
Active Pages: A Computation Model for Intelligent Memory

Mark Oskin, Frederic T. Chong, and Timothy Sherwood

Department of Computer Science

University of California at Davis

Abstract

Microprocessors and memory systems suffer from a growing
gap in performance. We introduce Active Pages, a computa-
tion model which addresses this gap by shifting data-intensive
computations to the memory system. An Active Page consists
of a page of data and a set of associated functions which can
operate upon that data. We describe an implementation of Ac-
tive Pages on RADram (Reconfigurable Architecture DRAM),
a memory system based upon the integration of DRAM and
reconfigurable logic. Results from the SimpleScalar simulator
[BA97] demonstrate up to 1000X speedups on several applica-
tions using the RADram system versus conventional memory
systems. We also explore the sensitivity of our results to im-

plementations in other memory technologies.

1 Introduction

Microprocessor performance continues to follow phenomenal
growth curves which drive the computing industry. Unfortu-
nately, memory-system performance is falling behind. Processor-
centric optimizations to bridge this processor-memory gap in-
clude prefetching, speculation, out-of-order execution, and mul-
tithreading [W5195]. Several of these approaches can lead to
memory-bandwidth problems [BGK96]. We introduce Active
Pages, a model of computation which partitions applications
between a processor and an intelligent memory system. Our
goal is to keep processors running at peak speeds by off-loading
data manipulation to logic placed in the memory system.

Active Pages consist of a page of ,data and a set of asso-
ciated functions that operate on that data. For example, an
Active Page may contain an array data structure and a set of
insert, delete, and find functions that operate on that arrray. A
memory system that implements Active Pages is responsible
for both the storage of the data and the computation of the
associated functions.

Rapid advances in fabrication technology promise to make
the integration of logic and memory practical. Although Ac-
tive Pages can be implemented in a variety of architectures and
technologies, we focus upon the integration of reconfigurable
logic and DRAM. We introduce the RADram (Reconfigurable
Architecture DRAM) system. On many applications, our sim-
ulations show substantial performance gains for a uniproces-
sor workstation using a RADram system versus a conventional
memory system. RADram can also function as a conventional
memory system with negligible performance degradation. As
we shall see in Section 3, RADram is likely to have superior
yield, higher parallelism, and better integration with commod-
ity microprocessors when compared to architectures such as

Acknowledgements: Thanks to Andr.5 DeHon, Matt Farrens. Lance

Halstead, Tom Simon, Deborah Wallach, and our anonymous referees.

This work is supported in part by an NSF CAREER award to Fred

Chong, by Altera. and by grants from the UC Davis Academic Senate.

More info at http://arch.cs.ucdavis.edu/RAD

IRAM [Pat95]. Since memory technologies are a moving tar-
get, we measure the sensitivity of our results to the speed of
Active Page implementations. This allows us to generalize to

currently available technologies such as DRAM macrocells in
ASIC (Application-Specific Integrated Circuit) technologies.

This paper starts with a description of Active Pages in
Section 2, and continues with our RADram implementation
in Section 3. We then describe our experimental methodology
in Section 4 and our applications in Section 5. We continue
with the reconfigurable logic designs for each application in
Section 6. We present our results in Section 7 and generalize
these results to other technologies in Section 8. Finally, we
conclude with a discussion of related work in Section 9, future
work in Section 10 and conclusions in Section 11.

2 Active Pages

Active Pages introduce new programming, system, and fab-
rication issues. In this section, we shall discuss program-
ming issues which arise from the Active Page computational
moclel. These issues are partitioning, coordination, computa-
tional scaling, and data manipulation. We will discuss system
and fabrication issues in Section 3 where we introduce the
RADram Active-Page implementation.

To use Active Pages, computation for an application must
be divided, or partitioned, between processor and memory. For
example, we use Active-Page functions to gather operands for
a sparse-matrix multiply and pass those operands on to the
processor for multiplication. To perform such a computation,
the matrix data and gathering functions must first be loaded
into a memory system that supports Active Pages. The pro-
cessor then, through a series of memory-mapped writes, starts
the gather functions in the memory system. As the operands
are gathered, the processor reads them from user-defined out-
put areas in each page, multiplies them, and writes the results
back to the array datastructures in memory.

Interface To simplify integration with commodity micro-
processors and systems, the interface to Active Pages is de-
signed to resemble a conventional virtual memory interface.
Specifically, the Active Page interface includes the following:

l Standard memory interface functions:
write(vaddr, data) and read(vaddr)

. A set of functions available for computation on a partic-
ular Active Page: APJunctions.

. An allocation function:
AP-alloc(group-id,vaddr)

which allocates an Active Page in group group-id at vir-
tual address uaddr. Pages operating on the same data
will often belong to a page group, named by a group-id,
in order to coordinate operations.

l A function binding procedure:
AP-bind(group-id, APJunctions)

1063-6897/98 $10.00 0 1998 IEEE
192

which binds a set a set of functions APJunctions to a
group group-zd of .-\ctive Pages. This set of functions
may be redefined through repeated calls to AP-bind.
Since implementations may limit the number or com-
plexity of functions associated with each page, re-binding
may be necessary to make room for new functions by

eliminating old ones.

. Additionally, applications will commonly use several vari-
ables in each Active Page as synchronization variabks
to coordinate between APJunctions and a processor.
These variables require no additional support beyond
reads and writes. Alemory accesses by APJunctions and
a processor are atomic.

Active-Page functions use virtual addresses and can refer-
ence any virtual address available to the allocating process. In
our sparse-matrix example, the code begins by calling AP-allot
to allocate a group of pages to store the matrices to be multi-
plied. Then APJunctions are defined to include a function for
index comparison and data gathering. Next, AP-bind is called
to associate this function to the pages. To start the page

computations, the processor activates the pages with an or-
dinary memory write to an application-defined location. The
APJunctions poll such synchronization variables as soon as
AP-bind is called. Once the functions have computed their
results and gathered the matrix data to be multiplied, they
write to another set of synchronization variables to indicate
the data is ready. The process polls these variables and be-
gins reading and multiplying the data once it is ready.

Our global virtual address space implies that some Active-
Page functions may reference data in other pages. Such refer-
ences are meant to be used sparingly and the implementation
of inter-page memory references will be discussed in Section 3.
Active Page implementations are intended to function in any
system that uses a conventional memory system. For example,
pages may coordinate with multiple processors in a Symmetric
Multiprocessor, using Active-Page synchronization variables
to enforce atomicity.

Partitioning In our sparse-matrix example, the applica-
tion was partitioned between work done at the memory system
and work done at the processor. Such partitioning varies in
emphasis between efficient use of processor computation and
efficient use of Active-Page computation. We refer to these
two extremes as processor-centric and memory-centric parti-
tioning. Processor-centric partitioning is appropriate for al-
gorithms with complex computations, such as floating point.
Memory-centric partitioning is appropriate for data manipu-
lation and integer arithmetic.

Sparse-matrix computations require substantial floating-
point computation and suggest a processor-centric partition-
ing. Active Pages compute which operands must be multiplied
with the goal of providing the processor with enough operands
to keep it running at peak speeds. Our image processing ap-
plication, on the other hand. uses integer arithmetic and can
be performed almost entirely in Active Pages. Consequently,
the goal is to exploit parallehsm and use as many Active Pages
as possible.

Activation Time Intuitively, a processor working with
a memory system that implements Active Pages is similar to a
control processor working with a small data-parallel machine.
Typically, an algorithm is partitioned by first dispatching a re-
quest for a computation to occur on the data within an Active

Problem Size

Figure 1: Expected computation scaling of Active Pages

Page. A well-structured application will have to move little,
if any, additional data into the page in order for that function
to complete. Thus, the majority of time in dispatching a work
request is spent communicating to the Active Page the func-
tion to invoke and additional required parameters. We refer
to the time it takes to dispatch this request as activation time.
Activation time is generally constant for each page for a given
function (measurements for each application will be given in
Table 4).

Coordination Partitioning computations implies that Ac-
tive Pages must coordinate with the processor and with each
other. Processor-page coordination is accomplished via pre-
defined synchronization variables. Inter-page coordination is
accomplished with inter-page memory references.

Synchronization variables are used to coordinate activities
between the Active Page functions and the processor. The
structure and layout of these variables are implementation and
application specific. The variables may serve as locks to indi-
cate when inputs or outputs for an Active Page operation are
valid. This interface is similar to memory-mapped registers
used for network interfaces.

The Active Page mode1 of computation does not define
an explicit means for inter-page communication. Support for
communication between pages can be accomplished in a va-
riety of fashions. Abstractly, all forms of communication are
viewed as non-local memory references issued by an Active
Page. For performance reasons, an Active Page memory sys-
tem may choose to combine several references into a contigu-
ous inter-page memory copy. Our RADram implementation
(Section 3) simulates such an approach.

Computation Scaling The computational power of Ac-
tive Pages scales in an unusual way as application problem
sizes grow. In this section, we develop some intuition about
this scaling and we will verify these intuitions in Section 7.

Traditional multiprocessors generally operate with a fixed
number of processing engines which must be applied to a vari-
able problem size. With Active Pages, the number of process-
ing engines is coupled to physical memory size. Since many
systems are designed to scale memory size to contain the data
of their intended applications, more Active Pages will be avail-
able for the computation.

Figure 1 shows how we expect Active-Page performance to
scale as problem size grows. Speedup refers to the performance

193

of a system using a conventional memory system divided the
performance of a system Using Active Pages. Non-Overlap
Time is the time the processor spends waiting for Active Page

computation which is not overlapped with processor compu-
tation. This is indicative of the quality of partitioning. As

illustrated in Figure 1, we expect three regions of speedup as
problem sizes scale:

The sub-page region: For very small problem sizes, ap-
plications use a small number of Active Pages and utilization
of those pages is poor. Activation time dominates the compu-
tation and speedups do not scale until the Active Page func-
tion offloads sufficient work from the processor.

The scalable region: Once the problem is larger, the
number of Active Pages involved increases linearly. The cor-
responding increase in computational power results in linear

speed-ups.
The saturated region: Although the number of Active

Pages grows with data size, the number of processors in a

system does not. Consequently, we expect speedups to even-
tually level off as the processor-component of the application
saturates constant processor resources. This leveling off can
also produce a degradation in performance as an increased
number of Active Pages can increase the synchronization and
communication overhead.

Ideally, we want speedups which are in the rightmost por-
tion of the scalable region. Fortunately, partitions can be
tuned to shift this scalable region towards specific problem
sizes.

Data Manipulation In addition to providing scalable

computation, Active Pages allow programmers to optimize for
density and indexing rather than data manipulation. Cur-
rently, programmers have a wealth of data structures they
can choose to use for any given problem. However, these data
structures each have advantages and disadvantages. For in-
stance, doubly-linked lists provide fast insertion and deletion
of elements, but poor random access. On the other hand,
arrays provide fast random access, but poor performance on
insertions and deletions.

To some extent, Active Pages remove the burden of com-
promise when choosing a data structure. For example, our
implementation of the STL array class uses dense arrays, but
exploits Active Page functions to provide fast insertion and

deletion.

3 Implementation: RADram

In this section. we describe the Reconfigurable Architecture
DRAM (RADram) system, shown in Figure 2. RADram is an
architecture baaed upon the integration of the next generation
of FPGA (Field-Programmable Gate Array) and DRAM tech-
nology. To minimize latency and reduce power consumption,
large DRAMS are divided into subarrays, each with its own
subset of address bits and decoders [1+97]. RADram exploits
this structure by associating a block of reconfigurable logic
with each subarray.

RADram Architecture For gigabit DRAMS, a good
sub-array size to minimize power and latency is 512 Kbytes
[1+97]. The RADram system associates 256 LEs (Logic El-
ements, a standard block of logic in FPGXs which is based
upon a 4-element Look Up Table or 4-LUT) to each of these
sub-arrays. This allows efficient support for Active-Page sizes
which are multiples of 512 kbytes.

Figure 2: The RADram System

Parameter Reference Variation

CPU Clock 1 GHz -

Ll I-Cache 64K
Ll D-Cache 64K 32K-256K L
L2 Cache 1M 256K-4M
Reconf Logic 100 MHz lo-500 MHz
Cache Miss 50 ns O-600 ns ,

Table 1: Summarv of RADram parameters

Each LE requires about 1K transistors of area on a logic
chip. The Semiconductor Industry Association (SW) roadmap
[Sem94] projects mass production of l-gigabit DRAM chips by
the year 2001. If we devote half of the area of such a chip to
logic, we expect the DRAM process to support approximately
32M transistors, which is enough to provide 256 LEs to each
512K sub-array of the remaining 0.5-gigabits of memory on
the chip. DeHon [DeH96b] gives several estimates of FPGX
area.

We adopt a processor-mediated approach to inter-page com-
munication which assumes infrequent communication. When
an Active-Page function reaches a memory reference that can
not be satisfied by its local page, it blocks and raises a proces-
sor interrupt. The processor satisfies the request by reading
and writing to the appropriate pages. Once an interrupt is

raised, the processor generally satisfies many requests from
different pages in the system. Future work will evaluate hard-
ware mechanisms for in-chip communication, increasing the
number of outstanding references per page, and processor-
polling for requests. The processor-mediated methodology,
however, functions well for our applications and will greatly
simplify future work in paging and virtual memory.

Table 1 lists the parameters of our reference RADram im-
plementation. Several parameters were also individually var-
ied in our experiments with respect to the reference imple-
mentation. The range of variation for these parameters is also
given in Table 1. Additionally, a memory bus capable of trans-
ferring 32 bits of data between memory and cache every 10 ns
is assumed.

Why Reconfigurable Logic? The potential of gi-
gabit densities in DRAM has prompted research and devel-
opment in a variety of implementation options for intelligent
memory. IRAM [Pat95], an integration of processor core and
DRAM, is a well-known option studied at Berkeley. RXDram,
however, is likely to have better yield, higher parallelism, and

194

better integration with commodity processors than IRAM.
The primary advantage of RXDram memory devices is that

they will be inexpensive to fabricate. Processor chips cost
ten times as much as memory chips because their complexity
makes their yield, or percentage of working chips, much lower
[Prz97]. DR.4Ms are fabricated with redundant memory cells
that can replace defective cells through laser modification after
chip production. The uniform nature of reconfigurable logic
allows for similar measures in RADram chips. In contrast,
IRAM chip designers will have to work hard to avoid yields
similar to processor chips. If IRAM chips are fabricated at
processor costs, systems will be limited to a few IRAM chips
and to applications with smaller data. RADram is intended
to fabricate at DRAM costs, which allows dozens of chips per
system and much larger application data.

Our results will show that RADram can exploit extremely
high parallelism by supporting simple, application-specific op-
erations in memory. A multi-gigabit RADram can have more
than 128 Active Pages, each of which can execute simulta-
neously. Processor-in-DRAM solutions can not support such
high parallelism. The variety of custom operations used in our
applications also suggests that fixed logic would severely limit
the functionality of Active Page applications.

Finally, RADram is specifically designed to support com-
modity microprocessors. The RADram interface is compatible
with standard memory busses. A primary goal of RADram is
to supply microprocessors with enough data to keep them run-

ning at peak speeds. IR.4M technology, however, is intended
to compete with commodity processors. This competition may
eventually be favorable for IRXM as the importance of single-
chip systems increases, but ever-growing applications may al-
ways demand larger memories and multiple chips.

Fabrication Interest in the fabrication of Merged DRA.\I
Logic (MDL) devices has grown dramatically in the past few
years. Major manufacturers currently have the capability to
fabricate DRAM cells (macrocells) in logic chips. Processors
have also been fabricated in DRAM chips. Current DRAM in
logic chips has poor density. Logic in DRAM chips has poor
speed and density. Merged DRAM-logic processes, which can
fabricate both kinds of structures well, are becoming available
[Prz97]. Our study, however, is conservative and assumes a
DRAM process with associated penalties in logic speed and
density.

Power Power consumption is a major concern for DRAM
chips because increased chip temperatures result in higher
charge leakage from storage cells. This leakage increases the
need for more frequent DRAM refresh. Fortunately, this higher
refresh can be bundled into our logic added to each DRAAI
subarray.

Although a detailed study of power is beyond the scope
of this paper, we have been conservative in our use of power
in RADram. Our applications only use 32 bits of bandwidth
between data and logic in RADram pages. This could easily be
increased to 256 or 512 bits, but would result in higher power
consumption. Increasing bandwidth would also require more
reconfigurable logic, which is beyond our area constraints for
some applications. Application performance, however, is high
despite conservative bandwidth.

4 Methodology

To evaluate Active Pages, we conducted a detailed applica-
tion study. The reference Active-Page platform used for this

study was previously described in Section 3. This platform
was studied using a three step approach. First, a simulator
was implemented which modeled the RADram Active-Page
memory system. Second, a set of applications were chosen
which represented various algorithmic domains. Finally, these
applications were written and optimized for both the RADram
and conventional memory system architectures.

As a base for a simulation environment we started with the
Simple&alar ~2.0 tool set [BA97]. This tool set provides the
mechanisms to compile, debug and simulate applications com-
piled to a RISC architecture. The SimpleScalar RISC archi-
tecture is loosely based upon the MIPS R3000 instruction set
architecture. The SimpleScalar environment was extended by
replacing the simulated conventional memory hierarchy with
an Active-Page memory system. The new simulated mem-
ory hierarchy provides mechanisms which simulate RADram
application-specific circuits executing within the DRAM mem-
ory system. Further, the SimpleScalar instruction set was ex-
tended with Intel MMX multi-media instruction opcodes. Fi-
nally, the toolset was enhanced by updating the GNU C/C++
compiler version included to the latest ~2.7.2.1 compiler suite.
All applications in this study were compiled with the -03 op-
timization option.

After implementation of this simulation environment, a set
of applications was chosen for architectural evaluation. Each
application is briefly described in Section 5. Here we explore
the methodology used in choosing, partitioning and evaluating
these applications.

Applications were chosen with three motives in mind. First,
the algorithms to be implemented in the application were rep-
resentative of a broad class of algorithms used in a range of ap-
plications. Second, the algorithm or application illustrated a
certain kind of partitioning as described in Section 2. Finally,
an MMX-instruction-set compatible application was chosen
to explore Active-Page implementations other than RADram.
For instance, future work may investigate the possibility of
identifying a small key set of data manipulation primitives
which should be implemented in fixed logic in the Active-Page

model.
The first step in studying each application or algorithm

described in Section 5 is to implement and optimize it on a
conventional memory system. The application is then hand-
partitioned for an Active-Page memory system. Next, Active-

Page functions are coded in VHDL and synthesized to FPGA
logic. The results of this are discussed in Section 6. State
transition characteristics of these synthesized circuits is used
to simulate the functions with our SimpleScalar simulator.

5 Applications

In order to demonstrate effective partitioning of applications
between processor and Active Pages, we chose a range of appli-
cations representing both memory- and processor-centric par-
titioning. Table 2 summarizes the attributes of these appli-
cations. This section describes each application and divides
those descriptions into each partitioning class.

195

Slemory-Centric Applications Slemory-Centric Applications
same Same Application Application Processor Computation Processor Computation Active Page Computation Active Page Computation

Array Array C++ standard template C++ standard template C++ code using array class C++ code using array class Array insert, delete, Array insert, delete,
library array class library array class Cross-page moves Cross-page moves and find and find

Database Database Address Database Address Database Initiates queries Initiates queries Searches unindexed data Searches unindexed data
Summarizes results

lIedian Median filter for images Image I/O Median of neighboring pixels

Dynamic Prog Protein sequence matching Backtracking Compute MINs and fills table

Processor-Centric Applications
Same Application Processor Computation Active Page Computation

Llatrix Matrix multiply for
Simplex and finite element

Floating point -- multiplies Index comparison and
Simplex and finite element gather/scatter gather/scatter of data of data

IIPEG-MMX IIPEG-MMX MPEG decoder using MPEG decoder using MMX dispatch MMX dispatch MMX instructions MMX instructions
MMX instructions MMX instructions Discrete cosine transform Discrete cosine transform

Table 2: Summarv of oartitionina of annlications between nrocessor and active pages Table 2: Summary of partitioning of applications between processor and active pages

5.1 Memory-Centric Partitioning

As discussed in Section 2, Active Pages can exploit the par-
allelism in applications through memory-centric partitioning.

Our array, database, median filtering, and dynamic program-
ming applications are good examples of such partitioning.

STL Array Template The STL arrav template is a
general purpose C++ template which permits the storage,
access, and retrieval of objects based upon a linear integer
index. The template class supports the usual array access
operators, as well as insert, delete and binary-find/count op-
erations. -111 of the applications implemented hide the layout
of data and partitioning of algorithmic operations from the
application via a simple C++ interface. However, the STL
array best demonstrates this principle. Library calls, derived
from a common subclass, allow single source files to work with
either the .ictive-Page or conventional-system implementation
of the array template.

The implementation uses reconfigurable logic to speedup
the following operations: array insert,’ delete, and count oper-
ations. The insert and delete operations involve moving por-
tions of the array in parallel to accommodate the change in
array size. The count operation is implemented by a binary
comparison circuit.

These three operations are indicative of a broad range of
array operations which the RADram system can effectively
compute. Further examples from the STL library include:
accumulate. partial sum, random shuffle, rotate, and adjacent
difference.

Database Query Several methods [SKS97] exist to speed
up database searches, if the searches involve indexed fields.
Indexing produces a second table within the database which
permits the database engine to quickly locate fields in logarith-
mic or constant time. However, indexing is often not practical
for highly-varied queries or under tight storage constraints.
Unindexed queries can take time proportionally linear to the
number of records. Our database benchmark uses a syntheti-
cally generated address book. Custom Active Page functions
were written to search for exact matches on any of the string
fields contained in the address records.

The RADram system time complexity of the unindexed
database query is (3(l), however the constant bounding it is
quite large. The performance gained by the RADram system
comes from the parallelism available in the database search. In

theory, all records can be searched simultaneously. In practice,

the records are grouped into blocks, which are roughly the size
of a RADram memory page. These blocks are then distributed

among the pages in the RADram memory system. Each page
is then custom programmed with the search engine’s applica-
tion specific circuit. To demonstrate the performance of the
RADram system on this application a count of exact matches
for the last name of an individual in the address book is per-
formed. The count is run on the same database in both the
RADram system and on a conventional implementation.

Image Processing Image processing and signal pro-
cessing have been traditional strengths of FPGA’s and cus-
tom processor technologies [R+93] [AA951 [K+96]. We im-
plemented an image median filtering [RW92] application on
RADram. Median filtering is a non-linear method which re-
duces the noise contained in an image without blurring the
high-frequency components of the image signal. The RADram
implementation divides the image by row blocks among var-
ious Active Pages. Each row block contains two additional
rows, one above the current row block, and one below it, in
order to perform the median filtering kernel computation. The
Active Pages are then programmed with a custom circuit de-
signed to find the median of nine short integer values. For
comparison, the conventional system uses a hand-coded algo-
rithm which takes a minimal number of comparisons to find
the median of nine values.

Because the computational work involved is small in terms
of circuit area, the bulk of the median filtering application
runs inside the RADram memory system. Not surprisingly,
this application allows RADram to exploit high parallelism
and memory bandwidth. RADram also uses a custom circuit
which is designed for sorting nine short integer values. The
conventional implementation requires several conditional in-
structions, as well as memory I/O operations, in order to find
the median value.

Largest Common Subsequence This algorithm is
representative of a broad class of string algorithms which form
the basis for modern biological research. At the heart of the
computer algorithm to reconstruct DNA sequences are string
algorithms such as largest common subsequence, global align-
ment, and local alignment [Gus97]. The largest common sub-
sequence (LCS) computation is typically done using a dynamic
programming construction. This construction runs in O(n*)
time and space for sequences of length n. One can view the

196

construction as a set of computations over a plane. For the
LCS algorithm, the computation can proceed in parallel as a
wave-front starting at the upper left corner and ending in the
lower right corner of this plane. This wave-front computation
runs in 0(n log(n)) time on the RADram system.

The RADram system implements the LCS computation
by dividing the algorithm into two steps. The first step is
the computation of the LCS result matrix itself. The second

step is the backtracking [CLR96] required to find the largest
common subsequence. The RADram system executes the first

step entirely within the reconfigurable logic inside the memory
system Backtracking executes entirely within the processor.

5.2 Processor-Centric Partitioning

Active Pages are intended for simple, application-specific oper-
ations, leaving more complex computations to general-purpose
microprocessors. Our IMMX and matrix applications are good
examples of processor-centric partitioning.

MMX Primitives The MMX multimedia instruction
primitives were chosen for implementation within the RADram
system for two reasons. First, they represent a well known
“commodity” set of architecture primitives. Second, they are
simple primitive operations designed for parallel execution.

The simulator was extended to support SimpleScalar MMX
instructions, and RADram MMX instruction equivalents. The
MMX instructions themselves are highly parallel, simple, and
generally complete in a single processor cycle. To improve
upon the base SimpleScalar MMX instructions, the RADram
equivalents operate on larger data widths. While an MMX
instruction in SimpleScalar is restricted to producing only 32
bits of data per instruction, a RADram MMX instruction can
produce up to 256 kbytes of data per instruction.

While implementation of the complete MMX instruction
set is still underway, enough is implemented to carry out key
portions of the YPEG encoding and decoding processes. While
future work will explore more MPEG routines, current work
has focused upon application of the correction matrices within
the P and B frames [M+96]. Future implementation of the
MPEG algorithm will partition additional components be-
tween the processor and RADram memory system. The pro-
cessor will be responsible for the Discrete Cosine Transform
(DCT), while the RADram system will handle motion detec-
tion, application of motion correction matrices, run length en-
coding and decoding (RLE), and Huffman encoding and de-
coding.

Sparse-Matrix Multiply A wide range of real-world
problems can be represented as sparse matrices. We examine
both a common scientific benchmark and a more challenging
compiler optimization problem. Our scientific benchmark in-
volves the multiplication of matrices representing finite-element
computations taken from the Harwell-Boeing benchmark suite
[D+92]. Our compiler optimization problem involves using the
Simplex method [NM651 to perform optimal register alloca-
tion [GW96].

A key computation in both these applications is sparse
vector-vector dot-product. Conventional implementations of
this operation are severely limited by processor-memory band-
width. Sparse vector FLOPS on a conventional system are
often an order of magnitude lower than those for dense vec-
tors. The processor must fetch the indices of each nonzero
in both vectors of the dot product, determine which indices

match, fetch the data corresponding to those indices, multiply
the data, and write the data back to its appropriate location.

In contrast, the RADram system implements a compare-
gather-compute approach. Active Page functions fetch and
compare vector indices, fetch the data values for the indices
that match, and gather the data into cache-line size blocks.
Vectors are co-located on pages. The processor then reads the
packed data, computes the multiplies, and writes back cache-

line size blocks of results. Note that only “useful” data travels
between the processor and memory, greatly conserving band-

width. With large matrices, the RADram system has enough
Active Pages executing to keep the processor computing at
peak floating-point speeds.

6 Synthesized Logic

In order to estimate performance and area of RADram logic
configurations, each function of an application’s Active Pages
was hand-coded in a high-level circuit-description language,
VHDL [AshSO], and circuits synthesized to completely routed
designs in contemporary FPGA technology. This provided a
means to verify the timing of the simulated circuit implemen-
tation, as well as information on circuit area, which helped

guide the RADram design.
The results of our implementations of the application spe-

cific circuits for the simulated applications are summarized in
Table 3. These results were obtained by implementing the cir-
cuit design in behavioral VHDL and synthesizing them with
the Synopsys FPGA design tools. After synthesis to a tech-
nology independent logic description, the designs were placed
and routed to an Altera FLEX-IOKlO-3 part. This allowed
us to study the post-routed designs on real FPGA technology.
The count of logic block usage reported in Table 3 includes
both completely used and partially used LEs. The speed and
code size were directly reported by the Synopsys tools.

The results obtained from implementation of application-
specific circuits indicate that the RADram Active-Page system
can execute the application kernel’s circuits. The RADram im-
plementation can implement designs with approximately 256
LEs per Active Page, and all of our designs are below this
amount. Our designs can also be further optimized by im-
plementing common memory interfaces in fixed logic. Our
system simulation assumes a 100 MHz clock for our circuits.
Given modest advances in FPGA technology, this should be
achievable for our circuits by 2001. Finally, the code size is
an indication of the potential “code-bloat” which will hap-
pen when transitioning an application to the RADram system.
Code size is also indicative of the page-replacement cost for
Active Pages, which we anticipate to be 2-4 times larger than
for conventional pages due to reconfiguration time. However,
pages which do not use Active-Page functions do not incur this
cost, and future reconfigurable technologies may significantly
reduce this cost (see Section 10).

7 Results

In this section, we compare our RADram simulation results of
each application kernel described in Section 5 to our expec-
tations from the Active-Page application characteristics dis-
cussed in Section 2. First, we discuss performance of RADram
versus a conventional memory system executing optimized ver-
sions of the same applications. Then we explore the memory
hierarchy of both memory systems by studying the effects of
cache parameters. Finally, we develop an analytical model to

197

Application LEs Speed Code

Table 3: Xctive-Page functions synthesized for RADram.

- medwn-total
--A-* mmx

v
Problem She (in S12K Pages)

Figure 3: RADram speedup as problem size varies.

describe partitioned application performance, and then com-
pute the correlation between this model and our experimental
results.

7.1 Performance

To evaluate performance of the RADram Active Page mem-
ory system, each application described in Section 5 was exe-
cuted on a range of problem sizes using a flxed set of machine
characteristics listed in Table 1. The speedup of our applica-

tions running on a RADram memory system compared to a
conventional memory system are shown in Figure 3. Each ap-
plication was run on a range of problem sizes, given in terms
of number of Active Pages (512 Kbyte superpages). We make
two primary observations about this graph.

First, application kernels execute significantly faster on a
RADram memory system than a conventional memory system.
The one exception from our application mix is the array-delete
primitive in the sub-page region. The SimpleScalar processor
instruction set actually favors array-delete over array-insert.
To take advantage of this fast delete, the RADram version of
array-delete uses an adaptive algorithm that uses the processor
more for arrays that are smaller than one Active Page.

Second, our performance results qualitatively scale as we
expected in Figure 1. \\‘e observe that most applications show
little growth in speedup as data size grows within the sub-
page region (below one page for most applications). In this
region, RADram applications have little parallelism to offset
activation costs. As we leave this region, we enter the scal-
able region and see that performance on all of our applica-
tions grows nicely as data size increases. Four applications-
database, mmx, matrix-simplex, matrix-boeing, and median-
filtering-also reach the saturated region. Here, RADram per-
formance is limited by the progress of the processor. This
limitation may be due to either too much work for a given

- array-dclcte
-Q-e array-rind
-0-o anay-mm
--A-- dawbw
- dyn-prog
--t-. mamx-bcang
-0-. maww-simplex
-a-- mcdmn-kernel

w median-tovd
-*--Illma

I IO 100

Problem Size (in SlZK Pager)

Figure 4: Percent cycles the processor is stalled on RADram
as nroblem size varies.

speed processor or too much data traveling between the pro-
cessor and RADram across the memory bus. Performance can
actually decrease as coordination costs dominate performance.
Given a large enough problem size, all our applications would
eventually reach the saturated region.

7.2 Processor-Memory Non-overlap

The saturated region of Active-Page performance emphasizes
the importance of partitioning applications to efficiently use
the processor in a system. For processor-centric applications,
this dependence is obvious. The goal is to keep the processor
computing by providing a steady stream of useful data from
the memory system. For memory-centric partitions, however,
the processor is still a vital resource. Active Pages can not
compute without activation and inter-page communication,
both provided by the processor.

As data size grows in an Active-Page application, so does
the load upon the processor. We measure the remaining ca-
pacity of a processor to handle this load with a metric we call

processor-memory non-overlap time. Non-overlap is the time
the processor spends waiting for the memory system and can
be used to estimate the boundary between the scalable and
saturated regions of application performance.

The relative percentage of time the processor is stalled,
waiting for memory system computation is shown in Figure 4.
As described earlier in Section 7.1, the applications which
reached the saturated region of speedup were: database, matrix-
simplex, matrix-boeing, and median-filtering. As is shown
in Figure 4 these applications also reach a point of complete
processor-memory overlap. The effect of this is described in
Section 2.

We also observe that for the array primitives and the dy-
namic programming application the non-overlap percentage
remains relatively high. These applications are largely memory-
centric, with very little processor activity. In fact, the array
primitives operate asynchronously to the end of the applica-
tion, and are artificially forced in synchronous operation for
this study. This means that an application can use the insert
an delete array primitives with only the cost of RADram func-
tion invocation. Module dependencies on the array, the time
spent by the memory system shifting data can be overlapped
with operations outside of the STL array class. This over-
lap occurs in a natural way with no additional effort required
by the programmer who uses the RADram STL array class.

198

Figure 5: Conventional (left) and RADram (right) Execution Time vs. Ll Data Cache Size

Opportunities for overlapping execution of data structure op-
erations with data-structure usage is intriguing, and is being
investigated further.

The dynamic programming example maintains a very high
processor / memory non-overlap, however preliminary results
indicate that processor-mediated communication required by
the RADram memory system eventually dominates perfor-
mance. This occurs for extremely large problems that are well
beyond the range of problem sizes presented in this study.

7.3 Cache Effects

The simulated processor used for this study has a default split
instruction-data level-one cache. Each level-one cache is 64

kilobytes, and is 2-way associative. The processor also has a
combined level-two cache of 1 megabyte and is 4-way associa-
tive. For this study the level-one data cache size was varied
from 32 to 256 kilobytes. The level-two cache size was varied
from 256 kilobytes to 4 megabytes.

Figure 5(left) plots total conventional application kernel
execution time versus the size of the level-one data cache. As
illustrated, within the range of cache sizes explored most con-
ventional applications where unaffected. However, at the left
edge of Figure 5(left) we note that some conventional appli-
cations are affected by the size of the level one cache when it
fell below 64 kilobytes.

Figure 5(right) plots total RADram application kernel time

versus level-one data cache size. As illustrated, all but one
application was unaffected by the size of the level one cache.
The median-total application shows various stride effects. The
application consists of two phases. The first reads data into
an array and transforms it into a special data layout required
by the Active-Page memory system. The size of the level-
one cache plays a role in enhancing the performance of this
operation. The second phase simply dispatches the request for
median filtering to the Active Page memory system and waits
for the result. As evident from the performance of median-
kernel, the second phase is unaffected by the size of the level
one cache.

All applications were also executed with a range of level-
two cache sizes. Throughout this range no significant perfor-
mance differences occurred. This, combined with the level-
one cache results indicates that our applications are sensitive
to extremely small caches sizes, but small to reasonable size
caches achieve all of the performance of large caches. Active-
Page applications tend to work with large datasets. Although
their primary working set may fit in a small cache, secondary

working sets will not fit in realistic cache sizes. Consequently,
without migrating to a cache-only architecture, our applica-
tion performance is bounded by other architectural character-
istics such as DRAM memory latency and bandwidth.

7.4 Analysis

To achieve a deeper understanding of the performance of appli-
cation partitions, we introduce an analytic model. This model
is based upon an abstract application. From this abstract ap-
plication a formula is developed which models performance
under various problem sizes. Additionally, total application
performance is bounded by Amdahl’s Law. We present this
model by first developing an intuitive understanding of a par-
titioned application. Then we characterize processor perfor-
mance with an Active-Page memory system. Finally, we com-
pute the correlation of this analytical model with the results
obtained from our RADram simulator.

7.4.1 Model

Section 2 described partitioning, and the role it plays in ap-
plication performance on an Active Page memory system. To
investigate partitioning in more detail, an abstract application
is depicted in Figure 6. As illustrated in Figure 6 a parti-
tioned algorithm undergoes two phases from the perspective
of the processor: activation and post-processing. The activa-

tion phase is characterized by increased Active Page activity.
The post-processing phase is characterized by decreasing Ac-
tive Page activity but potential processor-memory non-overlap
stalls mixed with processor computation.

The abstract application depicted in Figure 6 uses K pages
of Active Page memory. The processor spends Ta(i) time
activating Active Page i. Initially, the processor activates all

pages in sequence, thus requiring c:, TA(i) time to activate
all pages. Immediately after activat& an Active Page begins
to execute. The time required to complete execution for Active
Page i is Tc(i). After dispatching the activation request to all
K pages, the application returns to the first page to perform
any follow-up processor computation. Before the processor
can perform this computation, however, the processor may
be forced to stall and wait for the Active Page in memory
location 1 to finish execution. At this point in Figure 6, the
processor is stalled, waiting in non-overlap time. We account
for this as NO(l), or non-overlap time waiting for Active Page
1. The processor, after waiting for NO(l) time for the Active

199

PrOCeSSOr Tn(1) Td.2) Ta(3) 1 ________ Tp(2) 1 Tp(3) I____ --- _______ = I-““(!!- (I@(l) 1

Acttve Page I - - - Tdl)

ActwePage? -------- Tc(2)
____________--------_____________

Acttve Page 3 _______-__-_ Tc(3)
_-____-____-_________________

ActtvePageK ------------------------ Tc(K)
----__-_________.

Time

Figure 6: Abstract view of processor and Active-Page memory activity.

No(i) = max ;&) - (~,“,,+, T/,(n) + c;;ll T&‘(n) + c;;‘, No(n))

SPeeduPpartttioned =
T con” 0 K

Cic_I(T~(i) +TP(~) + NO(i))

Figure 7: Simplified performance model for Active Pages

Page to complete execution can then perform the follow up
computation Tp(1).

The abstract application shows constant per-page activa-
tion time TA, constant per-page post-computation time TP,
and Tp > TA. This means that no other stalls or processor-
memory non-overlaps occur. In the general case, however,
an application transitions between post-computation on page
Tp(i) to non-overlap time NO(i + 1) for the next page. This
occurs for all pages within the computation.

Using this abstract application we observe that the all pro-
cessor time for a single partitioned algorithm is accounted for

in three distinct sets of variables: TA(i), Tp(i) and NO(i).
Thus total kernel execution time for a partitioned application

is the summation x:1, Ta(i) + Tp(i) + NO(i)
Figure 7 formalizes this model. Note that an application

need not have constant per-page activation and post-activated
computation time. Furthermore, an application need not have
constant per-Active Page computation time. From the pro-
cessors perspective, each application executes three general
phases: dispatch, wait for result, and post-compute.

Figure 7 models conventional application performance in
terms of T,,,, LI K. That is the time spent by a conventional
application working with a particular data set of size cr . K.
T,,,, is time per item.

\Ve note that within the non-overlap time the processor
spends before post-processing of page i is a maximum of zero,
or the computation time of the -Active Page minus the time
spent by the processor between finishing activation of page
i and the current time. This intermediate time is spent ei-
ther activating subsequent pages, stalled, or post-computing

Application TC Pgs for Speedup

(ms) OWIhp rorrel.

Table 4: Activation time (TA), computation time (Tc), post-
activated processor time (TP), and minimum problem size for
complete overlap.

on previous pages.

7.4.2 Correlation

In general. an average activation time (TA) and average post-
page computation time (TP) can be measured using a small to
medium data-set. Furthermore, an average Active-Page com-
putation time (Tc) can be measured from this small data-set.
Using these averages, and the model in Figure 7 a rough es-
timate of the non-overlap time for a particular problem size
can be found. Using this estimate, it is possible to predict
performance of a partitioned application for a range of prob-
lem sizes. This prediction provides insight into the particu-
lar characteristics of a partitioned application. By modeling
performance as activation, post-page computation, per-page
Active-Page computation, and processor-memory non-overlap

200

Figure 8: RADram speedup as cache-to-memory latency
varies.

time, it is possible to gauge performance at a variety of prob-
lem sizes and adjust the balance of work between the memory
system and processor according to the expected workload of
the application.

To illustrate, Table 4 lists the activation time, post-page
processor time, and per-page .4ctive Page computation time
for a number of application kernels in our workload. Using a
simplified version of the formulas in Figure 7 which assume
constant values for these metrics, pages for complete overlap
is computed. Furthermore, for each application, and for each
data-point used to construct Figure 3 a predicted speedup

is computed using these constant activation and computation
times, and a measured non-overlap time taken from Figured 4.
The correlation between the predicted speedup from using the
analytical model and the actual speedup observed is shown
in the rightmost column of Table 4. Most applications are
well-correlated to the analytical model. A notable exception
is the matrix-boeing application. This application violates the
assumption of constant activation and computation times per
Active Page. The times are inherently data-specific for this
application and using constant values proved to be less useful
than for the other applications studied.

8 Sensitivity to Technology

Our results for the RADram system demonstrate that Ac-
tive Pages can be implemented with substantial success on a
variety of applications. RADram technology, however, is a
long-term goal which is several years in the future. Shorter-
term and alternative long-term technologies can also be used
to implement Active Pages. This section describes such tech-
nologies and analyzes the sensitivity of our results to some of
the key parameters in the RADram system.

Current technologies exist to implement .4ctive Pages at
significantly higher cost than RADram. Such costs would limit
the amount of memory available to support Active Pages, and
consequently, the problem sizes of the applications. These
technologies include: small merged FPGA-DRAM or SRAM
chips, DRAM/SRAM macrocells in ASICs, and small processor-
in-DRAM/SRAM chips. In general, logic speeds in these tech-
nologies are either equal to or better than RADram assump-
tions. Chip cost, however, will limit most near-term technolo-
gies to substantially smaller problem sizes. SRAM or multi-
chip solutions will also have an effect on memory latencies.

We vary two technological parameters in our RADram sim-
ulations: memory latency and logic speed. First, Figure 8
plots the sensitivity of RADram speedups to memory latency

Figure 9: RADram speedup as logic speed varies.

in terms of cache-miss penalty. In general, the performance ad-
vantage of RADram comes from in-DRAM computation which
is unaffected by cache-miss penalty. Cache effects, however,
account for slight changes in both RADram and conventional
system performance. These changes can result in either in-
creases or decreases in speedup as cache-miss penalties in-
crease. The sign of the slope depends upon the relative ratio of
instruction cycles to memory stall cycles for the conventional
versus the partitioned application. If one splits the total ap-
plication runtime into two components: processor time, and
memory stall time, then computes the ratio of these two values
for both the conventional and partitioned applications, then
the slope of application speedup versus memory latency de-
picted in Figure 8 will depend upon the relative ratio of these
two ratios.

Second, Figure 9 plots speedup versus the speed of the
application-specific circuit. The speed of application-specific
circuits in the simulated RADram system is measured in rela-
tive clock divisions of the processor clock. In Figure 9 a higher
logic divisor corresponds to a slower reconfigurable logic clock.

To generalize across applications, those operating on prob-
lems in the scalable region of their partitioning domain are sen-
sitive to the speed of the Active Page computation, whereas
those applications operating on problems in the saturated re-
gions of their partitioning domain are generally insensitive to

the speed of the Active Page computation.

9 Related Work

The IRAM philosophy goes to the extreme by shifting all com-
putation to the memory system through integration of a pro-
cessor onto a DRAM chip. This results in dramatically im-
proved DRAM bandwidth and latency to the processor core,
but conventional processors are not designed to exploit these
improvements [Bf97a]. An interesting alternative is to inte-
grate specialized logic into DRAM to perform operations such
as Read-Modify-Write [B+97b]. This alternative is promising,
but we have seen that different applications can exploit signif-
icantly different computations in the memory system. Our re-
sults have shown that integrating reconfigurable logic is highly
effective.

Reconfigurable computing has shown considerable success
at special-purpose applications [A+961 [B+96], but has had
difficulty competing with microprocessors on more general-
purpose tasks such as floating-point arithmetic. Some groups
focus upon building reconfigurable processors [HW97] [WH96]
[RS94] [WCSG], but face an even more difficult competition
with commodity microprocessors. Our approach avoids these

201

difficulties by exploiting the strengths of both microprocessors
and reconfigurable logic. We focus upon data manipulation
to make the memory system perform better for the processor.
DeHon described limited integration of reconfigurable logic
and DRAhl in an early memo [DeH95], but did not evaluate
it further.

Our philosophy is reminiscent of scatter-gather engines from

a long line of supercomputers [HT72] [SH90] [CG86] [Bat741

[EJ73] [HS86] [L+92]. Hackney and Jesshope [HJ88] give a

good history of such machines. Our approach, however, sup-
ports a much wider variety of data manipulations and compu-
tations than these machines. Additionally, our emphasis on
commodity technologies results in a focus on different appli-
cations and design tradeoffs.

10 Future Work

Active Pages and our RADram implementation have shown
great potential in our study. Unlocking this potential involves
many interesting issues, including: compiler support for auto-
matic application partitioning, operating system integration,
multi-threaded application support, complete application run-
times, application-specific circuits vs. data-primitives, hierar-
chical computation structures, inter-page and inter-chip com-
munication. In addition, a detailed power, yield and hardware
implementation study of RADram is required.

For Active Pages to become a successful commodity ar-
chitecture, the application partitioning process must be auto-
mated. Current work uses hand-coded libraries which can be
called from conventional code. Ideally, a compiler would take
high-level source code and divide the computation into pro-
cessor code and Active-Page functions, optimizing for mem-
ory bandwidth, synchronization, and parallelism to reduce
execution time. This partitioning problem is very similar
to that encountered in hardware-software co-design systems
[GVNG94] which must divide code into pieces which run on
general purpose processors and pieces which are implemented
by ASICs (Application-Specific Integrated Circuits). These
systems estimate the performance of each line of code on alter-
native technologies, account for communication between com-
ponents, and use integer programming or simulated annealing
to minimize execution time and cost. Active Pages could use
a similar approach, but would also need to borrow from par-
allelizing compiler technology [Hf96] to produce data layouts
and schedule computation within the memory system.

Integration of Active Pages with a real operating system
poses new challenges. hctive Pages are similar to both mem-
ory pages and parallel processors. Several open operating
system issues exist such as allocation policies, paging mecha-
nisms, scheduling, and security. Of particular concern is the
high cost of swapping Active Pages to and from disk. Current
FPGA technologies take 100s of milliseconds to reconfigure.
New technologies, however, promise to reduce these times by
several orders of magnitude [DeH96a]. Our future work will
address these issues both formally and practically by clarifying
the policy of interaction between an operating system and the
Active Page memory system, and by simulation of a modified
operating system kernel such as Linux [Bee96]. In addition to
operating system studies, multi-threaded application support
will be investigated.

Future work shall address inter-page and inter-chip com-
munication issues. Before mechanisms are formalized for inter-
page communication, a detailed evaluation of inter-page com-
munication requirements is required. This evaluation must

study whether inter-page communication is required by a broad
class of application domains, and if so, if it should it be sim-
ulated via processor intervention or implemented with dedi-
cated hardware support. Along with inter-page and inter-chip
communication, a study of inter-page synchronization primi-
tives is required. Such primitives, if implemented in hardware,
pose additional challenges.

Finally, further evaluation of application kernels is required.

Instruction sets such as hIMX codify a set of data-manipulation

primitives for a certain application domain. Further study
of data-manipulation primitives could distill a common base
set of primitives for a broad set of application domains. If
such primitives exist, hybrids of the RADram implementation
should be investigated.

11 Conclusion

Active Pages provide a general model of computation to ex-
ploit the coming wave of technologies for intelligent memory.
Active Pages are designed to leverage existing memory inter-
faces and integrate well with commodity microprocessors. In
fact, a primary goal of Active Pages is to provide micropro-
cessors with enough useful data to run at peak speeds.

Our RADram implementation of Active Pages achieves
substantial speedups when compared to conventional memory
systems. RADram provides a large number of simple, recon-
figurable computational elements which can achieve speedups
up to 1000 times faster than conventional systems. This high
performance, coupled with low cost through high chip yield:
makes RADram a highly promising architecture for future
memory systems.

References

[A+961

[AA951

[AshSO]

[B+96]

[B+97a]

[B+97b]

[BA97]

[Bat741

[Bee961

[BGKSG]

[CC2361

[CLRSG]

R. Amerson et al. Teramac - configurable custom comput-

ing. In Symp on FPGAs for Custom Computmg Machines.

pages 32-38, Napa Valley, CA, April 1996.

P. M. Athanas and A. L. Abbott. Real-time image pro-

cessing on a custom computing platform. IEEE Computer,
28(2):16-24, February 1995.

Peter J. Ashenden. The VHDL cookbook, 1st ed. Dept of

CS, U of Adelaide. S Australia, July 1990.

D. Buell et al. Splash 2: FPGAs ,n a Custom Computrng
Machane. IEEE Computer Society, 1996.

N. Bowman et al. Evaluation of existing architectures in

IRAM systems. In Workshop on Mizlng Logrc and DRAM,
Denver, CO, June 1997.

A. Brown et al. Using MML to simulate multiple dual-

ported SRAMs: Parallel routing lookups in an ATM switch

controller. In Workshop on Mimng Logtc and DRAM, Den-

ver, CO, June 1997.

D. Burger and T. Austin. The SimpleScalar tool set, ~2.0.

Camp Arch News, 25(3), June 1997.

K. E. Batcher. STARAN parallel processor system hard-

ware. AFIPS Conf Proceedtngs, pages 405-410, 1974.

Nelson H. F. Beebe. A bibliography of publications about

the Lsnuz operating system. Technical report, Ctr for Sci-

entific Camp, Dept of Math, U of Utah, Salt Lake City, UT,

May 1996.

D. Burger, J. Goodman, and A. Kagi. Quantifying memory

bandwidth limitations in future microprocessors. In ISCA,
Philadelphia, PA. May 1996.

A. Charlesworth and J. Gustafson. Introducing replicated

VLSI to supercomputing: The FPS-164/MAX scientific

computer. IEEE Computer, March 1986.

T. Cormen. C. Leiserson, and R. Rivest. Introductron To
Atgonthms. MIT Press, Cambridge MA, 1996.

202

[D+92] 1. Duff et al. User’s guide for the Harwell-Boeing sparse

matrix collection. Technical Report TR/PA/92/86, CER-

FACS. 42 Ave G. Coriolis, 31057 Toulouse Cedex, France,

October 1992.

[DeH95] A. DeHon. Notes on integrating reconfigurable logic with

DRAM arrays. Transit Note 120, MIT, AI Lab. 545 Tech

Sq. Cambridge \lA 02139, March 1995.

[DeHSGa] Andre DeHon. DPGA utilization and application. In Proc
of the lnt Symp on Field Programmable Gate Arrays.
ACM/SIGDA, February 1996.

(DeH96b] Andre DeHon. Reconfigurable Architectures for General-
Purpose Computmg. PhD thesis, MIT, 1996.

[EJ73] A. Evensen and J.Troy. Introduction to the architecture of

a 288-element PEPE. In Proc. 1973 Sagamore Conf. on
Par Processzng, pages 162-169. 1973.

[Gus971 D. Gusfield. Algorrthms on Strmgs, Trees, and Sequences.
Cambridge University Press, 1997.

[GVNG94] D. Gajski, F. Vahid. S. Narayan, and J. Gong. Specifica-

tzon and Desagn of Embedded Systems. Prentice Hall, Inc,

Englewood Cliffs, New Jersey 07632, 1994.

[GWSG]

(H+96]

1~~881

[~~86]

[HT72]

[HWS’T]

[I+971

[K+96]

[L+92]

(M+96]

[NM651

[Pat951

[Prz97]

[R+93]

[RS94]

(R$V92]

[Sem94]

D. Goodwin and K. Wilken. Optimal and near-optimal

global register allocation using O-l integer programming.

Software-Practace # Ezperience, 26(8):929-965. 1996.

M. Hall et al. Maximizing multiprocessor performance with

the SUIF compiler. Computer, December 1996.

Ft. W. Hackney and C. R. Jesshope. Parallel Computers:
Arch:tecture, Programmang, and Algonthms. Adam Hilger

Ltd., Bristol, UK. second edition, 1988.

W. D. Hillis and G. L. Steele. The Connection Machine.
M.I.T. Press, 1986.

R. Hintz and D. Tate. Control data STAR-100 processor

design. In COMPCON. pages 1-4, 1972.

J. Hauser and J. Wawrzynek. Garp - a MIPS processor with

a recontigurable coprocessor. In Symp on FPGAs for Cus-
tom Computmg Machines, Napa Valley, CA, April 1997.

K. Itoh et al. Limitations and challenges of multigigabit

DRAM chip design. IEEE Journal of Solrd-State Circuits,
32(5):624-634, 1997.

W. King et al. Using MORPH in an industrial machine vi-

sion system. In K. L. Pocek and J. Arnold, editors, Proceed-
ings of IEEE Workshop on FPGAs for Custom Computing

Machines, pages 18-26, Napa, CA, april 1996.

Charles E. Leiserson et al. The network architecture of the

connection machine ChI-5. In Symposwm on Pa~$lel Ar-
chttectures and Algonthms. pages 272-285, San Diego, Cal-

ifornia, June 1992. ACM.

J. Mitchell et al. MPEG Video Compressron Standard.
Chapman & Hall. New York, 1996.

J. Nelder and R. Mead. A simplex method for function
minimization. Computer Journal, 7:3X-313,1965.

David Patterson. .Microprocessors in 2020. Scientific Amer-
acan, September 1995.

Steven Przybylski. Embedded DRAMS: Today and toward

system-level integration. Technical report. Verdande Group,

Inc., 3281 Lynn Oaks Drive, San Jose, CA, September 1997.

D. Ross et al. An FPGA-based hardware accelerator for

image processing. In W. Moore and W. Luk, editors,

More FPGAs: Proc of the 1993 Int workshop on field-
programmable logtc and applicataxas, pages 299-306, Ox-

ford, England, 1993.

R. Razdan and Xl. Smith. A high-performance microarchi-

texture with hardware-programmable functional units. In

Int Symp on Microarchitecture, pages 172-180, San Jose,
CA, November 1994.

G. Rafael and R. Woods. Digital Image Processmg.
Addison-Wesley, 1992.

Semiconductor Industry Association. The national technol-

%Y roadmap for semiconductors.

http://www.sematech.org/pubIic/roadmap/, 1994.

[SHSO] N. Sammur and M. Hagan. Mapping signal processing algo-

rithms on parallel architectures. J of Par and Dastr Camp,
8(2):180-185, February 1990.

[SKS97] A. Silberschatz, H. Korth, and S. Sudarshan. Database Sys-
tem Concepts. McGraw-Hill, 1997.

[WC961 R. Wittig and P. Chow. OneChip: An FPGA processor

with reconfigurable logic. In Symposium on FPGAs for
Custom Computrng Machines, pages 126-135, Napa Valley,

California, ApriI 1996.

[WH96] M. Wirthlin and B. Hutchings. A dynamic instruction set

computer. In Sympomm on FPGAs for Custom Comput-
mg Machines, pages 99-107, Napa Valley, California, April

1996.

[WM95] W. Wulf and S. McKee. Hitting the memory wall: Implica-

tions of the obvious. Computer Archrtecture News, 23(l),

March 1995.

203

