Fig. 5(a). As each PRBS sample is injected, the DCD-
RLS measures the control output signal d′(n) and the power
converter output voltage vout(n). The algorithm is implemented
and the IIR filter tap-weight estimation is updated. Finally, the
SMPC parameters are estimated via calculation.

The effectiveness of the algorithm is verified in Fig. 5(c) and
(d). The algorithm rapidly estimates the SMPC parameters {a1 ,
a2 , b1 , and b2} and then minimizes the error prediction signal.
It is worth noting that the initial value for each parameter is
assumed to be zero. This demonstrates that prior knowledge
of the SMPC parameters is not essential for convergence of
the algorithm. Fig. 6 shows a comparison between the DCD-
RLS identification algorithm and classical RLS identification
method. As depicted in Fig. 6, the DCD-RLS algorithm con-
verges quickly (less than 10 ms) and identifies the unknown IIR
filter coefficients. This in turn minimizes the prediction error
signal, as shown in Fig. 7. Both techniques appear to converge
to the same estimation values. The actual estimation accuracy
is summarized in Table V, where it can be seen that the per-
formance of the DCD-RLS is comparable with the conventional
RLS scheme. Here, the parameters estimation accuracy has been
measured at the final convergence values. It is worth noting that
the DCD-RLS estimation accuracy can be further improved by
increasing the number of iterations Nu , or the number update
step size M, in the algorithm. However, this will increase the
execution time of the algorithm and the parameter estimation

Fig. 6. Tap-weight estimation for IIR filter using DCD-RLS and classical RLS
methods, compared with calculated model.

Fig. 7. Prediction error signals. (a) Ordinary RLS. (b) DCD-RLS.

TABLE V
DUTY-TO-OUTPUT PARAMETER ACCURACY COMPARISON BETWEEN DCD-RLS

AND CLASSICAL RLS

convergence time will be longer. As with many systems, a com-
promise between complexity and accuracy must be established.
The versatility of the proposed DCD-RLS scheme has been ver-
ified with a range of dc–dc discrete time models (duty-to-output
voltage transfer function). In each case, the proposed method
shows very promising results and can handle a wide range of
uncertainty in the SMPC parameters.

VII. INITIAL EXPERIMENTAL VALIDATION

To further validate the proposed identification method, an ex-
perimental synchronous dc–dc buck converter has been designed
and tested for the 5 W operation. This is used to generate real-
time practical data for direct input into the DCD-RLS algorithm
discussed. For easy comparison with the original simulation
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Fig. 8. Experimental output voltage waveform when identification enabled
(ac coupled).

results, similar parameters and component values to those
outlined in Section VI are chosen. A Texas Instruments
TMS320F28335 digital signal processor (DSP) platform is used
to implement the digital controller and to inject the digital PRBS.
The DSP has on-board digital PWM and 12-bit A/D converter
channels. The A/D resolution is 0.7 mV and it samples the out-
put voltage at 20 kHz, the same rate as the PWM switching
frequency. A 9-bit PRBS is generated and implemented in the
DSP. The PRBS amplitude, ΔPRBS =±0.008, and the total date
length is 511; therefore, a complete PRBS sequence is L/fs =
25 ms. The PID compensator, described in (26), is tuned using
the aforementioned pole-zero matching method [10], [31] and
set to regulate the buck converter output voltage to 3.3 V.

During the practical work, the same procedure shown in Fig. 4
is followed. Fig. 8 highlights the output voltage waveform of
the experimental buck converter when the PRBS disturbance is
injected to allow for system identification. Initially, the SMPC
is working under normal conditions (system identification dis-
abled). The system identification process is then enabled; the
PRBS signal is injected into the loop and the system begins to
estimate the unknown parameters of the buck converter model.
The disturbance in the output voltage, created by the PRBS, is
clearly visible in Fig. 8. The voltage ripple is approximately
±3% with respect to the nominal dc output voltage. However,
it can also be seen that this disturbance only exists when the
identification process is enabled. After 20 ms, the process is
complete, and the buck converter reverts back to normal opera-
tion. The PRBS injection time is deliberately increased in this
example test to fully demonstrate the convergence rate of the
parameter estimation. The actual length of time of the excitation
can be significantly reduced in the final optimized solution.

Now, the measurement data from the dc–dc converter are
stored in the DSP memory and exported to MATLAB for post-
processing after the full test sequence has been applied to the
power converter. Fig. 9 shows the sampled output voltage and
duty cycle data from the dc–dc converter during the identifica-
tion process. From the measured data, the DCD-RLS performs
the cycle-by-cycle parameter estimation algorithm previously
described to identify the tap weights of the IIR filter and min-
imize the prediction error signal. The experimental parameters
of the DCD-RLS algorithm are as follows: Nu = 1, H = 1,

Fig. 9. Experimental output voltage and persistence excitation signal (duty
signal + ΔPRBS ) results during ID, based on sampled data collected from
DSP.

Fig. 10. Experimental tap-weight estimation for IIR filter with DCD-RLS and
classical RLS methods, compared with calculated model (M-parameters).

M = 8, λ = 0.95, and δ = 0.001. These parameters are chosen
to match the initial buck converter simulation settings and allow
for easy comparison of results.

The results from experimental measurement are shown in
Fig. 10. Importantly, there is excellent agreement with the origi-
nal simulation results in Fig. 6. The practical-based results show
both the classical RLS method and the DCD-RLS algorithm
converge quickly (<10 ms) to virtually the same parameter es-
timation values. Furthermore, it is apparent from Fig. 11 that
the voltage prediction error signal for both algorithms (RLS and
DCD-RLS) converges quickly to zero. In this way, both tech-
niques successfully identify the discrete model of the SMPC
from real-time experimental data. However, as shown in ear-
lier analysis, the computational effort of the DCD-RLS is sub-
stantially lower. It is worth noting that in both methods the
convergence time of the pole coefficients (a1 , a2) is faster and
more accurate than the zero coefficients (b1 , b2). The poles con-
verge in about 5 ms with parameter estimation accuracy better
than ± 1%. In comparison, the zeros converge in approximately
10 ms with parameter estimation accuracy of ±5%. This is
reassuring since in many control systems, including SMPCs,
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Fig. 11. Experimental error prediction results. (a) Ordinary RLS. (b) DCD-
RLS.

Fig. 12. Experimental learning curves comparison results of classical RLS
against DCD-RLS at different iteration values.

accurate knowledge of the pole locations is important for stabil-
ity analysis and controller design [6].

It has already been noted that the computation of the DCD-
RLS algorithm can be reduced by decreasing the update step
size M of the algorithm; however, there is a cost to pay in
terms of estimation accuracy. For this reason, results are also
presented where the effective resolution is reduced, M = 4. In
this case, the computational time of the algorithm is halved.
Fig. 12 compares the mean square error (MSE) performance
of the DCD-RLS algorithm with different iteration values Nu

against the conventional RLS technique. It can be seen that the
conventional RLS convergence rate and MSE magnitude are
lower than the DCD-RLS; however, the convergence rate of
DCD-RLS can be improved by increasing the number of itera-
tions, albeit at the cost of increased computational complexity.
As in many applications, a compromise must be made between
performance and complexity. In this particular case, Nu = 1 is
sufficient for fast SMPC parameters estimation with acceptable
estimation error.

VIII. CONCLUSION

With recent advances in microprocessor technology and con-
tinual improvement in pricing, significantly more advanced con-
trol solutions are now possible in many industrial and commer-
cial systems. However, in the area of small-power electronic
systems, such as SMPC applications, cost and complexity are
clearly a major concern. In the area of system identification,
least squares methods, like the basic RLS algorithm, provide
promising results in terms of fast convergence rate, small pre-
diction error, and accurate parametric identification. However,
they often have limited application in SMPC and other low-
power, low-cost applications due to computationally heavy cal-
culations demanding significant hardware resources. For this
reason, this paper has introduced a computationally efficient
DCD-RLS method to overcome some of the limitations of many
classic RLS algorithms. The process is based on an error equa-
tion IIR adaptive filter scheme, which is well suited for SMPC
parameter estimation. The system identifies the IIR filter tap
weights on a cycle-by-cycle basis by injecting a perturbed input
signal and monitoring the corresponding output response. The
proposed solution demonstrates that the identification method
is able to work continuously in the control loop and quickly
minimize the prediction error power, thus estimating the model
parameters. Simulation and initial experimental results demon-
strate that this approach exhibits very good identification metrics
(convergence rate, parameters estimation, and prediction error)
and the performance is comparable to more complex solutions
such as RLS techniques. System identification is the first step to
developing digital adaptive and self-tuning controller designs.
The proposed method can be easily accompanied with many
adaptive control solutions. Ongoing research is, therefore, set to
focus on complete solutions with emphasis on hardware opti-
mization for efficiency and low-cost implementation.
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