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Abstract 

Microprocessors and memory systems suffer from a growing 
gap in performance. We introduce Active Pages, a computa- 
tion model which addresses this gap by shifting data-intensive 
computations to the memory system. An Active Page consists 
of a page of data and a set of associated functions which can 
operate upon that data. We describe an implementation of Ac- 
tive Pages on RADram (Reconfigurable Architecture DRAM), 
a memory system based upon the integration of DRAM and 
reconfigurable logic. Results from the SimpleScalar simulator 
[BA97] demonstrate up to 1000X speedups on several applica- 
tions using the RADram system versus conventional memory 
systems. We also explore the sensitivity of our results to im- 

plementations in other memory technologies. 

1 Introduction 

Microprocessor performance continues to follow phenomenal 
growth curves which drive the computing industry. Unfortu- 
nately, memory-system performance is falling behind. Processor- 
centric optimizations to bridge this processor-memory gap in- 
clude prefetching, speculation, out-of-order execution, and mul- 
tithreading [W5195]. Several of these approaches can lead to 
memory-bandwidth problems [BGK96]. We introduce Active 
Pages, a model of computation which partitions applications 
between a processor and an intelligent memory system. Our 
goal is to keep processors running at peak speeds by off-loading 
data manipulation to logic placed in the memory system. 

Active Pages consist of a page of ,data and a set of asso- 
ciated functions that operate on that data. For example, an 
Active Page may contain an array data structure and a set of 
insert, delete, and find functions that operate on that arrray. A 
memory system that implements Active Pages is responsible 
for both the storage of the data and the computation of the 
associated functions. 

Rapid advances in fabrication technology promise to make 
the integration of logic and memory practical. Although Ac- 
tive Pages can be implemented in a variety of architectures and 
technologies, we focus upon the integration of reconfigurable 
logic and DRAM. We introduce the RADram (Reconfigurable 
Architecture DRAM) system. On many applications, our sim- 
ulations show substantial performance gains for a uniproces- 
sor workstation using a RADram system versus a conventional 
memory system. RADram can also function as a conventional 
memory system with negligible performance degradation. As 
we shall see in Section 3, RADram is likely to have superior 
yield, higher parallelism, and better integration with commod- 
ity microprocessors when compared to architectures such as 
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IRAM [Pat95]. Since memory technologies are a moving tar- 
get, we measure the sensitivity of our results to the speed of 
Active Page implementations. This allows us to generalize to 

currently available technologies such as DRAM macrocells in 
ASIC (Application-Specific Integrated Circuit) technologies. 

This paper starts with a description of Active Pages in 
Section 2, and continues with our RADram implementation 
in Section 3. We then describe our experimental methodology 
in Section 4 and our applications in Section 5. We continue 
with the reconfigurable logic designs for each application in 
Section 6. We present our results in Section 7 and generalize 
these results to other technologies in Section 8. Finally, we 
conclude with a discussion of related work in Section 9, future 
work in Section 10 and conclusions in Section 11. 

2 Active Pages 

Active Pages introduce new programming, system, and fab- 
rication issues. In this section, we shall discuss program- 
ming issues which arise from the Active Page computational 
moclel. These issues are partitioning, coordination, computa- 
tional scaling, and data manipulation. We will discuss system 
and fabrication issues in Section 3 where we introduce the 
RADram Active-Page implementation. 

To use Active Pages, computation for an application must 
be divided, or partitioned, between processor and memory. For 
example, we use Active-Page functions to gather operands for 
a sparse-matrix multiply and pass those operands on to the 
processor for multiplication. To perform such a computation, 
the matrix data and gathering functions must first be loaded 
into a memory system that supports Active Pages. The pro- 
cessor then, through a series of memory-mapped writes, starts 
the gather functions in the memory system. As the operands 
are gathered, the processor reads them from user-defined out- 
put areas in each page, multiplies them, and writes the results 
back to the array datastructures in memory. 

Interface To simplify integration with commodity micro- 
processors and systems, the interface to Active Pages is de- 
signed to resemble a conventional virtual memory interface. 
Specifically, the Active Page interface includes the following: 

l Standard memory interface functions: 
write(vaddr, data) and read(vaddr) 

. A set of functions available for computation on a partic- 
ular Active Page: APJunctions. 

. An allocation function: 
AP-alloc(group-id,vaddr) 

which allocates an Active Page in group group-id at vir- 
tual address uaddr. Pages operating on the same data 
will often belong to a page group, named by a group-id, 
in order to coordinate operations. 

l A function binding procedure: 
AP-bind(group-id, APJunctions) 
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which binds a set a set of functions APJunctions to a 
group group-zd of .-\ctive Pages. This set of functions 
may be redefined through repeated calls to AP-bind. 
Since implementations may limit the number or com- 
plexity of functions associated with each page, re-binding 
may be necessary to make room for new functions by 

eliminating old ones. 

. Additionally, applications will commonly use several vari- 
ables in each Active Page as synchronization variabks 
to coordinate between APJunctions and a processor. 
These variables require no additional support beyond 
reads and writes. Alemory accesses by APJunctions and 
a processor are atomic. 

Active-Page functions use virtual addresses and can refer- 
ence any virtual address available to the allocating process. In 
our sparse-matrix example, the code begins by calling AP-allot 
to allocate a group of pages to store the matrices to be multi- 
plied. Then APJunctions are defined to include a function for 
index comparison and data gathering. Next, AP-bind is called 
to associate this function to the pages. To start the page 

computations, the processor activates the pages with an or- 
dinary memory write to an application-defined location. The 
APJunctions poll such synchronization variables as soon as 
AP-bind is called. Once the functions have computed their 
results and gathered the matrix data to be multiplied, they 
write to another set of synchronization variables to indicate 
the data is ready. The process polls these variables and be- 
gins reading and multiplying the data once it is ready. 

Our global virtual address space implies that some Active- 
Page functions may reference data in other pages. Such refer- 
ences are meant to be used sparingly and the implementation 
of inter-page memory references will be discussed in Section 3. 
Active Page implementations are intended to function in any 
system that uses a conventional memory system. For example, 
pages may coordinate with multiple processors in a Symmetric 
Multiprocessor, using Active-Page synchronization variables 
to enforce atomicity. 

Partitioning In our sparse-matrix example, the applica- 
tion was partitioned between work done at the memory system 
and work done at the processor. Such partitioning varies in 
emphasis between efficient use of processor computation and 
efficient use of Active-Page computation. We refer to these 
two extremes as processor-centric and memory-centric parti- 
tioning. Processor-centric partitioning is appropriate for al- 
gorithms with complex computations, such as floating point. 
Memory-centric partitioning is appropriate for data manipu- 
lation and integer arithmetic. 

Sparse-matrix computations require substantial floating- 
point computation and suggest a processor-centric partition- 
ing. Active Pages compute which operands must be multiplied 
with the goal of providing the processor with enough operands 
to keep it running at peak speeds. Our image processing ap- 
plication, on the other hand. uses integer arithmetic and can 
be performed almost entirely in Active Pages. Consequently, 
the goal is to exploit parallehsm and use as many Active Pages 
as possible. 

Activation Time Intuitively, a processor working with 
a memory system that implements Active Pages is similar to a 
control processor working with a small data-parallel machine. 
Typically, an algorithm is partitioned by first dispatching a re- 
quest for a computation to occur on the data within an Active 

Problem Size 

Figure 1: Expected computation scaling of Active Pages 

Page. A well-structured application will have to move little, 
if any, additional data into the page in order for that function 
to complete. Thus, the majority of time in dispatching a work 
request is spent communicating to the Active Page the func- 
tion to invoke and additional required parameters. We refer 
to the time it takes to dispatch this request as activation time. 
Activation time is generally constant for each page for a given 
function (measurements for each application will be given in 
Table 4). 

Coordination Partitioning computations implies that Ac- 
tive Pages must coordinate with the processor and with each 
other. Processor-page coordination is accomplished via pre- 
defined synchronization variables. Inter-page coordination is 
accomplished with inter-page memory references. 

Synchronization variables are used to coordinate activities 
between the Active Page functions and the processor. The 
structure and layout of these variables are implementation and 
application specific. The variables may serve as locks to indi- 
cate when inputs or outputs for an Active Page operation are 
valid. This interface is similar to memory-mapped registers 
used for network interfaces. 

The Active Page mode1 of computation does not define 
an explicit means for inter-page communication. Support for 
communication between pages can be accomplished in a va- 
riety of fashions. Abstractly, all forms of communication are 
viewed as non-local memory references issued by an Active 
Page. For performance reasons, an Active Page memory sys- 
tem may choose to combine several references into a contigu- 
ous inter-page memory copy. Our RADram implementation 
(Section 3) simulates such an approach. 

Computation Scaling The computational power of Ac- 
tive Pages scales in an unusual way as application problem 
sizes grow. In this section, we develop some intuition about 
this scaling and we will verify these intuitions in Section 7. 

Traditional multiprocessors generally operate with a fixed 
number of processing engines which must be applied to a vari- 
able problem size. With Active Pages, the number of process- 
ing engines is coupled to physical memory size. Since many 
systems are designed to scale memory size to contain the data 
of their intended applications, more Active Pages will be avail- 
able for the computation. 

Figure 1 shows how we expect Active-Page performance to 
scale as problem size grows. Speedup refers to the performance 
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of a system using a conventional memory system divided the 
performance of a system Using Active Pages. Non-Overlap 
Time is the time the processor spends waiting for Active Page 

computation which is not overlapped with processor compu- 
tation. This is indicative of the quality of partitioning. As 

illustrated in Figure 1, we expect three regions of speedup as 
problem sizes scale: 

The sub-page region: For very small problem sizes, ap- 
plications use a small number of Active Pages and utilization 
of those pages is poor. Activation time dominates the compu- 
tation and speedups do not scale until the Active Page func- 
tion offloads sufficient work from the processor. 

The scalable region: Once the problem is larger, the 
number of Active Pages involved increases linearly. The cor- 
responding increase in computational power results in linear 

speed-ups. 
The saturated region: Although the number of Active 

Pages grows with data size, the number of processors in a 

system does not. Consequently, we expect speedups to even- 
tually level off as the processor-component of the application 
saturates constant processor resources. This leveling off can 
also produce a degradation in performance as an increased 
number of Active Pages can increase the synchronization and 
communication overhead. 

Ideally, we want speedups which are in the rightmost por- 
tion of the scalable region. Fortunately, partitions can be 
tuned to shift this scalable region towards specific problem 
sizes. 

Data Manipulation In addition to providing scalable 

computation, Active Pages allow programmers to optimize for 
density and indexing rather than data manipulation. Cur- 
rently, programmers have a wealth of data structures they 
can choose to use for any given problem. However, these data 
structures each have advantages and disadvantages. For in- 
stance, doubly-linked lists provide fast insertion and deletion 
of elements, but poor random access. On the other hand, 
arrays provide fast random access, but poor performance on 
insertions and deletions. 

To some extent, Active Pages remove the burden of com- 
promise when choosing a data structure. For example, our 
implementation of the STL array class uses dense arrays, but 
exploits Active Page functions to provide fast insertion and 

deletion. 

3 Implementation: RADram 

In this section. we describe the Reconfigurable Architecture 
DRAM (RADram) system, shown in Figure 2. RADram is an 
architecture baaed upon the integration of the next generation 
of FPGA (Field-Programmable Gate Array) and DRAM tech- 
nology. To minimize latency and reduce power consumption, 
large DRAMS are divided into subarrays, each with its own 
subset of address bits and decoders [1+97]. RADram exploits 
this structure by associating a block of reconfigurable logic 
with each subarray. 

RADram Architecture For gigabit DRAMS, a good 
sub-array size to minimize power and latency is 512 Kbytes 
[1+97]. The RADram system associates 256 LEs (Logic El- 
ements, a standard block of logic in FPGXs which is based 
upon a 4-element Look Up Table or 4-LUT) to each of these 
sub-arrays. This allows efficient support for Active-Page sizes 
which are multiples of 512 kbytes. 

Figure 2: The RADram System 

Parameter Reference Variation 

CPU Clock 1 GHz - 

Ll I-Cache 64K 
Ll D-Cache 64K 32K-256K L 
L2 Cache 1M 256K-4M 
Reconf Logic 100 MHz lo-500 MHz 
Cache Miss 50 ns O-600 ns , 

Table 1: Summarv of RADram parameters 

Each LE requires about 1K transistors of area on a logic 
chip. The Semiconductor Industry Association (SW) roadmap 
[Sem94] projects mass production of l-gigabit DRAM chips by 
the year 2001. If we devote half of the area of such a chip to 
logic, we expect the DRAM process to support approximately 
32M transistors, which is enough to provide 256 LEs to each 
512K sub-array of the remaining 0.5-gigabits of memory on 
the chip. DeHon [DeH96b] gives several estimates of FPGX 
area. 

We adopt a processor-mediated approach to inter-page com- 
munication which assumes infrequent communication. When 
an Active-Page function reaches a memory reference that can 
not be satisfied by its local page, it blocks and raises a proces- 
sor interrupt. The processor satisfies the request by reading 
and writing to the appropriate pages. Once an interrupt is 

raised, the processor generally satisfies many requests from 
different pages in the system. Future work will evaluate hard- 
ware mechanisms for in-chip communication, increasing the 
number of outstanding references per page, and processor- 
polling for requests. The processor-mediated methodology, 
however, functions well for our applications and will greatly 
simplify future work in paging and virtual memory. 

Table 1 lists the parameters of our reference RADram im- 
plementation. Several parameters were also individually var- 
ied in our experiments with respect to the reference imple- 
mentation. The range of variation for these parameters is also 
given in Table 1. Additionally, a memory bus capable of trans- 
ferring 32 bits of data between memory and cache every 10 ns 
is assumed. 

Why Reconfigurable Logic? The potential of gi- 
gabit densities in DRAM has prompted research and devel- 
opment in a variety of implementation options for intelligent 
memory. IRAM [Pat95], an integration of processor core and 
DRAM, is a well-known option studied at Berkeley. RXDram, 
however, is likely to have better yield, higher parallelism, and 
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better integration with commodity processors than IRAM. 
The primary advantage of RXDram memory devices is that 

they will be inexpensive to fabricate. Processor chips cost 
ten times as much as memory chips because their complexity 
makes their yield, or percentage of working chips, much lower 
[Prz97]. DR.4Ms are fabricated with redundant memory cells 
that can replace defective cells through laser modification after 
chip production. The uniform nature of reconfigurable logic 
allows for similar measures in RADram chips. In contrast, 
IRAM chip designers will have to work hard to avoid yields 
similar to processor chips. If IRAM chips are fabricated at 
processor costs, systems will be limited to a few IRAM chips 
and to applications with smaller data. RADram is intended 
to fabricate at DRAM costs, which allows dozens of chips per 
system and much larger application data. 

Our results will show that RADram can exploit extremely 
high parallelism by supporting simple, application-specific op- 
erations in memory. A multi-gigabit RADram can have more 
than 128 Active Pages, each of which can execute simulta- 
neously. Processor-in-DRAM solutions can not support such 
high parallelism. The variety of custom operations used in our 
applications also suggests that fixed logic would severely limit 
the functionality of Active Page applications. 

Finally, RADram is specifically designed to support com- 
modity microprocessors. The RADram interface is compatible 
with standard memory busses. A primary goal of RADram is 
to supply microprocessors with enough data to keep them run- 

ning at peak speeds. IR.4M technology, however, is intended 
to compete with commodity processors. This competition may 
eventually be favorable for IRXM as the importance of single- 
chip systems increases, but ever-growing applications may al- 
ways demand larger memories and multiple chips. 

Fabrication Interest in the fabrication of Merged DRA.\I 
Logic (MDL) devices has grown dramatically in the past few 
years. Major manufacturers currently have the capability to 
fabricate DRAM cells (macrocells) in logic chips. Processors 
have also been fabricated in DRAM chips. Current DRAM in 
logic chips has poor density. Logic in DRAM chips has poor 
speed and density. Merged DRAM-logic processes, which can 
fabricate both kinds of structures well, are becoming available 
[Prz97]. Our study, however, is conservative and assumes a 
DRAM process with associated penalties in logic speed and 
density. 

Power Power consumption is a major concern for DRAM 
chips because increased chip temperatures result in higher 
charge leakage from storage cells. This leakage increases the 
need for more frequent DRAM refresh. Fortunately, this higher 
refresh can be bundled into our logic added to each DRAAI 
subarray. 

Although a detailed study of power is beyond the scope 
of this paper, we have been conservative in our use of power 
in RADram. Our applications only use 32 bits of bandwidth 
between data and logic in RADram pages. This could easily be 
increased to 256 or 512 bits, but would result in higher power 
consumption. Increasing bandwidth would also require more 
reconfigurable logic, which is beyond our area constraints for 
some applications. Application performance, however, is high 
despite conservative bandwidth. 

4 Methodology 

To evaluate Active Pages, we conducted a detailed applica- 
tion study. The reference Active-Page platform used for this 

study was previously described in Section 3. This platform 
was studied using a three step approach. First, a simulator 
was implemented which modeled the RADram Active-Page 
memory system. Second, a set of applications were chosen 
which represented various algorithmic domains. Finally, these 
applications were written and optimized for both the RADram 
and conventional memory system architectures. 

As a base for a simulation environment we started with the 
Simple&alar ~2.0 tool set [BA97]. This tool set provides the 
mechanisms to compile, debug and simulate applications com- 
piled to a RISC architecture. The SimpleScalar RISC archi- 
tecture is loosely based upon the MIPS R3000 instruction set 
architecture. The SimpleScalar environment was extended by 
replacing the simulated conventional memory hierarchy with 
an Active-Page memory system. The new simulated mem- 
ory hierarchy provides mechanisms which simulate RADram 
application-specific circuits executing within the DRAM mem- 
ory system. Further, the SimpleScalar instruction set was ex- 
tended with Intel MMX multi-media instruction opcodes. Fi- 
nally, the toolset was enhanced by updating the GNU C/C++ 
compiler version included to the latest ~2.7.2.1 compiler suite. 
All applications in this study were compiled with the -03 op- 
timization option. 

After implementation of this simulation environment, a set 
of applications was chosen for architectural evaluation. Each 
application is briefly described in Section 5. Here we explore 
the methodology used in choosing, partitioning and evaluating 
these applications. 

Applications were chosen with three motives in mind. First, 
the algorithms to be implemented in the application were rep- 
resentative of a broad class of algorithms used in a range of ap- 
plications. Second, the algorithm or application illustrated a 
certain kind of partitioning as described in Section 2. Finally, 
an MMX-instruction-set compatible application was chosen 
to explore Active-Page implementations other than RADram. 
For instance, future work may investigate the possibility of 
identifying a small key set of data manipulation primitives 
which should be implemented in fixed logic in the Active-Page 

model. 
The first step in studying each application or algorithm 

described in Section 5 is to implement and optimize it on a 
conventional memory system. The application is then hand- 
partitioned for an Active-Page memory system. Next, Active- 

Page functions are coded in VHDL and synthesized to FPGA 
logic. The results of this are discussed in Section 6. State 
transition characteristics of these synthesized circuits is used 
to simulate the functions with our SimpleScalar simulator. 

5 Applications 

In order to demonstrate effective partitioning of applications 
between processor and Active Pages, we chose a range of appli- 
cations representing both memory- and processor-centric par- 
titioning. Table 2 summarizes the attributes of these appli- 
cations. This section describes each application and divides 
those descriptions into each partitioning class. 
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Slemory-Centric Applications Slemory-Centric Applications 
same Same Application Application Processor Computation Processor Computation Active Page Computation Active Page Computation 

Array Array C++ standard template C++ standard template C++ code using array class C++ code using array class Array insert, delete, Array insert, delete, 
library array class library array class Cross-page moves Cross-page moves and find and find 

Database Database Address Database Address Database Initiates queries Initiates queries Searches unindexed data Searches unindexed data 
Summarizes results 

lIedian Median filter for images Image I/O Median of neighboring pixels 

Dynamic Prog Protein sequence matching Backtracking Compute MINs and fills table 

Processor-Centric Applications 
Same Application Processor Computation Active Page Computation 

Llatrix Matrix multiply for 
Simplex and finite element 

Floating point -- multiplies Index comparison and 
Simplex and finite element gather/scatter gather/scatter of data of data 

IIPEG-MMX IIPEG-MMX MPEG decoder using MPEG decoder using MMX dispatch MMX dispatch MMX instructions MMX instructions 
MMX instructions MMX instructions Discrete cosine transform Discrete cosine transform 

Table 2: Summarv of oartitionina of annlications between nrocessor and active pages Table 2: Summary of partitioning of applications between processor and active pages 

5.1 Memory-Centric Partitioning 

As discussed in Section 2, Active Pages can exploit the par- 
allelism in applications through memory-centric partitioning. 

Our array, database, median filtering, and dynamic program- 
ming applications are good examples of such partitioning. 

STL Array Template The STL arrav template is a 
general purpose C++ template which permits the storage, 
access, and retrieval of objects based upon a linear integer 
index. The template class supports the usual array access 
operators, as well as insert, delete and binary-find/count op- 
erations. -111 of the applications implemented hide the layout 
of data and partitioning of algorithmic operations from the 
application via a simple C++ interface. However, the STL 
array best demonstrates this principle. Library calls, derived 
from a common subclass, allow single source files to work with 
either the .ictive-Page or conventional-system implementation 
of the array template. 

The implementation uses reconfigurable logic to speedup 
the following operations: array insert,’ delete, and count oper- 
ations. The insert and delete operations involve moving por- 
tions of the array in parallel to accommodate the change in 
array size. The count operation is implemented by a binary 
comparison circuit. 

These three operations are indicative of a broad range of 
array operations which the RADram system can effectively 
compute. Further examples from the STL library include: 
accumulate. partial sum, random shuffle, rotate, and adjacent 
difference. 

Database Query Several methods [SKS97] exist to speed 
up database searches, if the searches involve indexed fields. 
Indexing produces a second table within the database which 
permits the database engine to quickly locate fields in logarith- 
mic or constant time. However, indexing is often not practical 
for highly-varied queries or under tight storage constraints. 
Unindexed queries can take time proportionally linear to the 
number of records. Our database benchmark uses a syntheti- 
cally generated address book. Custom Active Page functions 
were written to search for exact matches on any of the string 
fields contained in the address records. 

The RADram system time complexity of the unindexed 
database query is (3(l), however the constant bounding it is 
quite large. The performance gained by the RADram system 
comes from the parallelism available in the database search. In 

theory, all records can be searched simultaneously. In practice, 

the records are grouped into blocks, which are roughly the size 
of a RADram memory page. These blocks are then distributed 

among the pages in the RADram memory system. Each page 
is then custom programmed with the search engine’s applica- 
tion specific circuit. To demonstrate the performance of the 
RADram system on this application a count of exact matches 
for the last name of an individual in the address book is per- 
formed. The count is run on the same database in both the 
RADram system and on a conventional implementation. 

Image Processing Image processing and signal pro- 
cessing have been traditional strengths of FPGA’s and cus- 
tom processor technologies [R+93] [AA951 [K+96]. We im- 
plemented an image median filtering [RW92] application on 
RADram. Median filtering is a non-linear method which re- 
duces the noise contained in an image without blurring the 
high-frequency components of the image signal. The RADram 
implementation divides the image by row blocks among var- 
ious Active Pages. Each row block contains two additional 
rows, one above the current row block, and one below it, in 
order to perform the median filtering kernel computation. The 
Active Pages are then programmed with a custom circuit de- 
signed to find the median of nine short integer values. For 
comparison, the conventional system uses a hand-coded algo- 
rithm which takes a minimal number of comparisons to find 
the median of nine values. 

Because the computational work involved is small in terms 
of circuit area, the bulk of the median filtering application 
runs inside the RADram memory system. Not surprisingly, 
this application allows RADram to exploit high parallelism 
and memory bandwidth. RADram also uses a custom circuit 
which is designed for sorting nine short integer values. The 
conventional implementation requires several conditional in- 
structions, as well as memory I/O operations, in order to find 
the median value. 

Largest Common Subsequence This algorithm is 
representative of a broad class of string algorithms which form 
the basis for modern biological research. At the heart of the 
computer algorithm to reconstruct DNA sequences are string 
algorithms such as largest common subsequence, global align- 
ment, and local alignment [Gus97]. The largest common sub- 
sequence (LCS) computation is typically done using a dynamic 
programming construction. This construction runs in O(n*) 
time and space for sequences of length n. One can view the 
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construction as a set of computations over a plane. For the 
LCS algorithm, the computation can proceed in parallel as a 
wave-front starting at the upper left corner and ending in the 
lower right corner of this plane. This wave-front computation 
runs in 0(n log(n)) time on the RADram system. 

The RADram system implements the LCS computation 
by dividing the algorithm into two steps. The first step is 
the computation of the LCS result matrix itself. The second 

step is the backtracking [CLR96] required to find the largest 
common subsequence. The RADram system executes the first 

step entirely within the reconfigurable logic inside the memory 
system Backtracking executes entirely within the processor. 

5.2 Processor-Centric Partitioning 

Active Pages are intended for simple, application-specific oper- 
ations, leaving more complex computations to general-purpose 
microprocessors. Our IMMX and matrix applications are good 
examples of processor-centric partitioning. 

MMX Primitives The MMX multimedia instruction 
primitives were chosen for implementation within the RADram 
system for two reasons. First, they represent a well known 
“commodity” set of architecture primitives. Second, they are 
simple primitive operations designed for parallel execution. 

The simulator was extended to support SimpleScalar MMX 
instructions, and RADram MMX instruction equivalents. The 
MMX instructions themselves are highly parallel, simple, and 
generally complete in a single processor cycle. To improve 
upon the base SimpleScalar MMX instructions, the RADram 
equivalents operate on larger data widths. While an MMX 
instruction in SimpleScalar is restricted to producing only 32 
bits of data per instruction, a RADram MMX instruction can 
produce up to 256 kbytes of data per instruction. 

While implementation of the complete MMX instruction 
set is still underway, enough is implemented to carry out key 
portions of the YPEG encoding and decoding processes. While 
future work will explore more MPEG routines, current work 
has focused upon application of the correction matrices within 
the P and B frames [M+96]. Future implementation of the 
MPEG algorithm will partition additional components be- 
tween the processor and RADram memory system. The pro- 
cessor will be responsible for the Discrete Cosine Transform 
(DCT), while the RADram system will handle motion detec- 
tion, application of motion correction matrices, run length en- 
coding and decoding (RLE), and Huffman encoding and de- 
coding. 

Sparse-Matrix Multiply A wide range of real-world 
problems can be represented as sparse matrices. We examine 
both a common scientific benchmark and a more challenging 
compiler optimization problem. Our scientific benchmark in- 
volves the multiplication of matrices representing finite-element 
computations taken from the Harwell-Boeing benchmark suite 
[D+92]. Our compiler optimization problem involves using the 
Simplex method [NM651 to perform optimal register alloca- 
tion [GW96]. 

A key computation in both these applications is sparse 
vector-vector dot-product. Conventional implementations of 
this operation are severely limited by processor-memory band- 
width. Sparse vector FLOPS on a conventional system are 
often an order of magnitude lower than those for dense vec- 
tors. The processor must fetch the indices of each nonzero 
in both vectors of the dot product, determine which indices 

match, fetch the data corresponding to those indices, multiply 
the data, and write the data back to its appropriate location. 

In contrast, the RADram system implements a compare- 
gather-compute approach. Active Page functions fetch and 
compare vector indices, fetch the data values for the indices 
that match, and gather the data into cache-line size blocks. 
Vectors are co-located on pages. The processor then reads the 
packed data, computes the multiplies, and writes back cache- 

line size blocks of results. Note that only “useful” data travels 
between the processor and memory, greatly conserving band- 

width. With large matrices, the RADram system has enough 
Active Pages executing to keep the processor computing at 
peak floating-point speeds. 

6 Synthesized Logic 

In order to estimate performance and area of RADram logic 
configurations, each function of an application’s Active Pages 
was hand-coded in a high-level circuit-description language, 
VHDL [AshSO], and circuits synthesized to completely routed 
designs in contemporary FPGA technology. This provided a 
means to verify the timing of the simulated circuit implemen- 
tation, as well as information on circuit area, which helped 

guide the RADram design. 
The results of our implementations of the application spe- 

cific circuits for the simulated applications are summarized in 
Table 3. These results were obtained by implementing the cir- 
cuit design in behavioral VHDL and synthesizing them with 
the Synopsys FPGA design tools. After synthesis to a tech- 
nology independent logic description, the designs were placed 
and routed to an Altera FLEX-IOKlO-3 part. This allowed 
us to study the post-routed designs on real FPGA technology. 
The count of logic block usage reported in Table 3 includes 
both completely used and partially used LEs. The speed and 
code size were directly reported by the Synopsys tools. 

The results obtained from implementation of application- 
specific circuits indicate that the RADram Active-Page system 
can execute the application kernel’s circuits. The RADram im- 
plementation can implement designs with approximately 256 
LEs per Active Page, and all of our designs are below this 
amount. Our designs can also be further optimized by im- 
plementing common memory interfaces in fixed logic. Our 
system simulation assumes a 100 MHz clock for our circuits. 
Given modest advances in FPGA technology, this should be 
achievable for our circuits by 2001. Finally, the code size is 
an indication of the potential “code-bloat” which will hap- 
pen when transitioning an application to the RADram system. 
Code size is also indicative of the page-replacement cost for 
Active Pages, which we anticipate to be 2-4 times larger than 
for conventional pages due to reconfiguration time. However, 
pages which do not use Active-Page functions do not incur this 
cost, and future reconfigurable technologies may significantly 
reduce this cost (see Section 10). 

7 Results 

In this section, we compare our RADram simulation results of 
each application kernel described in Section 5 to our expec- 
tations from the Active-Page application characteristics dis- 
cussed in Section 2. First, we discuss performance of RADram 
versus a conventional memory system executing optimized ver- 
sions of the same applications. Then we explore the memory 
hierarchy of both memory systems by studying the effects of 
cache parameters. Finally, we develop an analytical model to 
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Application LEs Speed Code 

Table 3: Xctive-Page functions synthesized for RADram. 
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Figure 3: RADram speedup as problem size varies. 

describe partitioned application performance, and then com- 
pute the correlation between this model and our experimental 
results. 

7.1 Performance 

To evaluate performance of the RADram Active Page mem- 
ory system, each application described in Section 5 was exe- 
cuted on a range of problem sizes using a flxed set of machine 
characteristics listed in Table 1. The speedup of our applica- 

tions running on a RADram memory system compared to a 
conventional memory system are shown in Figure 3. Each ap- 
plication was run on a range of problem sizes, given in terms 
of number of Active Pages (512 Kbyte superpages). We make 
two primary observations about this graph. 

First, application kernels execute significantly faster on a 
RADram memory system than a conventional memory system. 
The one exception from our application mix is the array-delete 
primitive in the sub-page region. The SimpleScalar processor 
instruction set actually favors array-delete over array-insert. 
To take advantage of this fast delete, the RADram version of 
array-delete uses an adaptive algorithm that uses the processor 
more for arrays that are smaller than one Active Page. 

Second, our performance results qualitatively scale as we 
expected in Figure 1. \\‘e observe that most applications show 
little growth in speedup as data size grows within the sub- 
page region (below one page for most applications). In this 
region, RADram applications have little parallelism to offset 
activation costs. As we leave this region, we enter the scal- 
able region and see that performance on all of our applica- 
tions grows nicely as data size increases. Four applications- 
database, mmx, matrix-simplex, matrix-boeing, and median- 
filtering-also reach the saturated region. Here, RADram per- 
formance is limited by the progress of the processor. This 
limitation may be due to either too much work for a given 

- array-dclcte 
-Q-e array-rind 
-0-o anay-mm 
--A-- dawbw 
- dyn-prog 
--t-. mamx-bcang 
-0-. maww-simplex 
-a-- mcdmn-kernel 

w median-tovd 
-*--Illma 

I IO 100 

Problem Size (in SlZK Pager) 

Figure 4: Percent cycles the processor is stalled on RADram 
as nroblem size varies. 

speed processor or too much data traveling between the pro- 
cessor and RADram across the memory bus. Performance can 
actually decrease as coordination costs dominate performance. 
Given a large enough problem size, all our applications would 
eventually reach the saturated region. 

7.2 Processor-Memory Non-overlap 

The saturated region of Active-Page performance emphasizes 
the importance of partitioning applications to efficiently use 
the processor in a system. For processor-centric applications, 
this dependence is obvious. The goal is to keep the processor 
computing by providing a steady stream of useful data from 
the memory system. For memory-centric partitions, however, 
the processor is still a vital resource. Active Pages can not 
compute without activation and inter-page communication, 
both provided by the processor. 

As data size grows in an Active-Page application, so does 
the load upon the processor. We measure the remaining ca- 
pacity of a processor to handle this load with a metric we call 

processor-memory non-overlap time. Non-overlap is the time 
the processor spends waiting for the memory system and can 
be used to estimate the boundary between the scalable and 
saturated regions of application performance. 

The relative percentage of time the processor is stalled, 
waiting for memory system computation is shown in Figure 4. 
As described earlier in Section 7.1, the applications which 
reached the saturated region of speedup were: database, matrix- 
simplex, matrix-boeing, and median-filtering. As is shown 
in Figure 4 these applications also reach a point of complete 
processor-memory overlap. The effect of this is described in 
Section 2. 

We also observe that for the array primitives and the dy- 
namic programming application the non-overlap percentage 
remains relatively high. These applications are largely memory- 
centric, with very little processor activity. In fact, the array 
primitives operate asynchronously to the end of the applica- 
tion, and are artificially forced in synchronous operation for 
this study. This means that an application can use the insert 
an delete array primitives with only the cost of RADram func- 
tion invocation. Module dependencies on the array, the time 
spent by the memory system shifting data can be overlapped 
with operations outside of the STL array class. This over- 
lap occurs in a natural way with no additional effort required 
by the programmer who uses the RADram STL array class. 
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Figure 5: Conventional (left) and RADram (right) Execution Time vs. Ll Data Cache Size 

Opportunities for overlapping execution of data structure op- 
erations with data-structure usage is intriguing, and is being 
investigated further. 

The dynamic programming example maintains a very high 
processor / memory non-overlap, however preliminary results 
indicate that processor-mediated communication required by 
the RADram memory system eventually dominates perfor- 
mance. This occurs for extremely large problems that are well 
beyond the range of problem sizes presented in this study. 

7.3 Cache Effects 

The simulated processor used for this study has a default split 
instruction-data level-one cache. Each level-one cache is 64 

kilobytes, and is 2-way associative. The processor also has a 
combined level-two cache of 1 megabyte and is 4-way associa- 
tive. For this study the level-one data cache size was varied 
from 32 to 256 kilobytes. The level-two cache size was varied 
from 256 kilobytes to 4 megabytes. 

Figure 5(left) plots total conventional application kernel 
execution time versus the size of the level-one data cache. As 
illustrated, within the range of cache sizes explored most con- 
ventional applications where unaffected. However, at the left 
edge of Figure 5(left) we note that some conventional appli- 
cations are affected by the size of the level one cache when it 
fell below 64 kilobytes. 

Figure 5(right) plots total RADram application kernel time 

versus level-one data cache size. As illustrated, all but one 
application was unaffected by the size of the level one cache. 
The median-total application shows various stride effects. The 
application consists of two phases. The first reads data into 
an array and transforms it into a special data layout required 
by the Active-Page memory system. The size of the level- 
one cache plays a role in enhancing the performance of this 
operation. The second phase simply dispatches the request for 
median filtering to the Active Page memory system and waits 
for the result. As evident from the performance of median- 
kernel, the second phase is unaffected by the size of the level 
one cache. 

All applications were also executed with a range of level- 
two cache sizes. Throughout this range no significant perfor- 
mance differences occurred. This, combined with the level- 
one cache results indicates that our applications are sensitive 
to extremely small caches sizes, but small to reasonable size 
caches achieve all of the performance of large caches. Active- 
Page applications tend to work with large datasets. Although 
their primary working set may fit in a small cache, secondary 

working sets will not fit in realistic cache sizes. Consequently, 
without migrating to a cache-only architecture, our applica- 
tion performance is bounded by other architectural character- 
istics such as DRAM memory latency and bandwidth. 

7.4 Analysis 

To achieve a deeper understanding of the performance of appli- 
cation partitions, we introduce an analytic model. This model 
is based upon an abstract application. From this abstract ap- 
plication a formula is developed which models performance 
under various problem sizes. Additionally, total application 
performance is bounded by Amdahl’s Law. We present this 
model by first developing an intuitive understanding of a par- 
titioned application. Then we characterize processor perfor- 
mance with an Active-Page memory system. Finally, we com- 
pute the correlation of this analytical model with the results 
obtained from our RADram simulator. 

7.4.1 Model 

Section 2 described partitioning, and the role it plays in ap- 
plication performance on an Active Page memory system. To 
investigate partitioning in more detail, an abstract application 
is depicted in Figure 6. As illustrated in Figure 6 a parti- 
tioned algorithm undergoes two phases from the perspective 
of the processor: activation and post-processing. The activa- 

tion phase is characterized by increased Active Page activity. 
The post-processing phase is characterized by decreasing Ac- 
tive Page activity but potential processor-memory non-overlap 
stalls mixed with processor computation. 

The abstract application depicted in Figure 6 uses K pages 
of Active Page memory. The processor spends Ta(i) time 
activating Active Page i. Initially, the processor activates all 

pages in sequence, thus requiring c:, TA(i) time to activate 
all pages. Immediately after activat& an Active Page begins 
to execute. The time required to complete execution for Active 
Page i is Tc(i). After dispatching the activation request to all 
K pages, the application returns to the first page to perform 
any follow-up processor computation. Before the processor 
can perform this computation, however, the processor may 
be forced to stall and wait for the Active Page in memory 
location 1 to finish execution. At this point in Figure 6, the 
processor is stalled, waiting in non-overlap time. We account 
for this as NO(l), or non-overlap time waiting for Active Page 
1. The processor, after waiting for NO(l) time for the Active 
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Figure 6: Abstract view of processor and Active-Page memory activity. 
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Figure 7: Simplified performance model for Active Pages 

Page to complete execution can then perform the follow up 
computation Tp(1). 

The abstract application shows constant per-page activa- 
tion time TA, constant per-page post-computation time TP, 
and Tp > TA. This means that no other stalls or processor- 
memory non-overlaps occur. In the general case, however, 
an application transitions between post-computation on page 
Tp(i) to non-overlap time NO(i + 1) for the next page. This 
occurs for all pages within the computation. 

Using this abstract application we observe that the all pro- 
cessor time for a single partitioned algorithm is accounted for 

in three distinct sets of variables: TA(i), Tp(i) and NO(i). 
Thus total kernel execution time for a partitioned application 

is the summation x:1, Ta(i) + Tp(i) + NO(i) 
Figure 7 formalizes this model. Note that an application 

need not have constant per-page activation and post-activated 
computation time. Furthermore, an application need not have 
constant per-Active Page computation time. From the pro- 
cessors perspective, each application executes three general 
phases: dispatch, wait for result, and post-compute. 

Figure 7 models conventional application performance in 
terms of T,,,, LI K. That is the time spent by a conventional 
application working with a particular data set of size cr . K. 
T,,,, is time per item. 

\Ve note that within the non-overlap time the processor 
spends before post-processing of page i is a maximum of zero, 
or the computation time of the -Active Page minus the time 
spent by the processor between finishing activation of page 
i and the current time. This intermediate time is spent ei- 
ther activating subsequent pages, stalled, or post-computing 

Application TC Pgs for Speedup 

(ms) OWIhp rorrel. 

Table 4: Activation time (TA), computation time (Tc), post- 
activated processor time (TP), and minimum problem size for 
complete overlap. 

on previous pages. 

7.4.2 Correlation 

In general. an average activation time (TA) and average post- 
page computation time (TP) can be measured using a small to 
medium data-set. Furthermore, an average Active-Page com- 
putation time (Tc) can be measured from this small data-set. 
Using these averages, and the model in Figure 7 a rough es- 
timate of the non-overlap time for a particular problem size 
can be found. Using this estimate, it is possible to predict 
performance of a partitioned application for a range of prob- 
lem sizes. This prediction provides insight into the particu- 
lar characteristics of a partitioned application. By modeling 
performance as activation, post-page computation, per-page 
Active-Page computation, and processor-memory non-overlap 
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Figure 8: RADram speedup as cache-to-memory latency 
varies. 

time, it is possible to gauge performance at a variety of prob- 
lem sizes and adjust the balance of work between the memory 
system and processor according to the expected workload of 
the application. 

To illustrate, Table 4 lists the activation time, post-page 
processor time, and per-page .4ctive Page computation time 
for a number of application kernels in our workload. Using a 
simplified version of the formulas in Figure 7 which assume 
constant values for these metrics, pages for complete overlap 
is computed. Furthermore, for each application, and for each 
data-point used to construct Figure 3 a predicted speedup 

is computed using these constant activation and computation 
times, and a measured non-overlap time taken from Figured 4. 
The correlation between the predicted speedup from using the 
analytical model and the actual speedup observed is shown 
in the rightmost column of Table 4. Most applications are 
well-correlated to the analytical model. A notable exception 
is the matrix-boeing application. This application violates the 
assumption of constant activation and computation times per 
Active Page. The times are inherently data-specific for this 
application and using constant values proved to be less useful 
than for the other applications studied. 

8 Sensitivity to Technology 

Our results for the RADram system demonstrate that Ac- 
tive Pages can be implemented with substantial success on a 
variety of applications. RADram technology, however, is a 
long-term goal which is several years in the future. Shorter- 
term and alternative long-term technologies can also be used 
to implement Active Pages. This section describes such tech- 
nologies and analyzes the sensitivity of our results to some of 
the key parameters in the RADram system. 

Current technologies exist to implement .4ctive Pages at 
significantly higher cost than RADram. Such costs would limit 
the amount of memory available to support Active Pages, and 
consequently, the problem sizes of the applications. These 
technologies include: small merged FPGA-DRAM or SRAM 
chips, DRAM/SRAM macrocells in ASICs, and small processor- 
in-DRAM/SRAM chips. In general, logic speeds in these tech- 
nologies are either equal to or better than RADram assump- 
tions. Chip cost, however, will limit most near-term technolo- 
gies to substantially smaller problem sizes. SRAM or multi- 
chip solutions will also have an effect on memory latencies. 

We vary two technological parameters in our RADram sim- 
ulations: memory latency and logic speed. First, Figure 8 
plots the sensitivity of RADram speedups to memory latency 

Figure 9: RADram speedup as logic speed varies. 

in terms of cache-miss penalty. In general, the performance ad- 
vantage of RADram comes from in-DRAM computation which 
is unaffected by cache-miss penalty. Cache effects, however, 
account for slight changes in both RADram and conventional 
system performance. These changes can result in either in- 
creases or decreases in speedup as cache-miss penalties in- 
crease. The sign of the slope depends upon the relative ratio of 
instruction cycles to memory stall cycles for the conventional 
versus the partitioned application. If one splits the total ap- 
plication runtime into two components: processor time, and 
memory stall time, then computes the ratio of these two values 
for both the conventional and partitioned applications, then 
the slope of application speedup versus memory latency de- 
picted in Figure 8 will depend upon the relative ratio of these 
two ratios. 

Second, Figure 9 plots speedup versus the speed of the 
application-specific circuit. The speed of application-specific 
circuits in the simulated RADram system is measured in rela- 
tive clock divisions of the processor clock. In Figure 9 a higher 
logic divisor corresponds to a slower reconfigurable logic clock. 

To generalize across applications, those operating on prob- 
lems in the scalable region of their partitioning domain are sen- 
sitive to the speed of the Active Page computation, whereas 
those applications operating on problems in the saturated re- 
gions of their partitioning domain are generally insensitive to 

the speed of the Active Page computation. 

9 Related Work 

The IRAM philosophy goes to the extreme by shifting all com- 
putation to the memory system through integration of a pro- 
cessor onto a DRAM chip. This results in dramatically im- 
proved DRAM bandwidth and latency to the processor core, 
but conventional processors are not designed to exploit these 
improvements [Bf97a]. An interesting alternative is to inte- 
grate specialized logic into DRAM to perform operations such 
as Read-Modify-Write [B+97b]. This alternative is promising, 
but we have seen that different applications can exploit signif- 
icantly different computations in the memory system. Our re- 
sults have shown that integrating reconfigurable logic is highly 
effective. 

Reconfigurable computing has shown considerable success 
at special-purpose applications [A+961 [B+96], but has had 
difficulty competing with microprocessors on more general- 
purpose tasks such as floating-point arithmetic. Some groups 
focus upon building reconfigurable processors [HW97] [WH96] 
[RS94] [WCSG], but face an even more difficult competition 
with commodity microprocessors. Our approach avoids these 
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difficulties by exploiting the strengths of both microprocessors 
and reconfigurable logic. We focus upon data manipulation 
to make the memory system perform better for the processor. 
DeHon described limited integration of reconfigurable logic 
and DRAhl in an early memo [DeH95], but did not evaluate 
it further. 

Our philosophy is reminiscent of scatter-gather engines from 

a long line of supercomputers [HT72] [SH90] [CG86] [Bat741 

[EJ73] [HS86] [L+92]. Hackney and Jesshope [HJ88] give a 

good history of such machines. Our approach, however, sup- 
ports a much wider variety of data manipulations and compu- 
tations than these machines. Additionally, our emphasis on 
commodity technologies results in a focus on different appli- 
cations and design tradeoffs. 

10 Future Work 

Active Pages and our RADram implementation have shown 
great potential in our study. Unlocking this potential involves 
many interesting issues, including: compiler support for auto- 
matic application partitioning, operating system integration, 
multi-threaded application support, complete application run- 
times, application-specific circuits vs. data-primitives, hierar- 
chical computation structures, inter-page and inter-chip com- 
munication. In addition, a detailed power, yield and hardware 
implementation study of RADram is required. 

For Active Pages to become a successful commodity ar- 
chitecture, the application partitioning process must be auto- 
mated. Current work uses hand-coded libraries which can be 
called from conventional code. Ideally, a compiler would take 
high-level source code and divide the computation into pro- 
cessor code and Active-Page functions, optimizing for mem- 
ory bandwidth, synchronization, and parallelism to reduce 
execution time. This partitioning problem is very similar 
to that encountered in hardware-software co-design systems 
[GVNG94] which must divide code into pieces which run on 
general purpose processors and pieces which are implemented 
by ASICs (Application-Specific Integrated Circuits). These 
systems estimate the performance of each line of code on alter- 
native technologies, account for communication between com- 
ponents, and use integer programming or simulated annealing 
to minimize execution time and cost. Active Pages could use 
a similar approach, but would also need to borrow from par- 
allelizing compiler technology [Hf96] to produce data layouts 
and schedule computation within the memory system. 

Integration of Active Pages with a real operating system 
poses new challenges. hctive Pages are similar to both mem- 
ory pages and parallel processors. Several open operating 
system issues exist such as allocation policies, paging mecha- 
nisms, scheduling, and security. Of particular concern is the 
high cost of swapping Active Pages to and from disk. Current 
FPGA technologies take 100s of milliseconds to reconfigure. 
New technologies, however, promise to reduce these times by 
several orders of magnitude [DeH96a]. Our future work will 
address these issues both formally and practically by clarifying 
the policy of interaction between an operating system and the 
Active Page memory system, and by simulation of a modified 
operating system kernel such as Linux [Bee96]. In addition to 
operating system studies, multi-threaded application support 
will be investigated. 

Future work shall address inter-page and inter-chip com- 
munication issues. Before mechanisms are formalized for inter- 
page communication, a detailed evaluation of inter-page com- 
munication requirements is required. This evaluation must 

study whether inter-page communication is required by a broad 
class of application domains, and if so, if it should it be sim- 
ulated via processor intervention or implemented with dedi- 
cated hardware support. Along with inter-page and inter-chip 
communication, a study of inter-page synchronization primi- 
tives is required. Such primitives, if implemented in hardware, 
pose additional challenges. 

Finally, further evaluation of application kernels is required. 

Instruction sets such as hIMX codify a set of data-manipulation 

primitives for a certain application domain. Further study 
of data-manipulation primitives could distill a common base 
set of primitives for a broad set of application domains. If 
such primitives exist, hybrids of the RADram implementation 
should be investigated. 

11 Conclusion 

Active Pages provide a general model of computation to ex- 
ploit the coming wave of technologies for intelligent memory. 
Active Pages are designed to leverage existing memory inter- 
faces and integrate well with commodity microprocessors. In 
fact, a primary goal of Active Pages is to provide micropro- 
cessors with enough useful data to run at peak speeds. 

Our RADram implementation of Active Pages achieves 
substantial speedups when compared to conventional memory 
systems. RADram provides a large number of simple, recon- 
figurable computational elements which can achieve speedups 
up to 1000 times faster than conventional systems. This high 
performance, coupled with low cost through high chip yield: 
makes RADram a highly promising architecture for future 
memory systems. 
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