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Abstract 
We describe the results of a set of experiments in 
which we evolved the control system of artificial 
agents that are asked to categorize objects with 
different shapes on the basis of tactile information. 
Agents are provided with a 3-segments arm with 6 
degrees of freedom and extremely coarse touch 
sensors. As we will see, despite such a limited sensory 
systems, evolved individuals are perfectly able to 
solve the problem. The analysis of the obtained results 
shows that evolved individuals always develop a well 
defined behavioral strategy that allows them to easily 
and robustly discriminate different objects despite the 
limitation of their sensory apparatus. Moreover, we 
discuss the general advantage of the evolutionary 
method for the synthesis of effective artificial agents. 

1. Introduction 
 
The behavior of embodied and situated organisms is an 
emergent result of the dynamical interaction between the 
nervous system, the body, and the external environment 
Ashby, 1952; Beer, 1995). This simple consideration has 
several important consequences that are far from being fully 
understood. One important aspect, for instance, is the fact 
that motor actions partially determine the sensory pattern 
that organisms receive from the environment. By 
coordinating sensory and motor processes organisms can 
select favorable sensory patterns and thus enhance their 
ability to achieve their adaptive goals.  

Examples of processes falling within this category have 
been identified in natural organisms. Dill et al. (1993) 
demonstrated that since the fruit fly drosophila cannot 
always recognize a pattern appearing at different locations 
in the retina, the insect solves this problem of shift 
invariance by moving so to bring the pattern to the same 
retinal location where it has been presented during the 
storage process. Franceschini (1997) demonstrated that flies 
use motion to visually identify the depth of perceived 
obstacles. Moreover, there is evidence that environmental 
feedback obtained through motor actions plays a crucial role 

in normal development (Chiel and Beer, 1997; Thelen and 
Smith, 1994).  

With few notable exceptions (eg, Braitenberg, 1984; 
Franceschini, 1997; Scheier and Pfeifer, 1995), the 
possibility of exploiting sensorimotor coordination in the 
design of artificial systems has largely been left unexplored. 
This can be explained by considering that, as we said above, 
behavior is the emergent result of the interactions between 
the individual and the environment. Given that in dynamical 
systems there is a complex and indirect relation between the 
rules that determine the interactions and the emergent result 
of those interactions, it is very difficult to identify how the 
interactions between the organism and the external 
environments contribute to the resulting behavior. As a 
consequence, designing systems that exploit sensorimotor 
coordination is rather difficult (for an attempt to identify 
new design principles that might help to achieve this goal, 
see Pfeifer and Scheier [1999]). 

From this point of view evolutionary experiments (Nolfi 
and Floreano, 2000) where artificial organisms 
autonomously develop their skills in close interaction with 
the environment represent an ideal framework for studying 
sensorimotor coordination (Nolfi and Floreano, 2002). 
Indeed, in most of the experiments conducted with artificial 
evolution one can observe the emergence of behavior 
exploiting active perception. The analysis of evolved robots 
and the identification of how they exploit the interaction 
with the environment is often very difficult and requires 
significant effort, but is generally much simpler than the 
analysis of natural organisms because the former are much 
more simple and can be manipulated much more freely than 
the latter. In addition, such analysis may allow the 
identification of new explanatory hypotheses that may 
produce new models of natural behavior that, later on, might 
be tested experimentally on the real organisms. 

In the next section we describe the results of a set of 
experiments in which we evolved the control system of 
artificial agents that are asked to categorize objects with 
different shapes on the basis of tactile information. Agents 
are provided with a 3-segment arm with 6 degrees of 
freedom and extremely coarse touch sensors. As we will 
see, despite such a limited sensory systems, evolved 
individuals are perfectly able to solve the problem. The 
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analysis of the obtained results shows that evolved 
individuals always develop a well defined behavioral 
strategy that allows them to easily and robustly discriminate 
different objects despite the limitation of their sensory 
apparatus. Finally, in the conclusions we discuss the general 
advantage of the evolutionary method for the synthesis of 
effective artificial agents. 

  

2. Experimental Results 
We evolved the control system of agents that are asked to 
categorize objects with different shapes on the basis of 
tactile information. Agents are provided with a 3-segments 
arm with 6 degrees of freedom (DOF) and extremely coarse 
touch sensors (see Figure 1).  
 

 
 
Figure 1. The arm and a spherical object. 
 
To reduce the time necessary to test individual behaviors 
and model the real physical dynamics as accurately as 
possible we used the rigid body dynamics simulation SDK 
of VortexTM (see http://www.cm-labs.com/products/vortex/). 
This software allowed to build our robotic arm by means of 
several segments connected by joints and to run simulations 
faster than real time. 

32 1 

X 

Y 

5 

Joint E Joint R 

5

5 

5 
10 3 

 

 
 
Figure 2. A schematic representation of the arm. 

Given the specific characteristics of this tool, the 
implementation of the arm consists of a basic structure 
comprising two segments and two joints replicated three 
times (see Figure 2). The basic structure consists of a shorter 
segment of size {x=5, y=3, z=5} and a longer segment of 
size {x=5, y=10, z=5}. This two segments are connected by 
means of a joint (i.e. the Joint E in the Figure) that allows 
only one DOF on axis Y , while the shorter segment is 
connected at the floor, or at the longer segment, by means of 
a joint (i.e. the Joint R) that provides one DOF on axis X. In 
practice, the Joint E allows to elevate and lower the 
connected segments and the Joint R allows to rotate them in 
both direction. Notice that Joint E is free to moves only in a 
range between 0 and π/2, just like an human arm that can 
bend the elbow solely in a direction. The range of Joint R is 
[-π/2, +π/2] Gravity is {0, -1,0, 0}. Each actuator is 
provided with a corresponding motor that can apply a 
maximum force of 50. Therefore, to reach every position in 
the environment the control system has to appropriately 
control several joints and to deal with the constraints due to 
gravity. Friction was set to 2.0.    

The sensory system consists of a simple contact sensor 
placed on each longer segment that detects when this 
segment collides with an other object and proprioceptive 
sensors that provide the current position of each joint.  
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Figure 3. The architecture of the neural controller. 
 

Each individual of the population was tested for 36 
phases, each phase consisting of 150 timesteps. At the 
beginning of each phase the arm is fully extended and a 
spherical or a cubic object is placed in a random selected 
position in front of the arm (the position of the object is 
randomly selected between the following intervals: 20.0 >= 
X <= 30.0; 7.5 >= Y <= 17.5; -10.0 >= Z <= 10.0). The 
object is a sphere (15 units in diameter) during even phases 
and a cube (15 units in side) during odd phases so that each 
individual has to discriminate the same number of spherical 
and cubic objects during its “lifetime”. 

The controller of each individual consists of a neural 
networks with 10 sensory neurons directly connected to 7 
motor neurons and 2 internal neurons receiving connections 
from the sensory neurons and from themselves and 
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projecting connections to the motor neurons (see Figure 3). 
The first 9 sensory neurons encode the angular position 
(normalized between 0.0 and 1.0) of the 6 DOF of the joints 
and the state of the three contact sensors located in the three 
corresponding segments of the arm. The last sensory neuron 
is a copy of the last motor neuron that encode the current 
classification produced by the individual (see below). The 
first 6 motor neurons control the actuators of the 6 
corresponding joints. The output of the neurons is 
normalized between [0, +π/2] and [-π/2, +π/2] in the case of 
elevation or rotational joints respectively and is used to 
encode the desired position of the corresponding joint. The 
motor is activated so as to apply a force (up to 50 units) 
proportional to the difference between the current and the 
desired position of the joint. The seventh motor neuron 
encodes the classification of the object produced by the 
individual (value below or above 0.5 are interpreted as 
classifications corresponding to a cubic or spherical object 
respectively). 

The activation state of sensory and internal neurons was 
updated accordingly to the following equations (motor 
neurons were updated according to the logistic function): 

 

∑+= iijjj OwtΑ
 

 

( )( ) 1)1( 11
−−− +−+= jA

j
t

jjj eOO ττ  (1) 

10 ≤≤ jτ
 

 

 
With Aj being the activity of the jth neuron (or the state 

of the corresponding sensor in the case of sensory neurons), 
tj the bias of the jth neuron, Wij the weight from the ith to 
the jth neuron, Oi the output of the ith neuron. Oj is the 
output of the jth neuron, τj the time constant of the jth 
neuron. It should be noted that similar, although slightly 
worse performance, was obtained by using the standard 
logistic function for all neurons (result not shown). 

The genotype of evolving individuals consists of 139 
parameters that include 108 weights, 19 biases, and 12 time 
constants. Each parameter is encoded with 8 bits. Weights 
and biases are normalized between –10.0 and 10.0, time 
constants are normalized between 0.0 and 1.0. The fitness of 
individuals is computed by summing the number of phases 
in which the individuals correctly classify the current object. 
The classification is correct if at the end of the phase (i.e. 
after 150 cycles) the activation of the last motor units is 
below 0.5 and the object is a cube or is above 0.5 and the 
object is a sphere. By running 10 replications of the 
experiment and by evolving individuals for 50 generations 
we observed that in many of the replications evolved 
individuals display a good ability to classify the two objects 
and, in some cases, they produce close to optimal 
performance. Figure 4 shows the percentage of correct 
classifications measured through 100 trials for the best 
individual of each generation. As can be seen, in the case of 
the best replication (thin line), evolved individuals reach up 
to 98% of correct classifications. 
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Figure 4. Percentage of correct classifications against generation 
for the best individual of each generation. The tick line represents 
the average performance of 10 replications. The thin line 
represents the performance of the best replication. Each individual 
has been tested for 100 phases. 
 
By analyzing the obtained behaviors one can clearly see that 
in all experiments evolved individuals select a well defined 
behavior that assures that perceived sensory states 
corresponding to different objects can be easily 
discriminated and allows robust and effective 
categorizations. Figure 5 shows how a typical evolved 
individual behaves with a spherical and a cubic object (left 
and right side of the Figure respectively). As can be seen, 
first the arm bends on the left side and move to the right in 
order to start to feel the object with the touch sensor of the 
third segment. Then the arm moves so as to follow the 
curvilinear surface of the sphere or to keep touching one of 
the angles of the cubic object.   

The fact that such behavior significantly simplifies the 
discrimination of the two objects can be explained by 
considering that the arm ends in very different conditions in 
the case of a sphere or of a cubic object. In particular, after a 
certain amount of time in which the arm is negotiating the 
object, it ends almost fully extended in the case of a 
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spherical object and almost fully bent in the case of a cubic 
object. This implies that, given such a behavior, the state of 
the proprioceptive sensors after a certain amount of time can 
be used as a direct and straightforward indication of the 
category of the object. The fact that such behavior allows 
evolved individuals to produce robust and effective 
classifications can be explained by considering that the final 
classification is not the result of a single decision but is the 
end result of an interaction between the agent and the object 
that last several timesteps during which the agent keeps 
following the surface of the object so to ascertain whether it 
is curvilinear or not. Indeed, evolved individuals that 
display shorter negotiation periods with spherical objects 
also produce worse classification performance (result not 
shown). 

The analysis of the activation state of the neurons 
during the behavior displayed in Figure 5 (see graphs H1 
and H2 in Figure 6 and 7 that show the activation of the 
internal neurons when the arm has to discriminate the 
spherical or the cubic object respectively) shows that 
internal units are activated during the first phase (when the 
arm is looking for the object) and not activated during the 
second phase (when the arm starts to negotiate the object) 
for both spherical and cubic objects. Also notice how the 
activation state of unit C, that encodes the classification 
produced by the agent, starts low and then increases when 
the arm negotiates the sphere (Figure 6) while starts and 
remains low when the arm negotiates the cube (Figure 7). 
The fact that, at the end of the phase, the internal units tend 
to have the same activation states in the two cases shows 
that the classification is not accomplished on the basis of 
internal information extracted during the interaction 
between the arm and the object but rather on the basis of the 
final position of arm itself that, as claimed above, directly 
provides a clear indication of the category of the object with 
which the agent has previously interacted.  

3. Discussion 
Passive approaches to perception (e.g. Shapiro, 1987) 

assume that perception consists of the construction of a 
detailed representation of the external world. From this 
point of view the main challenge is that of transforming 
egocentric, incomplete, and noisy sensory information into 
an allocentric, complete, and precise representation of the 
external environment. To achieve this goal a large number 
of hard problems (in the case of vision, for example, infer 
3D surfaces from 2D images or handle occlusions) have to 
be solved. Perception thus typically involve an intensive 
static analysis of passively sampled data. Within this view, 
motor behavior (i.e. the interaction with the external world) 
is not viewed as an opportunity but rather as a problem to be 
controlled --- the result of the perceptual process should be 
as independent as possible from the behavior displayed by 
the agent during the collection of sensory data. 

 

 
 
Figure 5. Behavior of a typical evolved individual during an phase 
(150 cycles) in which the object consists of a sphere (left pictures) 
and of a cube (right pictures). For reason of space, the pictures 
show the position of the arm each 15 cycles. 
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Figure 6. Activation state of the neurons during the behavior 
shown in the left side of Figure 4 through out 150 cycles. The 
height with respect to the baseline represents the activation state of 
the unit. R1-R3 and E1-E3 represent the activation state of the 
motor units that control the rotation and the elevation respectively 
of the three corresponding joints. C is the classification unit (value 
below and above 0.5 corresponds to spherical and cubic objects 
respectively). H1 and H2 represent the activation state of the two 
internal neurons. r1-r3 and e1-e3 represent the activation state of 
the sensory neurons that encode the current rotation and elevation 
of the three corresponding segments. t1-t3 represent the activation 
state of the touch sensors located on the three corresponding 
segments. c is the copy of the C classification unit. 

 

Figure 7. Activation state of the neurons during the behavior 
shown in the left side of Figure 4 through out 150 cycles. See 
legend of Figure 6. 

Active approaches to perception (Bajcsy, 1988; Ballard, 
1991), on the contrary, assume that the outside world serves 
as its own, external, representation and perception consists 
in mastering the regularities arising from sensorimotor 
interactions. From this point of view perception is a way of 
acting or, in other words, an exploratory activity of the 
environment. As pointed out by O’Reagan (2001, pp. 3) 
perception consists in identifying “the structure of the rules 
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governing the sensory changes produced by various motor 
actions”. Within this view perception and action cannot be 
separated and the produced behavior plays a crucial role in 
the outcome of the perception process. 

From an engineering point of view active perception has 
several advantages. In many cases, solutions that exploit 
active perception, in fact, are much simpler than solutions 
that rely on passive approaches to perception (Bajcsy, 1988; 
Ballard, 1991; O’Reagan, 2001). In addition, active 
approaches, by not relying on a detailed internal 
representation of the external environment, are less affected 
by the problem of how to update such an internal 
representation when the environmental conditions change. 
On the other hand, active approaches require the designer to 
identify the appropriate behavior that in turn allows the 
agent to identify sensorimotor regularities that provide 
useful information. This task --- namely the identification of 
the appropriate way of interacting with the environment --- 
may be extremely difficult from the point of view of the 
designer given that, as we claimed in the introduction, 
behavior is the emergent result of the interaction between 
the agent and the environment. Therefore, from the point of 
view of the human designer that has to manually program 
the agent, the advantages of active perception might be 
counterbalanced by the difficulties of programming 
effective behaviors.  

As we showed in this paper, evolutionary techniques in 
which individual agents are selected on the basis of the 
overall behavior emerging from the interaction between 
their control system and the environment (Nolfi and 
Floreano, 2000) represent an effective way to develop 
systems that are able to exploit active perception and, at the 
same time, to release the designer from the burden of 
identifying and programming the appropriate exploratory 
behaviors. The fact that similar results have been obtained 
by evolving wheeled robots, provided with different sensory 
systems ranging from infrared sensors to visual cameras, 
asked to categorize different type of objects (Scheier, C. et 
al., 1998; Nolfi and Marocco, 2000; Nolfi 2002) 
demonstrates that the evolutionary method has a general 
validity and can be successfully applied to tackle different 
problems. 
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