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Active Pedestrian Safety

by Automatic Braking and Evasive Steering
C. Keller, T. Dang, H. Fritz, A. Joos, C. Rabe and D. M. Gavrila

Abstract— Active safety systems hold great potential to reduce
the accident frequency and severity, by warning the driver and/or
exerting automatic vehicle control ahead of crashes. This paper
presents a novel active pedestrian safety system, which combines
sensing, situation analysis, decision making and vehicle control.
The sensing component is based on stereo vision; it fuses two
complementary approaches for added robustness: motion-based
object detection and pedestrian recognition. The highlight of the
system is the ability to decide within a split second whether to
perform automatic braking or evasive steering, and to execute
this maneuver reliably, at relatively high vehicle speeds (up to
50 km/h).

We performed extensive pre-crash experiments with the system
on the test track (22 scenarios with real pedestrians and a
dummy). We obtained a significant benefit in detection perfor-
mance and improved lateral velocity estimation by the fusion of
motion-based object detection and pedestrian recognition. On a
fully reproducible scenario subset, involving the dummy entering
laterally into the vehicle path from behind an occlusion, the
system executed in over 40 trials the intended vehicle action:
automatic braking (if a full stop is still possible) or else, automatic
evasive steering.

Index Terms— pedestrian detection, computer vision, active
safety ITS, vehicle control

I. INTRODUCTION

Pedestrians are arguably the most vulnerable traffic partic-

ipants; yearly fatality figures sum to about 5700 for the EU,

4700 for the USA, and 2300 for Japan [1]. These represent

approximately 18%, 11% and 32% of all traffic fatalities in

the respective regions. Nations with emerging economies have

a higher pedestrian fatality incidence [1].

The past few years have seen increased awareness of the

plight of vulnerable road users at the EU level. In 2003, the

EU passed Phase 1 of Directive 2003/102/E on pedestrian

protection, focussing on passive safety, i.e. meaning to reduce

injury levels upon impact, by specifying various maximum

impact criteria (e.g. head, leg). More recently, June 2008, the

EU Parliament approved the Phase 2 draft legislation, which

specifies a combination of passive and active safety measures.

In particular, Phase 2 requires new passenger cars to be fitted

with Brake Assist Systems (BAS) as early as 2009. Pedestrian

protection is meanwhile also a major theme for consumer

rating groups like Euro NCAP.

Passive pedestrian safety measures involve vehicle struc-

tures (e.g. bonnet, bumper) that expand during collision in

order to minimize the impact of the pedestrian leg or head

hitting the vehicle. For example, Mercedes-Benz introduced
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Fig. 1. Typical dangerous situation: a child running unexpectedly onto the
street.

the active bonnet as standard for the new E-Class 2009. The

system includes three impact sensors in the front section

as well as special bonnet hinges pretensioned by powerful

springs. Upon impact with a pedestrian, the rear section of

the bonnet is pushed upwards by 50 mm in a fraction of a

second, thus enlarging the deformation zone. The system is

reversible and can be reset manually by the driver.

Although important, passive pedestrian safety measures

are constrained by the laws of physics in terms of ability

to reduce collision energy and thus injury level. Moreover,

passive measures cannot account for injuries sustained in the

secondary impact of the pedestrian hitting the road. Much

effort is therefore spent towards the development of active

driver assistance systems, which detect dangerous situations

involving pedestrians ahead of time, allowing the possibility

to warn the driver or to automatically control the vehicle. Such

systems are particularly valuable when the driver is distracted

or visibility is poor. See Figure 1.

The first night vision systems that detect and highlight

pedestrians have reached the market (e.g. Mercedes-Benz E-

Class 2009 and BMW 7 series 2008). Volvo recently intro-

duced in the S60 limousine a collision mitigation braking

system for pedestrians, based on monocular vision and radar.

In this paper, we present a novel active pedestrian safety

system, which combines sensing, situation analysis, decision

making and vehicle control. The outline of the paper is as

follows. Section II discusses previous work. The sensing com-

ponent, based on stereo vision, consists of two complementary

approaches, pedestrian recognition (Section III-A) and motion-

based object segmentation (Section III-B), and their fusion

(Section III-C). Situation analysis predicts how the current

driving situation will evolve and automatically evaluates its

criticality. This criticality assessment serves as the basis for a

decision module which triggers appropriate maneuvres for col-

lision avoidance and mitigation. Such maneuvers are realized

by specialized vehicle controllers. Situation analysis, decision
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making and vehicle control are the topic of Section IV. We

present the extensive experiments with the resulting system in

pre-crash experiments on the test track in Section V. Future

work and implications of such pre-crash safety systems are

discussed in Section VI. We conclude in Section VII.

II. PREVIOUS WORK

There exists meanwhile an extensive amount of literature

on pedestrian safety. Gandhi and Trivedi [2] provide a broad

survey on passive and active pedestrian protection methods,

discussing multiple sensor types and methods for collision risk

assessment. Enzweiler and Gavrila [3] focus in a more recent

survey on techniques for video-based pedestrian detection. A

large dataset (8.5GB) with many tens of thousands of labeled

pedestrians was made public for benchmarking purposes.

One can decompose video-based pedestrian detection sys-

tems roughly into three components: the generation of initial

object hypotheses (ROI selection), verification (classification),

and temporal integration (tracking). We only provide a brief

discussion, for a more complete discussion, see the survey

article [3].

The simplest way to obtain ROIs is by means of a sliding

window approach, where detector windows at various scales

and locations are shifted over the image. Significant speedups

can be obtained by coupling the sliding window approach

with a classifier cascade of increasing complexity [4], [5] or

by restricting the search space given known camera geometry

and certain assumptions (i.e. flat-world, pedestrians on ground-

plane, typical pedestrian sizes). Other ROI selection techniques

use stereo vision [6], [7], [8], [9], [10] or motion cues [11].

Pedestrian classification can be performed using either gen-

erative or discriminative models. Generative approaches model

pedestrian appearance in terms of its class-conditional density

function. In combination with the class priors, the posterior

probability for the pedestrian class can be inferred using a

Bayesian approach. Most generative approaches use shape

[9], [12] or combined shape-texure cues [13]. Discriminative

models approximate the Bayesian maximum-a-posteriori de-

cision by learning the parameters of a discriminant function

(decision boundary) between the pedestrian and nonpedestrian

classes from training examples. Among the more popular

image features used in this context are Haar wavelets [14],

code-book feature patches [8], histograms of oriented gradients

(HOG) [15], and local receptive fields [9]. There is a recent

trend towards classifier ensembles [16] or mixture-of-experts

[17] for improved performance.

Regarding tracking, one line of research has considered

this as frame-by-frame association of detections based on

geometry and dynamics without particular pedestrian appear-

ance models [6], [9]. Other approaches utilize pedestrian

appearance models coupled with geometry and dynamics

[8], [10]. Some approaches (e.g. [10]) furthermore integrate

detection and tracking in a Bayesian framework, combining

appearance models with an observation density, dynamics, and

probabilistic inference of the posterior state density.

A number of pedestrian systems were installed on-board

vehicles [18], [19], [20], [9], [21], [22], [23], [24]. Some of

these not only implement a perception component but also

collision risk estimation in combination with acoustical driver

warning and/or automatic vehicle braking, see systems by

Daimler [22], Ibeo [20], VW [22], [23], and the Universities of

Alcala [21] and Parma [19]. Other work dealt with pedestrian

perception, collision risk estimation and vehicle actuation by

means of simulation [25].

Systems for collision avoidance and mitigation by braking

are already in the market for passenger cars and commercial

vehicles and suitable methods for criticality assessment have

already been been proposed (e.g. [26]). However, collision

avoidance by steering has not been covered in depth in the

literature. Most work on trajectory generation for collision

avoidance has been done in the robotics field. Powerful meth-

ods to solve non-holonomic motion planning problems with

dynamic obstacles have been proposed (e.g. [27], [28]), yet the

computational complexity of many of the proposed algorithms

prohibits the application on current automotive hardware.

To overcome this limitation, efficient planning algorithms to

evaluate possible collision avoidance maneuvers by human

drivers in highly structured scenarios have been introduced

[29]. Optimal vehicle trajectory control for obstacle avoidance

within shortest distance is presented in [30]. The Proreta

Project [31] evaluated driver assistance systems that initiate

automatic braking when an object vehicle cuts into the ego

vehicle’s lane and automatic steering when an object vehicle

is standing in front of the ego vehicle and the driver does

not react. Other systems that performed automated steering

have been demonstrated at the DARPA Urban Challenge [32].

However, the latter systems mostly used expensive sensors

that are not suited for the automotive context (e.g. Velodyne

scanners) and executed steering maneuvers at relatively low

vehicle speeds.

The contributions of this paper are as follows. The main

contribution is the description of an integrated active pedes-

trian safety system, which combines sensing, situation analy-

sis, decision making and vehicle control. The secondary contri-

bution concerns the sensing component; it is based on stereo

vision and fuses two complementary approaches for added

robustness: motion-based object segmentation and pedestrian

recognition. The highlight of the system is the ability to decide

within a split second whether to perform automatic braking

or evasive steering, and to execute this maneuver reliably, at

relatively high vehicle speed (up to 50 km/h).

III. VIDEO-BASED PEDESTRIAN SENSING

A. Single-Frame Pedestrian Recognition (PedRec)

Initial regions of interest (ROIs) are generated using the

sliding window technique described in [9]. The depth image,

obtained by stereo vision, is scanned with windows related

to the maximum extents of pedestrians, assuming the latter

are standing on the ground plane, while taking into account

appropriate positional tolerances (e.g. vehicle pitch, slightly

curved roads vertically). The locations where the number of

(depth) features exceeds a percentage of the window area are

added to the ROI list for the subsequent pedestrian classifi-

cation. Candidates are classified following the HOG/linSVM

approach of Dalal and Triggs [15]. Multiple detector responses
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at near identical locations and scales are addressed by applying

confidence-based non-maximum suppression to the detected

bounding boxes using pairwise box coverage: two system

detections ai and aj are subject to non-maximum suppression

if their coverage Γ(ai, aj) =
A(ai∩aj)
A(ai∪aj)

, the ratio of intersection

area and union area, is above θn.

Fig. 2. Estimating pedestrian distance from dense stereo using a probability
mass function derived from manually labeled pedestrian shapes. By averaging
the weighted distance values the pedestrian distance can be computed.

The distance of a detected pedestrian in the image is

estimated using the computed dense stereo image. Because

the exact contour of the pedestrian is unknown all possible

pedestrian shapes are considered in the depth estimation

process using a probability mass function, as described in [11].

Figure 2 illustrates the depth estimation procedure. Distance

values in the depth image for a given bounding box are

weighted and averaged using the probability mass function.

The 3D position of the pedestrian is given by backprojecting

the vertical line going through the bounding box center and

the computed box distance. Detected 3D pedestrian locations

are passed untracked to the fusion module.

B. Detection of Moving Objects (6D-Vision)

Using a stereo camera set-up, the 3D structure of the

observed scene can be immediately obtained by a stereo

algorithm (e.g. [33], [34]). Usually, to identify individual ob-

jects, this information is accumulated in an evidence-grid-like

structure, followed by a connected-component analysis [35].

To obtain the motion of the identified objects, the objects

are then tracked over time and their velocity is estimated by

means of filtering. The disadvantage of this standard approach

is that the performance of the detection depends highly on

the correctness of the segmentation. Especially moving objects

close to stationary ones – e.g. the moving pedestrian behind the

standing vehicle are often merged and therefore not detected.

To overcome this problem, we proposed in [36], [37] to base

the detection not only on the stereo information, but also on

the 3D motion field. The reconstruction of the 3D motion field

is performed by the so called 6D-Vision algorithm. The basic

idea is to track points with depth known from stereo vision

over two and more consecutive frames and to fuse the spatial

and temporal information using Kalman filters. The result is

an improved accuracy of the 3D-position and an estimation of

the 3D-motion of the considered point at the same time. This

fusion implies the knowledge of the motion of the observer,

also called the ego-motion. It is estimated from the image

points found to be stationary, using a Kalman filter based

approach. However, other methods, like for example [38]

or [39] can be easily integrated.

Fig. 3. Estimation result of the 6D-Vision algorithm. The arrows point to
the estimated 3D position in 0.5 s, projected back onto the image. The color
encodes the absolute velocity: Static points are encoded green, points moving
at a speed of 4.0 m/s or above are encoded red.

In the current setup, the image points are tracked by a

KLT tracker [40], which provides sub-pixel accuracy and

tracks the image points robustly for a long sequence of

images. It was optimized with respect to speed, allowing the

complete motion-based object detection module to analyze up

to 5000 points in real-time (25 fps). The stereo computation is

performed by a hardware implementation of the semi-global

matching algorithm [34]. However, any comparable optical

flow and stereo algorithms can be used.

The estimation result of the 6D-Vision algorithm is shown in

Figure 3. Here, the arrows point from the current 3D-position

to the predicted 3D-position in 0.5 s. Looking at the bird’s-eye

view in the right image, the moving pedestrian is now easily

distinguished from the standing vehicle.

Objects are identified as groups of contiguous coherent mo-

tion vectors. Since the 6D-Vision algorithm provides not only

the state estimates, but also their uncertainty, the Mahalanobis

distance is used as a similarity measure in the cluster analysis.

C. Fusion of Motion-based Object Detection (6D-Vision) and

Pedestrian Recognition (PedRec)

For an accurate prediction of pedestrian movement, both

positional and velocity information is important. Input from

6D-Vision and PedRec modules are fused using a Kalman

filter. The state S of the filter is modeled as

S = [ x y vx vy ]T

with x/y being the longitudinal/lateral position of the pedes-

trian to the vehicle and vx/vy being its absolute longitudi-

nal/lateral velocity in the world. The measurement vectors

associated with the 6D-Vision and PedRec modules are

z6d = [ x y vx vy ]T , zped = [ x y ]T ,

where x/y and vx/vy are various measurements of the state

variables defined above (the mapping from state to mea-
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surements is thus trivial). Current measurements from both

modules are integrated into the filter using successive update

steps.

We assume a constant velocity pedestrian motion model

(acceleration is modeled in the process noise covariance). The

transition matrix F is given by

F =









1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1









(1)

with T being the cycle time of the camera (40 ms).

Ego-motion of the vehicle is compensated in the prediction

step of the Kalman Filter. Object translation with respect to the

vehicle can be computed assuming a “bicycle” model [41] for

the vehicle motion with constant steering angle and velocity

between two measurement points. The required velocity and

yaw rate data for the ego-motion-compensation is given by

on-board sensor data and is accessible in the camera cycle

time.

Measurement to track association is done using a global

nearest neighbor (GNN) approach with prior rectangular gat-

ing on object positions. The Mahalanobis distance between

predicted state and measurement is used for the data asso-

ciation. For pedestrian detections this means the position is

used for measurement to track association, while for 6D-Vision

detections the velocity is used additionally.

Track initialization and termination is handled depending on

the number of associations to a track. New tracks are initialized

using measurements that could not be assigned to an existing

track. In order to suppress spurious detections, tracks start in

the state hidden. A track enters the state confirmed after a

certain number n of measurements have been assigned to the

track. Here we use n = 2, which means a detection from

both modules at the same time directly results in a confirmed

pedestrian track. Only tracks where a pedestrian detection has

been assigned to are marked as valid pedestrian track. For all

tracks a history of their state over time, including measurement

to track associations is kept. Tracks are terminated after a user

defined number of missed associations m.

Both modules operate independently at different cycle

times. The 6D-Vision module operates in the fixed camera

cycle time (25 fps). Processing time of the PedRec module

varies depending on the scene complexity with a lower limit of

15 fps. Measurements have a common time-stamp defined by

the frame-stamp of the image they have been generated on. In

situations where measurements arrive out of sequence and can

not be integrated in the common filter state, the track history

is used to check measurements to track associations in the

past. Possible assignments lead to an update of the association

information. Although the filter state is not updated using

the out of sequence measurements the updated association

information effects the track management, allowing a track

to enter the state confirmed. Additionally PedRec associations

lead to a validated pedestrian track.

The initial state of the Kalman filter is derived from the first

measurement. If a track is initialized by a pedestrian detection

the velocities of the system state are set to zero. A track started

Fig. 4. System structure of situation analysis and vehicle control.

by a 6D-Vision detection uses the measured velocities as initial

value.

Finally, position, velocity and extent of the tracked pedes-

trians are passed to the situation analysis module.

IV. SITUATION ANALYSIS, DECISION, INTERVENTION,

AND VEHICLE CONTROL

Situation analysis and vehicle control are the components

of a driver assistance system which generate a machine level

understanding of the current situation (based on the previously

described sensor information) and take appropriate actions.

Figure 4 depicts the relationships between trajectory gener-

ation, situation analysis, decision & intervention, and vehicle

control.

Situation analysis predicts how the current driving situation

will evolve and automatically evaluates its criticality using

measures as e.g. time-to-collision, time-to-steer, and time-to-

brake. This criticality assessment serves as the basis for a

decision module which triggers appropriate maneuvers for col-

lision avoidance and collision mitigation. Such maneuvers are

realized by specialized vehicle controllers. Naturally, vehicle

control and situation analysis are closely coupled, since both

rely on accurate, realistic models of evasive maneuvers. These

models are provided by a trajectory generation module. The

following sections will discuss the aforementioned modules in

more detail.

A. Trajectory Generation

The objective of trajectory generation is twofold. First,

trajectory generation has to provide accurate models of eva-

sive steering maneuvers that fulfill several requirements: The

generated trajectory for evasion should be as comfortable as

possible, feasible (i.e. drivable by the ego vehicle), and should

also lead to a safe transition with minimal side-slipping of

the vehicle during the automatic evasive maneuver. Snatch

of steering wheel can be dangerous and must therefore be

avoided.

Second, trajectory generation should also provide the refer-

ence input variables for lateral control such as yaw angle, yaw

rate, etc. Different trajectory types have been investigated and

a sigmoidal blending function based on a polynomial approach
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as proposed in [42] is used to model the evasive maneuver

path.

A polynomial model of seventh degree for the evasive path

ytrj = f(x) =
7

∑

i=0

bi · x
i , (2)

where ytrj is the desired lateral and x the longitudinal offset

from the starting point of the evasion maneuver, allows to

fulfill the requirements regarding comfort and feasibility. To

meet these specifications, the determination of the polynomial

coefficients bi is based on several constraint equations which

limit the maximum lateral acceleration ay,max, the derivatives

of the lateral offset and of the curvature, respectively.

Let Dev denote the required distance to complete evasive

maneuver and ytarget the target lateral offset at the end of the

maneuver. For the derivation of the polynomial coefficients bi
in Eq. (2), we impose the following boundary conditions:

f(0) = 0 , f(Dev) = ytarget , (3)

d

dx
f(0) = 0 ,

d

dx
f(Dev) = 0 , (4)

d2

dx2
f(0) = 0 ,

d2

dx2
f(Dev) = 0 , (5)

d3

dx3
f(0) = 0 ,

d3

dx3
f(Dev) = 0 . (6)

To ensure that the evasive path ytrj meets our requirements

regarding comfort and feasibility, we require that the lateral

acceleration of the vehicle stays within predefined bounds:
∣

∣

∣

∣

d2f

dt2

∣

∣

∣

∣

=
d

dt

{

df

dx

dx

dt

}

=
d2f

dx2

(

dx

dt

)2

+
df

dx

d2x

dt2
≤ ay,max .

(7)

With the simplifying assumption that the vehicle’s motion in

x-direction is constant during the evasive maneuver, i.e. dx
dt

=

v, d
2x
dt2

=0, we can transform the inequality (7) to an extremal

value problem,

v2
d2f

dx2

∣

∣

∣

∣

x̃

= ay,max (8)

where x̃ is the position of the extremum, i.e.

d3f

dx3

∣

∣

∣

∣

x̃

= 0 . (9)

Eqs. (3–6) and (8–9) provide a set of ten equations sufficient

to derive the eight polynomial coefficients b0, . . . , b7, the

maneuver length Dev , and the position of the extremum x̃.

The transition time for evasion Tev can be approximated

using the simplifying assumption of constant vehicle speed v

Tev =
Dev

v
= K ·

√

ytarget/ay,max (10)

where K≈2.741 is a constant shape factor for the polynomial

of seventh degree that can be computed from the equations

defined above.

Based on the polynomial function and on the measured

vehicle velocity v, the important input variables (lateral offset

ytrj , curvature ctrj , heading angle χtrj) are determined for

lateral control at every sample time step, see Figure 5.

Fig. 5. Lateral control inputs from evasive path trajectory.

B. Situation Analysis

A commonly employed approach for collision risk as-

sessment involves criticality measures such as Time-To-Brake

(TTB), Time-To-Steer (TTS), etc.. TTB, for example, denotes

the remaining time span in which the driver can still avoid

a collision by braking with maximum deceleration. Detailed

descriptions of Time-To-X criticality measures and their ap-

plication in driver assistance systems for collision avoidance

and mitigation can be found in [26].

In this paper, TTB and TTS are used to trigger automatic

collision avoidance by either braking or steering maneuvers.

There are, however, two important differences to standard

Time-To-X computation: First, an evasive steering maneuver

is commonly modeled as driving on a circular path with

maximum lateral acceleration ay,max. Here, we employ a

more realistic steering maneuver as defined in Section IV-A.

Second, if TTS is used to assess the system’s ability to avoid

a collision by steering, we have to consider more than one

relevant object. This means that the algorithm not only needs

to find the latest steering maneuver which avoids a collision

with the pedestrian in our driving path, but also has to ensure

that the emergency maneuver does not result in a collision with

any other detected object in the scene (e.g. cars, pedestrians;

the integration of such free-space sensing component is left for

future work, see Section VI). To fulfill these requirements we

employ a numerical simulation method, which allows efficient,

real time computation of Time-To-X criticality measures even

for complex maneuvers. In addition, this numerical method

can verify if an evasive steering maneuver can be performed

without collision.

As depicted in Figure 4, the numerical simulation methods

consist of three main components: prediction, collision detec-

tion, and Time-To-X search. In the prediction step, a sequence

of potential future ego and other object states
{

tk, zego,k, z
1
obj,k, . . . , z

M
obj,k

}

, k = 1 . . .K, (11)

is computed, where tk is the k-th time stamp of the prediction,

K the prediction horizon, zego,k a vector describing the ego

vehicle’s pose and motion at time tk, and z
1
obj,k, . . . , z

M
obj,k the

pose and motion of all M objects provided by the sensor data

fusion (Section III-C). To obtain these predictions, we rely on

appropriate motion models for all objects and the ego vehicle,

thus making assumptions on their future behaviors.

Given the predicted states, we can identify potential colli-

sions between the system vehicle and all objects in the scene

by intersecting corresponding positions resulting from zego,k
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and z
1
obj,k, . . . , z

M
obj,k, respectively. If a collision is detected,

we start the search for the latest possible collision avoidance

maneuver.

To accomplish this task, we have defined two emergency

maneuvers representing braking with maximum deceleration

of −10m/s2 and steering as modeled in Section IV-A, re-

spectively. Each pairing (tk, zego,k) of Eq. (11) constitutes a

potential starting point for an automatic emergency maneuver.

Using a binary search algorithm, we can efficiently find the

latest time steps at which braking or steering maneuvers have

to be triggered that do not lead to a collision with any object

in the scene. These time steps are discrete estimates of TTB

and TTS.

C. Decision & Intervention

The “decision & intervention” is the core module of the

assistance system, since it associates the function with the

driver’s behavior. Due to the high injury risk of a pedestrian

in an accident, collision avoidance is the primary objective

of the function. In order to identify the best way to support

the driver, it is necessary to know the driver’s current driving

intention. The driver monitoring algorithm is using signals

from the vehicle, e.g. accelerator and brake pedal position,

speed, lateral and longitudinal acceleration, steering angle and

steering rate to determine the current driving maneuver of

the driver. If the driver is not reacting appropriately to the

dangerous situation, an optical and acoustic warning will be

given, so he can avoid the collision himself. In the case a

function intervention is necessary to avoid the collision, full

braking takes priority over the evasive maneuver. The full

braking will be triggered when TTB = 0 and the driver

is neither doing an accelerating nor an evasive maneuver. If

the collision cannot be prevented with full braking any more

(TTB < 0), the evasive steering maneuver will be activated at

TTS = 0, provided the situation analysis has computed that

this can be executed without collision; the evasive maneuver

using the vehicle control to compute the necessary steering

torque. The function ramps down the steering torque, when

the evasive maneuver has finished. Afterwards the function

is available immediately, when needed. Automatic evasion

results in a fixed lateral offset of the vehicle in the range

of 80–100 cm. In case collision free evasive steering would

not be possible because of, say, detected oncoming traffic, the

decision would be to brake (collision mitigation).

The design of the prototype function allows the driver to

overrule the steering intervention at any time. If the driver

holds the steering wheel, he will weaken or suppress the

steering of the system. A distinct activity of the accelerator or

brake pedal cancels the evasive maneuver immediately. Similar

exit conditions exist for the full braking intervention.

In order to minimize dynamic misalignments of the pas-

sengers during the system intervention additional protective

measures are triggered. The function controls the electromo-

tive reversible seatbelt pretensioners and the side-gated air

cushions of the seating and backrests will be inflated. When

the system has finished the intervention, the tension of the

reversible seat belt pretensioners is released automatically and

the air cushions of the seats are vented to the previous position.

D. Vehicle Control

Vehicle control consists of two parts: longitudinal control

for automatic braking and lateral control for evasion. Auto-

matic braking is triggered when TTB=0s (i.e. at the latest point

in time when the ego vehicle can avoid the collision by full

emergency braking), thus the longitudinal vehicle controller

will set a maximum decceleration of −10 m/s2. The lateral

control for evasive steering, however, is more complicated and

will be discussed in the following sections.

Steering maneuvers for automatic collision avoidance entail

highly dynamic lateral movements of the ego vehicle (here,

lateral motion refers to motion perpendicular to our driving

lane). The dynamics of such maneuvers with high lateral ac-

celeration are nonlinear. In general, the lateral offset ytarget as

defined in Section IV-A may vary from only a few centimeters

to a full lane change depending on the size of the obstacle, its

velocity, and the free space available for the evasive maneuver.

Here, however, for pedestrian evasion a fixed lateral offset is

used.

Collision avoidance by steering requires precise lateral con-

trol of the ego vehicle. The controller permanently compares

the reference position along the evasive maneuver trajectory

as specified in Eq. (2) to the actual vehicle position and thus

requires accurate and reliable knowledge of the ego vehicle’s

pose.

The position of the vehicle is reconstructed from odometers

and inertial sensors readily available in today’s vehicles. Using

the measured lateral acceleration ay and the velocity v (or the

current yaw rate ψ̇, alternatively), the vehicle’s heading angle

χ can be recovered following

χ(tk) = χ(tk −∆T ) +
ay(tk)

v(tk)
∆T (12)

or

χ(tk) = χ(tk −∆T ) + ψ̇(tk)∆T , (13)

respectively. Here, ∆T denotes the sampling time step and tk
specifies the time stamp of the k-th iteration step. Using χ
and the measured velocity v, numerical integration yields the

longitudinal position x and the lateral position y with respect

to the current lane
(

x(tk)
y(tk)

)

=

(

x(tk −∆T )
y(tk −∆T )

)

+v(tk)∆T

(

cosχ(tk)
sinχ(tk)

)

.

(14)

To account for the nonlinear lateral dynamics of the evasive

maneuver, a control strategy combining feed forward and

feed back control is used, i.e. the command signal u of

the lateral controller comprises the components uff from a

feed forward and ufb from feed back controller, respectively.

uff is computed from the trajectory curvature ctrj that can

be derived from the polynomial in Eq. (2). The feed back

component ufb is provided by a 4th order state controller

with state vector (yerr, ẏerr, χerr, χ̇err). Here, yerr = ytrj−y
denotes the lateral position error between the reference lateral

position and the reconstructed position, χerr = χtrj − χ the

difference between reference and reconstructed heading angle.

ẏerr and χ̇err represent temporal derivatives which can be

computed using either derivative lag (DT1) elements, state

variable filters, or state observers.
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Due to the nonlinear behaviour of the vehicle, a gain

scheduling approach is employed which adapts both the feed

forward gain factor Kff and the feed back gain vector Kfb

to the current velocity and the maximum allowed lateral

acceleration ay,max, i.e. Kff = f(ay,max, v) and Kfb =
f(ay,max, v). Detailed information can be found in [43].

V. EXPERIMENTS

A. Set-up

Our vehicle prototype is a Mercedes-Benz S-class, with a

stereo camera mounted behind the windshield. The stereo base

line is 30 cm and each camera has a resolution of 640 ×

480 pixels and a focal length of 12 mm. Two computers are

mounted in the trunk; a 4 GHz Quad Core Pentium with the

image processing and fusion algorithms and a 2.2 GHz dual

core Pentium with the function specific algorithms. They are

connected to the CAN network of the vehicle, which provides

the required vehicle signals, such as speed and steering angle.

The vehicle prototype works with a conventional power

steering, as it is used in the production vehicles. In addition,

the steering possesses an electric steering torque actuator.

It allows inducing an additional steering torque up to 5

Nm at the steering wheel to realize the automatic evasive

maneuver. Braking and driver warning (display instrument

panel, loudspeakers) were implemented using the Mercedes-

Benz series control units. In addition, seat air cushions were

inflated and seat belts were pre-tensioned in the event of a

near-crash.

In order to test the prototype functionality, a traverse con-

struction was installed on a proving ground, under which a

pedestrian dummy, hung by a set of wires, can be moved

across the road. An electronic device allowed reproducible

movement of the pedestrian dummy. The synchronisation of

the pedestrian dummy and the vehicle was achieved by a light

barrier.

B. Test of Video Sensing Component

We first discuss the evaluation of the video sensing com-

ponent only. A total of 22 scenarios were staged, covering

real world situations of varying complexity, see Figure 6. The

scenarios involve different numbers of pedestrians, geomet-

rical lay-outs, walking speeds and visibility conditions. For

safety reasons, lateral pedestrian movement resulting in near-

collisions was solely performed with the dummy. Furthermore,

vehicle speed was reduced to 30 km/h in those scenarios (S11,

S13, S17, S21, S22) where a real pedestrian was nearing the

vehicle side up to 1.5 m.

3D ground truth positions of pedestrians with respect to the

vehicle were obtained by manual labeling the corresponding

bounding boxes in the camera images and by triangulation.

Partially occluded pedestrians were labeled by a bounding

box containing the visible body parts. We defined a sensor

coverage range of 7-27 m in front and up to 6 m to each side

of the vehicle medial axis, which was covered by both the 6D-

Vision and PedRec modules. In this area all pedestrians were

‘required’, i.e. were needed to be detected by the system (even

if only partially visible). Outside this area, pedestrians were

‘optional’, we did not credit or penalize for system detections.

In all, this resulted in 48 required pedestrian trajectories and

1700 pedestrian single-frame instances. We now consider four

performance metrics in turn: detection performance, position-

and speed-accuracy and time-to-detect.

Detection performance is related to the number of matches

between ground truth and system-detected object locations.

There are two aspects: sensitivity and precision. Sensitivity

relates to the percentage of true solutions that were found

by the system (i.e. detection percentage), whereas precision

relates to the percentage of system solutions that were correct.

A sensitivity and precision of 100% is ideal: the system

finds all real solutions and produces no false positives. For

additional insight, we consider the two criteria on both the

frame- and trajectory-level. For the latter, we distinguish three

types of trajectories: “class-a”, “class-b”, “class-c”, which

have 75%, 50% and 1 frame entries matched. Thus, all “class-

a” trajectories are also “class-b” trajectories, all “class-b”

trajectories are also “class-c” trajectories; the three classes

of trajectories represent different quality levels that might be

relevant for particular applications.

In comparing system output with ground truth, we need to

specify the localization tolerance, i.e. the maximum positional

deviation that still allows us to count the system detection as a

match. This localization tolerance is the sum of an application-

specific component (how precise does the object localization

have to be for the application) and a component related to

measurement error (how exact can we determine true object

location). We define object localization tolerance as percentage

of distance, for longitudinal and lateral direction (X and Y ),

with respect to the vehicle. For our evaluation of the video

sensing component, we took X = 15% and Y = 4%, which

means that, for example at 10 m distance, we tolerate a lo-

calization error (including ground truth measurement error) of

±1.5 and ±0.4 m in the position of the pedestrian, longitudinal

and lateral to the vehicle driving direction, respectively.

For this application we allow many-to-many correspon-

dences. A ground truth location is considered matched if

there is at least one system detection matching it. In practice,

this means that in the case a group of pedestrians walking

sufficiently close together in front of the vehicle, the system

would not necessarily have to detect all of them in isolation,

it suffices if each true pedestrian is within the localization

tolerance of a detected pedestrian.

Table I summarizes the pedestrian detection performance.

First two columns relate to 6D-Vision and (single-frame)

PedRec output, which form the components of the fused

system, shown in the last column. The third column rep-

resents the baseline case (termed ‘PedRecTrack’): PedRec

in combination with the previously described Kalman filter,

without integrating the 6D-Vision detections. Two consecutive

detections are required for a track to be initialized. After three

missed detections tracks are closed.

From Table I one observes an improved performance of

the fusion system (fourth column) vs. the baseline PedRec

tracking system (third column). This is mainly due by the

successful detections of 6D-Vision of the partially occluded

pedestrians (i.e. upper body visible above parked car), which

are not captured by the current PedRec, see Figure 9. By
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Fig. 6. Illustration of the 22 different scenarios, performed with real pedestrians (green) and a pedestrian dummy (red). Scenario pairs associated with a
single diagram were performed with different dummy/pedestrian speeds, i.e. either 1 m/s or 2 m/s.

6D-Vision PedRec (single-frame) PedRecTrack Fusion

Sensitivity (frame level) 66.2% (70.4%) 75% 76.2% 88.9%

Precision (frame level) N/A N/A 100% 100%

# False detected objects (frame level) N/A N/A 0 0

Sensitivity (class-A trajectory) 56.3% (62.8%) 54.2% 60.4% 89.6%

Sensitivity (class-B trajectory) 75.0% (83.7%) 81.25% 81.3% 95.8%

Sensitivity (class-C trajectory) 91.7% (100%) 100% 100% 100%

# False Trajectories N/A N/A 0 0

Precision (class-A trajectory) N/A N/A 100% 100%

Precision (class-B trajectory) N/A N/A 100% 100%

Precision (class-C trajectory) N/A N/A 100% 100%

TABLE I

PEDESTRIAN DETECTION PERFORMANCE OF BASELINE SYSTEM (PEDRECTRACK, THIRD COLUMN) AND OF PROPOSED FUSION APPROACH (FUSION,

LAST COLUMN) ON FULL DATASET, 22 SCENARIOS. BETWEEN BRACKETS, RESULTS ON DATA SUBSET CONTAINING MOVING PEDESTRIANS ONLY.

relying on motion, 6D-Vision cannot always be of help,

however. Pedestrian standing or walking slowly (especially in

longitudinal direction) are not well detected, which accounts

for the somewhat lower detection rate (first column). As 6D-

Vision is a generic moving object detection system, false

pedestrian positives do not apply (see N/A entries).

Table II summarizes the obtained positional accuracy for

the required pedestrians which were detected (i.e. within

beforementioned localization tolerance). Lateral localization is

quite accurate for all the 6D-Vision and PedRec components

and fusion. Not surprisingly, longitudinal accuracy is lower

for all variants. Here, PedRec has an edge, partly because its

measurements are restricted to fully visible pedestrians.

6D-Vision PedRec (not tracked) Fusion

lateral 0.06 (0.06) 0.05 (0.05) 0.06 (0.05)
longitudinal 0.40 (0.16) 0.17 (0.17) 0.32 (0.31)

TABLE II

LOCALIZATION ACCURACY OVER DEFINED SENSOR COVERAGE AREA

(LONGITUDINAL 7-27 M, LATERAL UP TO 6 M): ROOT MEAN SQUARED

ERROR AND (BETWEEN BRACKETS) STANDARD DEVIATION IN METERS

For a reliable automatic vehicle maneuver, speed accuracy

is important in addition to position accuracy. Figure 7 illus-

trates the estimated speed of the various configurations on

scenario S01, from the time the pedestrian is partially visible

coming behind the parked car. The speed of the pedestrian

dummy (2 m/s) is exactly known from the test setup.

Although the dummy is detected early by PedRecTrack

system, the initial estimated position is not exact enough to

allow a correct two-point filter initialization. This is because of

small errors in depth estimation, caused by including disparity

values belonging to the parked car that is occluding the

dummy. Therefore, PedRecTrack is initialized with a speed of

zero (same applies for the fused system). As Figure 7 shows,

it takes about one second for the PedRecTrack system to

converge to the correct speed of 2 m/s. The 6D-Vision module,

however, tracks the correct feature points on the moving target,

and is able to converge fast to the correct speed. For the fused

system, integrating the speed information from the 6D-Vision

module helps the filter to converge faster to the correct speed

than the baseline PedRecTrack system.

Finally, we analyze the performance regarding time-to-

detect, here defined as the number of frames it requires to

detect a ground-truth trajectory, from first instance of full

pedestrian visibility (a system trajectory that is started beyond

the required sensor coverage range will result in a “time-to-

detect” of one frame). Trajectories that can not be detected

by all configurations are excluded. A total of 42 trajectories
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Fig. 7. Estimated pedestrian speed using the baseline PedRecTrack, 6D-
Vision and the proposed fusion system. The ground truth speed is 2m/s.

PedRecTrack (baseline) 6D-Vision Fusion

2.4 (2.8) 1.4 (1.3) 1.5 (1.6)

TABLE III

NUMBER OF FRAMES UNTIL THE PEDESTRIAN DUMMY IS DETECTED,

FROM MOMENT OF FULL VISIBILITY: MEAN AND STANDARD DEVIATION

(IN BRACKETS). DATA COMPUTED OVER 10 TRAJECTORIES, WITH INITIAL

PARTIAL OCCLUSION.

remain, the results are shown in Figure 8. In analyzing the

results of the individual sequences, we observe that lateral

moving pedestrians (2 m/s), for which the lower body part

is occluded by the parked cars, are detected early by the

6D-Vision module, see Figure 9. Table III summarizes the

results for this scenario subset. On the other hand, longitudinal

moving pedestrians close to parked cars are more difficult

to segment but pose no problem for the PedRec module.

By fusing detections of both modules, the time to detect a

pedestrian is reduced on average.

C. Test of Integrated System

We tested the integrated system (sensing, situation analysis,

decision making and vehicle control) on two scenarios S01

and S02. In both scenarios, the vehicle drives close to 50 km/h

and the pedestrian dummy moves from the right side onto the

vehicle’s lane with a lateral speed of 2 m/s. In scenario S01

the pedestrian dummy is only partially occluded by a parking

passenger vehicle. In scenario S02, the dummy appears behind

a parking van and thus can only be detected by our system

significantly later than in scenario S01. The desired vehicle

action is to brake if still possible, otherwise to evade. See

Figure 13 for snapshots of the integrated system choosing the

correct vehicle action in scenarios S01 and S02.

We experimentally determined the last possible brake time

for the vehicle to come to a complete stop to correspond to a

pedestrian distance of 20 m (taking into account various device

latencies). In scenario S01, the setup is such that the pedestrian

is first fully visible at about 24 m distance (3.8 m lateral) to

the vehicle. This means that the system has only about seven

frames (corresponding to 4.1 m driven) to determine pedestrian

position and speed, perform situation analysis and make the

correct decision to initiate braking.

In scenario S02, the pedestrian dummy was initially oc-

cluded by a parking van aside of the road. Thus, the pedestrian

dummy was only detected at a distance of less than 20 m and

collision avoidance by braking was no longer possible. In the

following example, the ego vehicle was driving with a constant

speed of 45 km/h and the pedestrian was first detected at a

distance of 15.9 m and a lateral offset of −3.4 m. Figure 10

depicts the time-to-collision (TTC), time-to-brake (TTB), and

time-to-steer (TTS) values provided by the situation analysis

module of Section IV. As the pedestrian dummy becomes

visible very late in this scenario, automatic braking can no

longer avoid a collision and TTB = −∞ throughout this

measurement. As soon as TTS falls below a predefined total

reaction time of the system (200 ms in our prototype system),

an automatic steering maneuver is triggered and the TTX

computation is stopped.

Fig. 10. Position of detected pedestrian (top, middle) and corresponding time-
to-x values (bottom). Note that time-to-brake (TTB) is −∞ in this sequence
and thus not visible. An evasion maneuver is triggered at t=9.18 s.

Figure 11 shows the commanded trajectory ytrj and the

reconstructed lateral position y of the vehicle after the lateral

controller has been started. Following Eq. (14), the actual

lateral position y was reconstructed using speed measurements

and lateral acceleration measurements from odometry and

inertial senors in our experimental vehicle. In this experiment,

a fixed target lateral offset of 1 m has been chosen. As can be

seen from the measurement data, the time lag between actual

and commanded trajectory position is approx. 200 ms. This

time lag corresponds to the total reaction time of our system

and is induced by our vehicle’s dynamics, data processing time

and the phase lag of the steering actuator.

Figure 12 show the measured lateral acceleration and

vehicle speed during the automatic evasive maneuver. The

maximum measured lateral acceleration is less than 10%
higher than predefined limit of ay,max = 5m/s2, according to

Eq. (7). This performance is acceptable in our application. The

absolute speed of the vehicle is reduced by 3 km/h during the

maneuver.

We tested the integrated system by means of 20 runs on both

scenarios S01 and S02. In all 40 runs, the prototype vehicle

selected the correct action in time, not hitting the pedestrian

dummy once. In the braking scenarios, the vehicle stopped
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Fig. 8. Distribution of the number of frames until a pedestrian is detected, from the first frame of full visibility, for PedRecTrack, 6D-Vision and Fusion,
respectively. Distribution over occluded and non-occluded trajectories that were detected (42 in total).

Fig. 9. An illustration of the complementary nature of PedRec with 6D-Vision. The grayscale image on the left displays the raw pedestrian detections (red
box), 6D-Vision detections (small yellow box) and fusion results (blue box). The static fully visible pedestrian is detected by PedRec, the strongly occluded
moving pedestrian is detected by 6D-Vision. Both are detected by the fusion approach. To the right of the grayscale image, three top views associated with
Fusion, 6D-Vision and PedRec. Numbers denote distance to vehicle.

Fig. 13. (top) Braking scenario S01 vs. (bottom) Evasion scenario S02

approximately 30-150 cm ahead of the dummy.

VI. DISCUSSION

The previous section demonstrated a remarkably reliable

vehicle system on the test track, that can detect pedestrians

and make the right decision to brake or to evade, in a split of a

second. There are a number of technical challenges associated

with extending the flawless performance of the system on the

test track to the real urban traffic environment,

Regarding the sensing component, note that for our ex-

perimental setting on the test track, it was easy to discard

6D-Vision detections on moving vehicles, based on speed

considerations. Therefore, the remaining 6D-Vision detections,

associated with realistic pedestrian speeds, were treated sim-

ilarly to the PedRec detections in the fusion approach of

Section III-C. The decision whether to output a track was

solely based on the number of detections, irrespective of

their source. In a real traffic environment, there will be many

other moving objects, which could be pedestrian-like. Future

work will develop a probabilistic approach, which maps 6D-

Vision and PedRec detections onto posteriors for pedestrians,

taking into account bounding box sizes, locations, speeds and

classifier decision values. The decision whether to initiate a

track would be made by analyzing the cumulative probability

of observing a pedestrian.

It is paramount to avoid false system activations (i.e. un-

necessary braking or evasion maneuver). For that, all sys-

tem modules and in particular the sensing component (6D-

Vision, PedRec) will need to be enhanced (e.g. better position

and velocity estimation, recognition performance, recognizing

pedestrians under partial occlusion [17]). Sensor fusion (e.g.

with radar, laser scanners) can provide an additional level of
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Fig. 11. Commanded trajectory and measurement results after evasion has
been triggered. Top: Lateral position of the vehicle. Bottom: Steering wheel
angle. The upper plot shows a total reaction time of the vehicle’s of approx.
200 ms; this includes a steering actuator phase lag of about 70 ms as depicted
in the lower diagram.

Fig. 12. Measured lateral acceleration and vehicle speed.

robustness.

The sensing component might be extended to other traffic

participants, such as bicylists and cars, to match the capabil-

ities of the current situation analysis component. The current

evasion maneuver results in a lateral offset of 80-100 cm of the

vehicle. Larger offsets are conceivable. This places demands

that the sensing component also performs a free space analysis

[44], to verify that the automatic evasion maneuvre can indeed

be safely performed. Being able to detect elements of the

traffic infrastructure (e.g. lane markings, traffic lights) will

furthermore enable more sophisticated situation analysis.

As a final note, we emphasize that the presented system

is meant for emergency situations, in which the driver will

likely not be in a position to still act properly. Vehicle control

(and responsibility) rests, however, fully with the driver; at

each time instant the driver can overrule the system, by either

accelerating or maintaining a grip on the steering wheel.

VII. CONCLUSION

This paper presented a novel active pedestrian safety system,

which combines sensing, situation analysis, decision making

and vehicle control. The vision sensing component fuses

two complementary approaches: generic motion-based object

detection (6D-Vision) and pedestrian recognition (PedRec).

Situation analysis was based on numerical simulation, which

allowed to incorporate more complex, non-circular vehicle

paths based on a polynomial model. Decision making involved

the continuous monitoring of time-to-collision, time-to-brake

and time-to-steer measures, and initiating a specialized control

loop in case of an evasion maneuver.

We performed extensive pre-crash experiments with the

system on the test track. We demonstrated that the benefit of

adding 6D-Vision to a baseline PedRec(Track) system is that

lateral moving pedestrians (2 m/s) can be detected earlier when

partially occluded by a parked car, and furthermore, velocity

estimation is more accurate. On two scenarios, requiring a

split-second decision between no action, automatic braking

and automatic evasion, the system made in all runs (over 40)

the correct decision. Despite the strong performance on the

test track, additional challenges remain before this system can

reliably be deployed in real urban traffic.
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