
Active Preference Learning for
Personalized Calendar Scheduling Assistance

Melinda T. Gervasio
*
, Michael D. Moffitt

†
, Martha E. Pollack

†
,

Joseph M. Taylor
†
, Tomas E. Uribe

*

*
AI Center, SRI International

333 Ravenswood Ave.
Menlo Park, CA 94025
1-650-859-{4411,2444}

{melinda.gervasio,tomas.uribe}@sri.com

†
Computer Science & Engineering, Univ. of Michigan

1301 Beal Ave.
Ann Arbor, MI 48109

1-734-{763-1563, 615-8048}

{mmoffitt,pollackm,jmtz}@eecs.umich.edu

ABSTRACT

We present PLIANT, a learning system that supports adaptive
assistance in an open calendaring system. PLIANT learns user
preferences from the feedback that naturally occurs during
interactive scheduling. It contributes a novel application of active
learning in a domain where the choice of candidate schedules to
present to the user must balance usefulness to the learning module
with immediate benefit to the user. Our experimental results
provide evidence of PLIANT’s ability to learn user preferences
under various conditions and reveal the tradeoffs made by the
different active learning selection strategies.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning – parameter learning

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – scheduling

General Terms

Algorithms, Performance, Design, Experimentation, Human
Factors

Keywords

adaptive user interfaces, machine learning, active learning,
learning preferences

1. INTRODUCTION
Recent years have seen a surge in commercial calendaring systems
that focus on calendar sharing and display but leave most of the
decision-making responsibilities to the user. Meanwhile, the
research community has focused primarily on automation within
closed calendar systems [5], wherein a single global calendar is
maintained for all users and the sole consideration for meeting
scheduling is users’ availability. Because users generally prefer to

control their own calendars, such centralized solutions have not
always been easily accepted. Nonetheless, users may not want to
manage all aspects of scheduling, and might be happy to delegate
responsibility to a trusted assistant who knows their preferences.

In a long-running interactive application such as a calendar
assistant, learning user preferences and adapting over time has
numerous advantages over requiring the user to state a static set of
preferences up front. For example, the user need not specify
hypothetical preferences that never occur in practice, and the user
can correct and refine the existing preferences to reflect
circumstances that change over time. This is greatly facilitated if
the system can automatically learn these preferences, through
nonintrusive interaction with the user.

To support this, we have developed a scheduling system called
PTIME (Personal Time Manager) that provides adaptive
scheduling assistance within an open calendaring system [5]. In
PTIME, users maintain control of their own calendars, but are
assisted by scheduling tools that respect their preferences. This
paper presents PLIANT (Preference Learning through Interactive

Advisable Nonintrusive Training), the learning system that lets
PTIME adapt its scheduling assistance to individual user
preferences. Each time a user interacts with PTIME by making a
scheduling request, PTIME suggests a small set of alternative
solutions. An active learning component in PLIANT is
responsible for selecting these alternatives. The user’s choice of a
solution is then fed back to PLIANT, which uses it to
automatically update the preference profile.

2. PREVIOUS WORK
Machine learning techniques have been used to improve the
performance of autonomous scheduling systems (e.g., [9,20]).
However, much of the prior work has been aimed at learning more
efficient strategies for automated scheduling, where neither the
scheduling nor the learning process involves interaction with
humans. In contrast, PLIANT learns human preferences over
acceptable schedules, employing direct interaction with users.

PLIANT is thus more closely related to interactive scheduling
assistants such as CAP, CABINS, and INCA. The Calendar
Apprentice (CAP) [13] learns decision rules for predicting the
values of schedule attributes such as day, time, and location based
on other attributes such as meeting type and participants. CAP
facilitates the scheduling process by using its predictions to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’05, January 9–12, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-58113-894-6/05/0001...$5.00.

automatically fill in scheduling forms, the acceptance or
correction of which provides feedback to its learner. Instead of
breaking the problem into a sequence of piecewise predictions,
PLIANT suggests a small set of complete schedules to the user,
simplifying the user’s decision to one selection from options that
provide a global view. In addition, PLIANT employs active
learning to improve the learning rate.

CABINS is a revision-based job-shop scheduling system that uses
case-based learning to acquire user optimization preferences over
repair actions as well as repair outcomes [14]. CABINS was
designed for job-shop scheduling tasks in dynamic environments,
which favor repair-based methods to be able to continually adapt
the schedule to changing situations. In contrast, in the domain of
calendar scheduling, the primary task is one of incrementally
adding events to a user’s existing set of commitments, a problem
that requires a constructive approach such as that in PTIME.

INCA is a constructive scheduling system for developing
responses to hazardous materials (hazmat) incidents [8]. It uses
case-based reasoning to provide initial candidate schedules and
then iteratively refines the schedules through interaction with the
user. Like PLIANT, INCA learns a schedule evaluation function
based on user selections from suggested candidates. But while
INCA’s problem domain involves the construction of a
completely new schedule for every new hazmat incident,
PLIANT’s calendar management domain involves a continually
evolving schedule as new meetings are added over time.

3. ADAPTIVE ASSISTANCE IN PTIME

Figure 1. PTIME architecture.

PLIANT works within the PTIME scheduling assistant, whose
architecture is shown in Figure 1. PLIANT is an active, online
learner: it treats every scheduling request as a learning
opportunity and updates the user profile after each scheduling
session. The Calendar Manager is a SPARK [15] procedural
reasoning module that manages the workflow involved in
handling event scheduling requests. The Calendar Manager
formulates a scheduling problem consisting of the new event
constraints and the user’s existing calendar. This is passed on to
the Constraint Reasoner (1), which generates the solution set
comprising all possible schedules satisfying the request. This
solution set is passed on to PLIANT (2), which uses the current
user preference profile (3) to rank the set of solution candidates
(4), from which a subset (presentation set) is shown to the user

(5). After the user schedules the event through the Calendar
Manager, whether by selecting one of the presented candidates or
scheduling the event manually, the decision is passed on to
PLIANT (6), which uses the feedback to update the preference
profile (7). By keeping the presentation set small and making sure
it contains preferred options, PLIANT can provide more useful
assistance. PLIANT thus has two main components: a preference

learner, which induces the preference profile from the user’s
scheduling choices, and an active learner, which decides upon the
scheduling alternatives to present.

3.1 Scheduling Problem
We cast the event scheduling problem as a standard constraint
satisfaction problem, represented by

• a set of variables {day, start, dur}

• for each variable, a domain specifying its possible values

• Dday = {mon, tue, wed, thu, fri}

• Dstart = [12:00am,11:59pm]

• Ddur = (0,1440]min

• a set of constraints on one or more variables, where1

• constraints on day are Boolean relations (e.g., (day = mon),

(day ≠ tue)),

• constraints on start and dur are linear inequalities (e.g., (start

≥ 10:00am), (60 ≤ dur ≤ 120min))

• constraints may be arbitrary logical combinations of other

constraints (e.g., ((day = mon) AND ((start ≥ 10:00am)) OR

(day ≠ mon))

Definition. A meeting is a 3-tuple 〈yday,ystart,ydur〉 such that yday ∈

Dday, ystart ∈ Dstart, and ydur ∈ Ddur.

Definition. A calendar is a set of meetings.

Definition. A scheduling problem (or meeting request) is a pair S

= 〈C,X〉, where C is a calendar and X is a set of constraints over

day, start, and dur. Given a scheduling problem, 〈C,X〉, we can
derive a set of implied constraints XS, representing the
requirement that the new meeting not overlap with any meetings
already in C.

Definition. A solution to a scheduling problem S = 〈C,X〉 is a

calendar C′ = C ∪ M, where M is a new meeting satisfying the

constraints X ∪ XS.

For example, if X = {(day = Monday OR Tuesday) AND (start ≥
10:00am) AND (dur = 60min)} and C = {{day = Monday, start =

1:00pm, dur = 60min}}, then C′ = C ∪ M is a solution if M =

〈Monday, 11:00am, 60min〉 but not if M = 〈Monday, 8:00am,

30min〉 (violates a constraint in X) or 〈Monday, 12:30pm, 60min〉
(violates a constraint in XS).

1 In this paper, we consider only these temporal constraints and
the scheduling of single meetings. In general, meetings can also
include constraints over nontemporal variables such as
participants and location as well as constraints involving
existing meetings; requests may involve multiple new meetings.

3.2 Schedule Representation
PLIANT models the user’s preferences as a schedule evaluation
function—specifically, a linear cost function over a set of features
that represents a candidate schedule. Given a scheduling problem

S = 〈C,X〉, PLIANT evaluates a candidate solution C′ = C ∪ M

both in terms of local features of M and global features of C′. In

both cases, we begin with basic features, which may take on any
of an arbitrary number of possible values. From each such feature,
we derive an equivalent set of Boolean variables: each set
represents the n possible values for an n-valued nominal feature
(e.g., day), or n nonoverlapping ranges of values for a numeric
feature (e.g., dur).

Table 1. Schedule evaluation features.

Local Features Equivalent Boolean Features

day of week mon, tue, wed, thu, fri

start time earlyam (8:00-9:59am), lateam
(10:00-11:59am), lunch (12:00-
12:59pm), earlypm (1:00-
2:59pm), latepm (3:00-4:59pm)

duration short (<60min), medium (60-

119min), long (≥ 120min)

Global Single Features

{short (<120min), medium

(120-179min), long (≥
180min)} meeting blocks

none (0%), few (1-25%), some
(26-75%), many (76-100]%)

{short, medium, long} free
blocks

none, few, some, many

{earlyam, lateam, lunch,
earlypm, latepm} meetings

none, few, some, many

{mon, tue, wed, thu, fri}
meetings

none, few, some, many

Global Feature

Combinations

{mon, tue, wed, thu, fri} ×
{earlyam, lateam, lunch,
earlypm, latepm} meetings

none, few, some, many

{short, medium, long}

meeting blocks × {mon,
tue, wed, thu, fri}

none, few, some, many

{short, medium, long} free

blocks × {mon, tue, wed,
thu, fri}

none, few, some, many

Because of the nature of the training data (see Section 4.1),
features are informative only if their values may differ between
candidate schedules for the same problem: for example, day and
location but not meeting type or agenda. Furthermore, we wanted
features that correspond directly to meeting properties or are
easily computable from the calendar. Table 1 summarizes the 297
features currently used (3 local features, 16 single global features,
and 55 global feature combinations). The local features capture
the temporal properties of a single meeting.2 Meanwhile the

2 While adding other single-valued features such as location
would have been straightforward, we limit the local features to
these as they are the only ones that will be available initially to
the deployed system.

global features characterize the distribution of meetings through
fragmentation (relative proportions of free and busy time), the
distribution of meetings over the day, and the distribution of
meetings over the days of the week. Finally, we designed feature
combinations that we felt captured the kinds of preferences people
tend to have over schedules—for example, a preference for late
afternoon meetings on Mondays or long blocks of free time on
Fridays.

3.3 Scheduling Assistance Problem
We can now formally define PTIME’s task of providing
personalized scheduling assistance.

Definition. Let D = {d1,d2,…,dn} be the set of derived Boolean

features representing a solution. The feature vector

representation of a solution C′ is the vector VC′ = 〈v1,v2,…,vn〉,
where vi = 0 (false) or 1 (true), representing an assignment of
values to the variables D.3

Definition. A schedule evaluation function is linear function fW,

associated with a real-valued vector W = 〈w1,w2,…,wn〉, wi∈ℜ,
where wi is the cost or weight associated with feature di. (In terms
of preferences, lower weight thus entails higher preference.)

Definition. The cost of a solution C′ according to a function W is

the dot product W⋅VC′. Since VC′ is a 0/1-valued vector, we have

W⋅VC′ = ∑i {wi. | vi≠0}.

We state PTIME’s performance task as the following

optimization problem: Given a scheduling problem S = 〈C,X〉 and

a schedule evaluation function fW, find a solution C′ = C ∪ M,

represented by the feature vector VC′, with minimum cost W⋅VC′.
We now turn our discussion to the acquisition of the schedule
evaluation function fW.

4. PREFERENCE LEARNING
PTIME’s task is to find the lowest-cost schedule according to a
schedule evaluation function. More accurately, it must find the
lowest-cost schedule according to the user’s unknown true
evaluation function. Thus, PLIANT’s learning task is to find the
schedule evaluation function that most closely approximates this
unknown target function.

4.1 Learning from Pairwise Preferences
PTIME assists users in scheduling events by presenting a list of
candidate schedules in response to a scheduling request. By
selecting one of these candidates or by manually scheduling the
event instead, the user naturally provides feedback regarding the
suggestions in the form of pairwise preferences. That is, the user’s
selection of a particular schedule indicates that user’s preference
for that schedule over all the others presented. Learning from
pairwise preferences has been successfully applied in a number of
domains (e.g., [6,8,10]). While feedback in the form of pairwise
preferences may not be as rich as the information that might be
obtained through utility elicitation methods, it is a much less

3 For any set of derived features Di corresponding to a basic

feature, at most one di ∈ Di has the value 1, since Di consists of
mutually exclusive values for the basic feature.

intrusive form of interaction that, we feel, supports more natural
user interfaces.

Learning from pairwise preferences can be achieved in at least
two ways. The first involves converting each pair into two
examples (a positive example indicating the correct preference
and a negative one indicating the reverse). Then any learning
algorithm associated with a separating hyperplane (e.g.,
perceptron, SVM) can be used to learn a binary classifier as in
[6,8]. Alternatively, within a support vector machine (SVM)
learning framework, the pairwise preferences can be converted to
constraints and added to the quadratic optimization function of a
standard SVM; PLIANT employs this approach, using the same
SVMlight ranker used in [10].

4.2 Learning Task
We formulate PLIANT’s learning problem as in [10],
characterizing the learning task as an optimization problem in the
space of ranking functions. Let (Vi,Vj) represent the preference of
schedule Vi over schedule Vj. We say that an evaluation function

fW is consistent with the pairwise preference (Vi,Vj) iff W⋅Vi ≤

W⋅Vj. Conversely, fW is inconsistent with (Vi,Vj) iff W⋅Vi > W⋅Vj.

Let Pk be the set of all pairwise preferences implied by the user’s
selection during the interaction to schedule the request Sk. Then

we can state PLIANT’s learning task as follows: Given the set of

pairwise preferences ∪(k=1..n)Pk, derived from the user’s
interactions over n scheduling sessions with PTIME, find a linear
cost function fW that produces the same pairwise preferences. That
is, find a weight vector W that is consistent with the maximum
number of constraints:

(V1i,V1j) ∈ P1 : W⋅V1j ≥ W⋅V1i
…

(Vni,Vnj) ∈ Pn : W⋅Vnj ≥ W⋅Vni

This is an NP-hard problem that can be approximated through the
addition of slack variables [10]. Intuitively, a (nonnegative) slack
variable represents the degree of satisfaction of a constraint; by
incorporating them into the objective function of a minimization
problem as additional terms to be minimized, we transform the
objective into a tractable one of finding a solution that maximally
satisfies the constraints.

Let ξijk be the slack variable introduced for the preference pair
(Vki,Vkj) of the set of pairwise preferences Pk resulting from
interaction k. Using the standard SVM learning problem
formulation, we can formally state PLIANT’s preference learning
task as follows:

Minimize: V(W,ξ) = ½ W⋅W + C ∑ξijk

Subject to:

(V1i,V1j) ∈ P1 : W⋅V1j ≥ W⋅V1i + 1 - ξ1ij

…

(Vni,Vnj) ∈ Pn : W⋅Vnj ≥ W⋅Vni + 1 - ξnij

∀i∀j∀k : ξijk ≥ 0

Here we have chosen to use an SVM formulation that limits
PLIANT to learning linear preference functions. Were we to allow
nonlinear kernels, PLIANT could automatically explore arbitrary
feature combinations in a higher-dimensional space, but at
significantly higher computational cost. More importantly, the use

of more complex kernels would reduce visibility into the learned
model: the resulting user model would not explicitly specify
which combinations of features are particularly important to the
user. So, we instead advocate designing the feature vector to
explicitly include certain feature combinations (see Table 1) and
learning simpler linear functions.

4.3 Initializing Preferences
While it is important for PTIME to be able to learn from
unobtrusively gathered data, as an interactive assistant it must also
be able to learn from direct user instruction. We have thus
designed PTIME to be able to take direct advice regarding
scheduling preferences. Each of the binary variables in Table 1
corresponds to an easily specifiable preference—for example, “I
like meetings on Tuesdays” or “I like to have long blocks of free
time”. We incorporate such explicit preferences into the learned
model by converting them into an equivalent set of pairwise
preferences.4 Learned preferences will take precedence over
explicit preferences in that the training examples PLIANT
acquires over time will eventually overwhelm these initial pseudo-
examples. This is not necessarily a bad property in that human
users are notoriously bad at elaborating their own utility
functions. In the future, however, we may explore more
sophisticated methods for combining explicit preferences with
inductively learned preferences [e.g., 7] to address other situations
such as users always wanting their explicitly stated preferences to
take precedence, or users radically revising their preferences
because of external factors such as semester breaks or
organizational changes.

5. ACTIVE LEARNING
In the preceding section, we discussed how the user’s selection
from a set of candidate schedules can be used to generate pairwise
preferences for training the preference learner. If our sole
objective were to learn the user’s preferences as quickly as
possible, we could maximize the training examples by presenting
the user with all possibilities or even requesting a complete
ranking over them. However, such an approach would make
interaction with PTIME so unwieldy that users would be likely to
resort to manual scheduling. Instead, to balance the demands of
maximizing learning while remaining beneficial to the user,
PLIANT relies on active learning [2,11,19] to determine which
candidates from the solution set to present to the user. There are
several constraints on the presentation set:

• It must be limited in size, to avoid overwhelming the user.

• It must be responsive to a particular meeting request; PLIANT
cannot simply engage the user in hypothetical scheduling
problems, just to increase its knowledge.

• It must include at least some relatively good solutions;
otherwise it provides no value over manual scheduling.

These features arise from the fact that PLIANT is not a stand-
alone learning system but instead is tightly integrated with a larger

4 Because our current SVM learning algorithm is not incremental,
we cannot use the explicit preferences to directly set the initial
profile weights. Our future plans include transitioning to an
incremental algorithm.

system, and they distinguish the active learner in PLIANT from
most other applications of active learning, which are typically
concerned only with finding the most informative examples (e.g.,
[2,4,12,16]). To address these constraints, we explored a variety

of both undirected and directed selection schemes [19] (Table 2).

Table 2. Active learning selection schemes.

Undirected Schemes Directed Schemes

Random Max Diversity

Random + Best Max Diversity + Best

Best N Max Novelty

є-greedy Max Novelty + Best

5.1 Undirected Methods
The simplest undirected method available is to select candidates
from the solution set with a uniformly random probability
(Random). Such a technique performs pure exploration without

any exploitation. A slight modification is to seed the presentation
set by having it include the meeting currently believed to be the
best option (Random + Best). A third technique is to greedily
choose the schedules that the learner currently believes to be the
best (Best N). Such a selection policy makes complete use of
exploitation, and only explores the solution space “accidentally”
when a random problem forces it into an unexplored area.

A hybrid of random and greedy techniques, called the є-greedy
algorithm, chooses with probability 1 – є a solution believed to be
optimal, and otherwise chooses a random meeting, iterating this
process until the required number of candidates has been selected.
This selection policy, inspired by techniques in reinforcement
learning, attempts to balance exploration and exploitation.

5.2 Directed Methods
Directed methods differ from undirected methods in that they
utilize either domain-specific knowledge or information about the
search performed thus far. One such policy presents the user with
a diverse sampling of all the potential solutions. In the context of
PTIME, in which the candidate solutions are meetings represented
with binary features, a natural way to measure diversity is to count
the number of features where two meetings differ in value. Using
this metric, one could choose a subset of meetings that maximizes
the total distance over all meetings in the set:

()∑∑
= =

n

x

n

y

yx meetingmeetingdist
1 1

,

Unfortunately, performing this selection requires the evaluation of
every possible subset of size n, a task that is exponential in the
size of solution set, which can easily contain well over a hundred
solutions. A greedy approximation to this technique can be found
by iteratively populating the presentation set with one meeting
after another, each time maximizing the total distance between the
new meeting and all previously chosen meetings. The first
meeting included can be chosen at random (Max Diversity) or can
be the solution currently ranked highest (Max Diversity + Best)).

An alternative directed approach (Max Novelty) presents options
unlike those that the user has already seen. It keeps track of how
many times each feature value has been shown to the user. When
determining which solutions to include in the presentation set, it

evaluates each meeting by counting the number of Boolean
features that are present (i.e., are equal to one) and that have not
been present in any previously presented candidate, and selects
the meetings with the smallest counts. A seeded variation (Max

Novelty + Best) includes the current best meeting in the
presentation set.

6. EXPERIMENTS
The first complete implementation of PTIME will be deployed in
early 2005, at which time PLIANT will be evaluated in actual use
by real users. In preparation for the deployed system, we
evaluated PLIANT on synthetic users within a simulated
environment. There are, of course, limitations to doing testing
with simulated users. For example, how well our results translate
to actual performance depends on whether real users exhibit
similar preference patterns. The degree to which users will be
influenced to choose a candidate from the presentation set,
regardless of its absolute desirability, is also an empirical
question. However, testing within a simulated environment
provides us with a way to perform an initial evaluation of our
approach prior to the availability of a complete system. It provides
us with a way to validate our design decisions regarding the user
interaction while also testing hypotheses about the effects of
different factors on learning performance.

6.1 Experimental Setup
We designed our experiments to verify PLIANT’s ability to learn
from users’ interactions with PTIME. We also aimed to
investigate the effects of the different active learning selection
strategies on PLIANT’s performance and to explore the effects of
certain design decisions such as presentation set size and the
reliance on implicit pairwise preferences, as opposed to complete
rankings. Our resulting experimental setup is shown in Table 3.

Table 3. Basic experiment.

To test PLIANT’s basic adaptation ability, we created 50 random
linear evaluation functions representing synthetic users and
devised three user types based on the number of preexisting
meetings they have in a week: heavily committed (18 meetings),

learnOnline(target,utype,exprefs,select,feedback,show) {
 // where target = target profile
 // utype = user type
 // exprefs = explicit preferences
 // select = active learning selection strategy
 // feedback = feedback type
 // show = #candidates shown to user
 FOR cycle = 1 to 50
 profile = initProfile(exprefs)
 problem = getProblem(target,utype,cycle)
 solutions = generateAllSolutions(problem)
 presentset = selectPresentSet(profile,solutions,show)
 evaluateLearning(profile,target,solutions)
 newtrain = trainingData(target,solutions,feedback)
 profile = updateProfile(profile,newtrain)
 END FOR
}

moderately committed (9), and lightly committed (3).5 We used
these to test the active learning strategies presented in Table 2.

We also used these experiments to validate our design choices. To
verify that incorporating explicit preferences would benefit
learning, we looked at three conditions: no explicit preferences,
some (specify ¼ of features indicating the strongest preferences),
and many (½ of features). To determine the effects of limiting our
presentation set size to 5 candidates, we compared it to
performance with 10 and 25 candidates (both of which we felt
would be infeasible for real use). We also suspect that users are
likely to limit their decision to the presented set and so we
compared this to the condition of users selecting their true best
schedule overall. Finally, to measure the usefulness of learning
from a single selection among a set of candidates, we compared it
to learning from complete ranking.

To simulate online learning, we ran each simulated user over a
sequence of 50 randomly generated scheduling problems. In
generating problems, we created calendars biased toward meetings
that respect the target preference function and then created new
meeting requests with randomly selected constraints for day, time,
and duration. The solution sets ranged from a mean of 36.89 (high
of 137) in the heavy commitment case to 62.90 (high of 181) in
the light commitment case. After the solution set was generated
for each problem, we then simulated user feedback using the
target profile and updated the learned profile accordingly.

6.2 Evaluation Metrics
We use two sets of evaluation criteria to measure how well
PLIANT learns user preferences and to measure the desirability of
the presented candidates.

Quality of Learned Profile: To measure how accurately the
learned model represents the target preference function, we
compute a modified Euclidean distance measure that directly
compares the preference functions.6 Lower values indicate closer
correlation. Since we are learning a ranking function, we also use
Spearman’s rank correlation coefficient, a standard statistical
measure for the similarity between two rankings—in our case, the
rankings induced by the learned and target functions on the entire
solution set.

Quality of Presentation Set: To be useful, PLIANT must present
desirable schedules—that is, schedules ranked highly according to
the target function. To capture the quality of the presentation set,
we rank the entire solution set according to the target function and
then compute the best rank and the average rank of members of
the presentation set. Both range from 0 (highest rank) to the size
of the solution set (lowest rank).

5 A similar previous experiment with synthetic users [8] showed
that nonlinear target functions and targets using features
unknown to the learner can also be approximated using linear
models at the cost of somewhat degraded learning performance.

6 The modification involves normalizing the preference vector for
the learned model, to eliminate linear scaling effects. Within our
space of target preference vectors, this measure has an upper
bound of 86.17.

6.3 Discussion of Experimental Results
We now turn the discussion to our experimental results, although
space restrictions limit detailed presentation to only a subset of
our findings. We hypothesized that directed selection schemes
would result in faster learning than undirected ones since they are
designed specifically to maximize exploration. However, the
results generally did not bear this out. For instance, for lightly
committed users, when there was a clear difference, the best
strategy was often undirected (Random or Greedy) (Table 4).7
Why did the undirected strategies outperform the directed ones? A
possible explanation is that this results from the nature of learning
from pairwise preferences. One may actually learn more from
pairs that are very close to one another than from pairs that are
quite different, because the former highlight fine-grained
differences, while the latter are likely not to be very revealing
once a reasonable hypothesis has been obtained. The directed
learning schemes that we studied (Max Diversity and Max

Novelty) are designed precisely to generate sets in which the
differences are maximal.

Table 4. Euclidean distance and Spearman’s correlation after

fifty scheduling sessions for different strategies (light

commitment, no explicit preferences, presentation set size 5).8

 select from presentation set select best schedule overall

 unseeded seeded unseeded seeded

 Euc Sp Euc Sp Euc Sp Euc Sp

Rand 47.01 0.82 47.14 0.75 47.04 0.76 47.00 0.78

MaxDiv 47.07 0.80 47.16 0.75 47.02 0.77 47.00 0.78

MaxNov 47.13 0.77 47.21 0.70 47.08 0.73 47.01 0.77

Greedy 47.13 0.72 47.12 0.68 46.99 0.76 46.98 0.77

The data in Table 4 reflects another interesting and unexpected
influence. When the user chooses from the presentation set,
unseeded selection schemes (i.e., those that do not necessarily
include the current best candidate) tend to result in better
learning. But when the user selects the best schedule overall, the
seeded strategies tend to outperform the others. This observation
can be explained as follows. As the learned model improves, the
current best solution is likely to have some features in common
with the one that would actually be ranked best overall by the
target function. If the user always chooses from a seeded
presentation set, there is a good chance that the user will select the
current best candidate, and PLIANT thus will learn very little;
after all, the selected candidate was already ranked higher than all
the other elements of the set. In contrast, if the set is not seeded,
we are more likely to gain new information from the relative
ranking of the set members. Now consider the case in which the
user goes outside the presentation set, always selecting the best
schedule overall. If the presentation set is seeded, we gain a great
deal of fine-grained information, because the selection expresses a
pairwise comparison between the actual best and the current best
hypothesis. But if the presentation set is unseeded, this useful

7 At higher levels of commitment, the results were similar but less
pronounced.

8 Seeded refers to the *+Best strategies. For simplicity, we use

Greedy Unseeded to denote the ε-greedy selection strategy and
Greedy Seeded to denote the Best N selection strategy. All
results are averaged over the last five scheduling sessions.

comparison will not be expressed unless, by chance, the
presentation set includes the current best candidate.

Not surprisingly, seeded strategies—in particular, Best N (Greedy

Seeded)—result in schedules with much higher average rank
being presented to the user (Figure 2). Note that the difference is
less pronounced early in the learning curves. That is, before a
good user model has been learned, the other strategies are more
likely to present schedules of similar rank as the greedy strategies.
In addition, however, they present the user with a variety of
options, something that may actually be more desirable early on,
before a good user model has been learned.

5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

OF SCHEDULING INTERACTIONS

A
V

E
R

A
G

E
 R

A
N

K
 I
N

 P
R

E
S

E
N

T
A

T
IO

N
 S

E
T

RANDOM
RANDOM + BEST
MAX DIVERSITY
MAX DIVERSITY + BEST
MAX NOVELTY
MAX NOVELTY + BEST
EPSILON GREEDY
BEST N

Figure 2. Average rank of presented candidates for different

selection schemes (light commitment, presentation set size 5).9

In designing PLIANT, we decided to incorporate explicit
preferences, and our experiments revealed dramatic improvement
from incorporating such preferences, stressing the importance of
using them when available (Table 5). We also decided to keep the
presentation set small (5 candidates) both to let them be presented
all at once and because we felt many users will not be willing to
consider more than a handful of candidates at a time. Not
surprisingly, given that a larger presentation set produces more
training examples, the results did show that larger presentation
sets improve performance (Table 6). However, preferences could
still be effectively learned, even with small presentation sets. Our
final design decision was to use as training data only the pairwise
preferences implicit in a user’s selection of one schedule from a
set of suggestions, rather than to require a complete ranking of the
presentation set from the user. The results show that while using
feedback in the form of a complete ranking improves
performance, it would do so greatly only for large presentation set
sizes (Figure 3). This is particularly encouraging, since it shows
that natural, unobtrusive user feedback can be nearly as effective
as other techniques that require significantly more effort on behalf
of the user.

9 To control for the large variance in solution set sizes, which
affects the rank-based metrics, we average the results every five
scheduling sessions. Results for other conditions as well as for
the other metrics (top rank and selection outside the
presentation set) were consistent.

Table 5. Results for different explicit preferences conditions

(moderate commitment, Greedy selection, presentation set size

5, selection from presentation set).

 Euclidean Spearman’s Ave. Rank Top Rank

 start end start end start end start end

none 47.38 46.86 0.35 0.70 18.38 4.82 9.41 0.31

some 45.63 45.39 0.74 0.81 7.16 3.73 1.76 0.24

many 45.04 44.85 0.80 0.85 5.92 3.58 1.09 0.18

Table 6. Euclidean distance and Spearman's correlation after

fifty scheduling sessions for different feedback conditions

(moderate commitment, Best N (Greedy Seeded) selection).10

 5 10 25

 Euc Sp Euc Sp Euc Sp

present 47.03 0.70 46.89 0.75 46.82 0.78

candidate 46.86 0.74 46.80 0.78 46.78 0.79

rank 46.94 0.76 46.62 0.88 46.32 0.96

0 10 20 30 40 50
46.2

46.4

46.6

46.8

47

47.2

47.4

47.6

OF SCHEDULING INTERACTIONS

E
U

C
L

ID
E

A
N

 D
IS

T
A

N
C

E
 M

E
T

R
IC

SHOW 5, PICK FROM PRESENTATION SET
SHOW 5, PICK BEST OVERALL
SHOW 5, RANK ENTIRE PRESENTATION SET
SHOW 25, PICK FROM PRESENTATION SET
SHOW 25, PICK BEST OVERALL
SHOW 25, RANK ENTIRE PRESENTATION SET

Figure 3. Euclidean distance for different feedback conditions

(moderate commitment, greedy selection).

7. CONCLUSIONS AND FUTURE WORK
We have presented an open calendaring system that manages the
trade-off between providing immediate benefit to its users and
learning their scheduling preferences in an unobtrusive manner.
Overall, our experimental results provide at least initial evidence
that unobtrusive yet efficient learning of scheduling preferences is
feasible. Learning occurs even when users are presented with
relatively small presentation sets, from which they select a single
option (as opposed to doing a complete ranking). Explicit
preferences can be incorporated, and, when accurate, do further
speed up learning. Finally, and interestingly, simple, undirected
methods for selecting candidates to present to the user seem to be
quite effective.

In early 2005, we will be evaluating PTIME in actual use by real
users. The results from this evaluation will naturally help in
developing succeeding versions of the system by informing a

10These are consistent with the results for other selection
strategies and commitment levels.

number of issues, including the feature engineering effort, the
design of the user interaction, and the learning approach. It should
also help us devise better simulated experiments, which will
remain useful as a method for carrying out initial studies of new
functionalities or techniques prior to actual deployment.

PLIANT’s active learning strategies currently involve a post-hoc
selection over generated candidates based on evaluation according
to the profile. We plan to investigate approaches that instead drive
the generation of candidates directly from the learned profile (e.g.,
[18]), which should lead to more efficient candidate generation
and, potentially, faster learning. Also, while PLIANT is an online
learner, it is not an incremental one: it relearns a user model on all
previous examples after every scheduling session. By converting
PLIANT to an incremental learner, we expect to accommodate
more direct weight initialization as well as provide better online
computational properties.

The work described in this paper addresses the problem of
learning preferences primarily for underconstrained situations,
where multiple feasible options are available. A potentially more
interesting problem is that of learning preferences in
overconstrained settings, which will require relaxing the
scheduling constraints or rescheduling previous commitments. We
are currently pursuing this issue along various fronts, including
extending the feature set to capture partial constraint satisfaction,
and learning procedures and strategies for resolving schedule
conflicts.

Finally, there is the issue of nonstationary preferences. The
calendar domain presents the problem not just of concept drift
(gradually changing preferences) but also of concept shift
(abruptly changing preferences) [13]. Simple techniques such as
keeping a sliding window of training data may be sufficient for
dealing with the former. However, addressing the latter will
require the rapid detection of the start of a shift or even the
prediction of an impending change. This problem remains an area
for future work but one possibility is to cast this as a dynamic
exploration/exploitation tradeoff and revisit active learning within
this setting.

8. ACKNOWLEDGMENTS
We thank Pauline Berry and Kenneth Nitz for fruitful
collaboration and discussions on PTIME, and the anonymous
reviewers for their helpful comments and suggestions. This
material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
NBCHD030010. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the DARPA
or the Department of Interior-National Business Center (DOI-
NBC).

9. REFERENCES
1. Berry, P. M, Gervasio, M., Uribe, T. E., Myers, K., & Nitz, K.

(2004). A personalized calendar assistant. Working Notes of

the AAAI Spring Symposium on Interaction between Humans

and Autonomous Systems over Extended Operation.

2. Cohn, D., Ghaharamani, Z., & Jordan, M. I. (1994). Active
learning with statistical models. Advances in Neural

Information Processing Systems 7.

3. Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to

Support Vector Machines. Cambridge University Press.

4. Engelbrecht, A. P. (2001). Selective learning for multilayer
feedforward neural networks. Fundamenta Informaticae, 45.

5. Ephrati, E., Zlotkin, G., & Rosenschein, J.S. (1994). A non
manipulable meeting scheduling system. Proceedings of the

13th International Distributed AI Workshop. Seattle, WA.

6. Fiechter, C.-N. & Rogers, S. (2000). Learning subjective
functions with large margins. Proceedings of the Seventeenth

International Conference on Machine Learning, 287-294.

7. Fung, G., Mangasarian, O. L., & Shavlik, J. (2002).
Knowledge-based support vector machine classifiers.
Advances in Neural Information Processing Systems 15.

8. Gervasio, M., Iba, W., & Langley, P. (1999). Learning user
evaluation functions for adaptive scheduling assistance.
Proceedings of the Sixteenth International Conference on

Machine Learning, 152-161.

9. Gratch, J. & Chien, S. (1996). Adaptive problem-solving for
large-scale scheduling problems: a case study. Journal of

Artificial Intelligence Research, 4:365-396.

10. Joachims, T. (2002). Optimizing search engines using
clickthrough data. Proceedings of the ACM Conference on

Knowledge Discovery and Data Mining.

11. Kiefer, J. (1959). Optimum experimental designs. J. R. Stat.

Soc., series B, 21:272-304.

12. MacKay, D. J. C. (1992). Information-based objective
functions for active data selection. Neural Computation, 4 (4):
590-604.

13. Mitchell, T. M., Caruana, R., Freitag, D., McDermott, J., &
Zabowski, D. (1994). Experience with a learning personal
assistant. Communications of the ACM 37 (7):80-91.

14. Miyashita, K. & Sycara, K. (1995). CABINS: a framework of
knowledge acquisition and iterative revision for schedule
improvement and reactive repair. Artificial Intelligence, 76.

15. Morley, D. & Myers, K. (2004). The SPARK agent
framework. Proceedings of the Third International Joint

Conference on Autonomous Agents and Multi Agent Systems.

16. Murphy, K. P. (2003). Active learning of causal Bayes net
structure. Proceedings of the 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.

17. Sandip, S. & Durfee, E.H. (1998). A formal study of
distributed meeting scheduling. Group Decision and

Negotiation, 7:265-298.

18. Tong, S. & Koller, D. (2000). Support vector machine active
learning with applications to text classification. Proceedings

of the 17th International Conference on Machine Learning.

19. Thrun, S.B. (2002). The role of exploration in learning
control. Neural Networks, 15 (4):665-687.

20. Zhang, W. & Dietterich, T. (1995). A reinforcement learning
approach to job-shop scheduling. Proceedings of the 14th

International Joint Conference on Artificial Intelligence.

