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ABSTRACT 

We present PLIANT, a learning system that supports adaptive 
assistance in an open calendaring system. PLIANT learns user 
preferences from the feedback that naturally occurs during 
interactive scheduling. It contributes a novel application of active 
learning in a domain where the choice of candidate schedules to 
present to the user must balance usefulness to the learning module 
with immediate benefit to the user. Our experimental results 
provide evidence of PLIANT’s ability to learn user preferences 
under various conditions and reveal the tradeoffs made by the 
different active learning selection strategies.  

Categories and Subject Descriptors 

I.2.6 [Artificial Intelligence]: Learning – parameter learning 

I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – scheduling 

General Terms 

Algorithms, Performance, Design, Experimentation, Human 
Factors 

Keywords 

adaptive user interfaces, machine learning, active learning, 
learning preferences 

1. INTRODUCTION 
Recent years have seen a surge in commercial calendaring systems 
that focus on calendar sharing and display but leave most of the 
decision-making responsibilities to the user. Meanwhile, the 
research community has focused primarily on automation within 
closed calendar systems [5], wherein a single global calendar is 
maintained for all users and the sole consideration for meeting 
scheduling is users’ availability. Because users generally prefer to 

control their own calendars, such centralized solutions have not 
always been easily accepted. Nonetheless, users may not want to 
manage all aspects of scheduling, and might be happy to delegate 
responsibility to a trusted assistant who knows their preferences. 

In a long-running interactive application such as a calendar 
assistant, learning user preferences and adapting over time has 
numerous advantages over requiring the user to state a static set of 
preferences up front. For example, the user need not specify 
hypothetical preferences that never occur in practice, and the user 
can correct and refine the existing preferences to reflect 
circumstances that change over time. This is greatly facilitated if 
the system can automatically learn these preferences, through 
nonintrusive interaction with the user. 

To support this, we have developed a scheduling system called 
PTIME (Personal Time Manager) that provides adaptive 
scheduling assistance within an open calendaring system [5]. In 
PTIME, users maintain control of their own calendars, but are 
assisted by scheduling tools that respect their preferences. This 
paper presents PLIANT (Preference Learning through Interactive 

Advisable Nonintrusive Training), the learning system that lets 
PTIME adapt its scheduling assistance to individual user 
preferences. Each time a user interacts with PTIME by making a 
scheduling request, PTIME suggests a small set of alternative 
solutions. An active learning component in PLIANT is 
responsible for selecting these alternatives. The user’s choice of a 
solution is then fed back to PLIANT, which uses it to 
automatically update the preference profile. 

2. PREVIOUS WORK 
Machine learning techniques have been used to improve the 
performance of autonomous scheduling systems (e.g., [9,20]). 
However, much of the prior work has been aimed at learning more 
efficient strategies for automated scheduling, where neither the 
scheduling nor the learning process involves interaction with 
humans. In contrast, PLIANT learns human preferences over 
acceptable schedules, employing direct interaction with users.  

PLIANT is thus more closely related to interactive scheduling 
assistants such as CAP, CABINS, and INCA. The Calendar 
Apprentice (CAP) [13] learns decision rules for predicting the 
values of schedule attributes such as day, time, and location based 
on other attributes such as meeting type and participants. CAP 
facilitates the scheduling process by using its predictions to 
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automatically fill in scheduling forms, the acceptance or 
correction of which provides feedback to its learner. Instead of 
breaking the problem into a sequence of piecewise predictions, 
PLIANT suggests a small set of complete schedules to the user, 
simplifying the user’s decision to one selection from options that 
provide a global view. In addition, PLIANT employs active 
learning to improve the learning rate. 

CABINS is a revision-based job-shop scheduling system that uses 
case-based learning to acquire user optimization preferences over 
repair actions as well as repair outcomes [14]. CABINS was 
designed for job-shop scheduling tasks in dynamic environments, 
which favor repair-based methods to be able to continually adapt 
the schedule to changing situations. In contrast, in the domain of 
calendar scheduling, the primary task is one of incrementally 
adding events to a user’s existing set of commitments, a problem 
that requires a constructive approach such as that in PTIME. 

INCA is a constructive scheduling system for developing 
responses to hazardous materials (hazmat) incidents [8]. It uses 
case-based reasoning to provide initial candidate schedules and 
then iteratively refines the schedules through interaction with the 
user. Like PLIANT, INCA learns a schedule evaluation function 
based on user selections from suggested candidates. But while 
INCA’s problem domain involves the construction of a 
completely new schedule for every new hazmat incident, 
PLIANT’s calendar management domain involves a continually 
evolving schedule as new meetings are added over time. 

3. ADAPTIVE ASSISTANCE IN PTIME 

 

Figure 1. PTIME architecture. 

PLIANT works within the PTIME scheduling assistant, whose 
architecture is shown in Figure 1. PLIANT is an active, online 
learner: it treats every scheduling request as a learning 
opportunity and updates the user profile after each scheduling 
session. The Calendar Manager is a SPARK [15] procedural 
reasoning module that manages the workflow involved in 
handling event scheduling requests. The Calendar Manager 
formulates a scheduling problem consisting of the new event 
constraints and the user’s existing calendar. This is passed on to 
the Constraint Reasoner (1), which generates the solution set 
comprising all possible schedules satisfying the request. This 
solution set is passed on to PLIANT (2), which uses the current 
user preference profile (3) to rank the set of solution candidates 
(4), from which a subset (presentation set) is shown to the user 

(5). After the user schedules the event through the Calendar 
Manager, whether by selecting one of the presented candidates or 
scheduling the event manually, the decision is passed on to 
PLIANT (6), which uses the feedback to update the preference 
profile (7). By keeping the presentation set small and making sure 
it contains preferred options, PLIANT can provide more useful 
assistance. PLIANT thus has two main components: a preference 

learner, which induces the preference profile from the user’s 
scheduling choices, and an active learner, which decides upon the 
scheduling alternatives to present. 

3.1 Scheduling Problem 
We cast the event scheduling problem as a standard constraint 
satisfaction problem, represented by 

• a set of variables {day, start, dur} 

• for each variable, a domain specifying its possible values 

• Dday = {mon, tue, wed, thu, fri} 

• Dstart = [12:00am,11:59pm] 

• Ddur = (0,1440]min 

• a set of constraints on one or more variables, where1 

• constraints on day are Boolean relations (e.g., (day = mon), 

(day ≠ tue)), 

• constraints on start and dur are linear inequalities (e.g., (start 

≥ 10:00am), (60 ≤ dur ≤ 120min))  

• constraints may be arbitrary logical combinations of other 

constraints (e.g., ((day = mon) AND ((start ≥ 10:00am)) OR 

(day ≠ mon)) 

Definition. A meeting is a 3-tuple 〈yday,ystart,ydur〉 such that yday ∈ 

Dday, ystart ∈ Dstart, and ydur ∈ Ddur. 

Definition. A calendar  is a set of meetings. 

Definition. A scheduling problem (or meeting request) is a pair S 

= 〈C,X〉, where C is a calendar and X is a set of constraints over 

day, start, and dur. Given a scheduling problem, 〈C,X〉, we can 
derive a set of implied constraints XS, representing the 
requirement that the new meeting not overlap with any meetings 
already in C. 

Definition. A solution to a scheduling problem S = 〈C,X〉 is a 

calendar C′ = C ∪ M, where M is a new meeting satisfying the 

constraints X ∪ XS. 

For example, if X = {(day = Monday OR Tuesday) AND (start ≥ 
10:00am) AND (dur = 60min)} and C = {{day = Monday, start = 

1:00pm, dur = 60min}}, then C′ = C ∪ M is a solution if M = 

〈Monday, 11:00am, 60min〉 but not if M = 〈Monday, 8:00am, 

30min〉 (violates a constraint in X)  or 〈Monday, 12:30pm, 60min〉 
(violates a constraint in XS). 

                                                                 

1 In this paper, we consider only these temporal constraints and 
the scheduling of single meetings. In general, meetings can also 
include constraints over nontemporal variables such as 
participants and location as well as constraints involving 
existing meetings; requests may involve multiple new meetings. 



3.2 Schedule Representation 
PLIANT models the user’s preferences as a schedule evaluation 
function—specifically, a linear cost function over a set of features 
that represents a candidate schedule. Given a scheduling problem 

S = 〈C,X〉, PLIANT evaluates a candidate solution C′ = C ∪ M 

both in terms of local features of M and global features  of C′. In 

both cases, we begin with basic features, which may take on any 
of an arbitrary number of possible values. From each such feature, 
we derive an equivalent set of Boolean variables: each set 
represents the n possible values for an n-valued nominal feature 
(e.g., day), or n nonoverlapping ranges of values for a numeric 
feature (e.g., dur). 

Table 1. Schedule evaluation features. 

Local Features Equivalent Boolean Features 

day of week mon, tue, wed, thu, fri 

start time earlyam (8:00-9:59am), lateam 
(10:00-11:59am), lunch (12:00-
12:59pm), earlypm (1:00-
2:59pm), latepm (3:00-4:59pm) 

duration short (<60min), medium (60-

119min), long (≥ 120min) 

Global Single Features  

{short (<120min), medium 

(120-179min), long (≥ 
180min)} meeting blocks 

none (0%), few (1-25%), some 
(26-75%), many (76-100]%) 

{short, medium, long} free 
blocks 

none, few, some, many 

{earlyam, lateam, lunch, 
earlypm, latepm} meetings 

none, few, some, many 

{mon, tue, wed, thu, fri} 
meetings 

none, few, some, many 

Global Feature 

Combinations 

 

{mon, tue, wed, thu, fri} × 
{earlyam, lateam, lunch, 
earlypm, latepm} meetings 

none, few, some, many 

{short, medium, long} 

meeting blocks × {mon, 
tue, wed, thu, fri} 

none, few, some, many 

{short, medium, long} free 

blocks × {mon, tue, wed, 
thu, fri} 

none, few, some, many 

 
Because of the nature of the training data (see Section 4.1), 
features are informative only if their values may differ between 
candidate schedules for the same problem: for example, day and 
location but not meeting type or agenda. Furthermore, we wanted 
features that correspond directly to meeting properties or are 
easily computable from the calendar. Table 1 summarizes the 297 
features currently used (3 local features, 16 single global features, 
and 55 global feature combinations). The local features capture 
the temporal properties of a single meeting.2 Meanwhile the 

                                                                 

2 While adding other single-valued features such as location 
would have been straightforward, we limit the local features to 
these as they are the only ones that will be available initially to 
the deployed system.  

global features characterize the distribution of meetings through 
fragmentation (relative proportions of free and busy time), the 
distribution of meetings over the day, and the distribution of 
meetings over the days of the week. Finally, we designed feature 
combinations that we felt captured the kinds of preferences people 
tend to have over schedules—for example, a preference for late 
afternoon meetings on Mondays or long blocks of free time on 
Fridays. 

3.3 Scheduling Assistance Problem 
We can now formally define PTIME’s task of providing 
personalized scheduling assistance. 

Definition. Let D = {d1,d2,…,dn} be the set of derived Boolean 

features representing a solution. The feature vector 

representation of a solution C′ is the vector VC′ = 〈v1,v2,…,vn〉, 
where vi = 0 (false) or 1 (true), representing an assignment of 
values to the variables D.3 

Definition. A schedule evaluation function is linear function fW, 

associated with a real-valued vector W = 〈w1,w2,…,wn〉, wi∈ℜ, 
where wi is the cost or weight associated with feature di. (In terms 
of preferences, lower weight thus entails higher preference.) 

Definition. The cost of a solution C′ according to a function W is 

the dot product W⋅VC′. Since VC′ is a 0/1-valued vector, we have 

W⋅VC′ = ∑i {wi. | vi≠0}. 

We state PTIME’s performance task as the following 

optimization problem: Given a scheduling problem S = 〈C,X〉 and 

a schedule evaluation function fW, find a solution C′ = C ∪ M, 

represented by the feature vector VC′, with minimum cost W⋅VC′. 
We now turn our discussion to the acquisition of the schedule 
evaluation function fW. 

4. PREFERENCE LEARNING 
PTIME’s task is to find the lowest-cost schedule according to a 
schedule evaluation function. More accurately, it must find the 
lowest-cost schedule according to the user’s unknown true 
evaluation function. Thus, PLIANT’s learning task is to find the 
schedule evaluation function that most closely approximates this 
unknown target function. 

4.1 Learning from Pairwise Preferences 
PTIME assists users in scheduling events by presenting a list of 
candidate schedules in response to a scheduling request. By 
selecting one of these candidates or by manually scheduling the 
event instead, the user naturally provides feedback regarding the 
suggestions in the form of pairwise preferences. That is, the user’s 
selection of a particular schedule indicates that user’s preference 
for that schedule over all the others presented. Learning from 
pairwise preferences has been successfully applied in a number of 
domains (e.g., [6,8,10]). While feedback in the form of pairwise 
preferences may not be as rich as the information that might be 
obtained through utility elicitation methods, it is a much less 

                                                                 

3 For any set of derived features Di corresponding to a basic 

feature, at most one di ∈ Di has the value 1, since Di consists of 
mutually exclusive values for the basic feature. 



intrusive form of interaction that, we feel, supports more natural 
user interfaces. 

Learning from pairwise preferences can be achieved in at least 
two ways. The first involves converting each pair into two 
examples (a positive example indicating the correct preference 
and a negative one indicating the reverse). Then any learning 
algorithm associated with a separating hyperplane (e.g., 
perceptron, SVM) can be used to learn a binary classifier as in 
[6,8]. Alternatively, within a support vector machine (SVM) 
learning framework, the pairwise preferences can be converted to 
constraints and added to the quadratic optimization function of a 
standard SVM; PLIANT employs this approach, using the same 
SVMlight ranker used in [10]. 

4.2 Learning Task 
We formulate PLIANT’s learning problem as in [10], 
characterizing the learning task as an optimization problem in the 
space of ranking functions. Let (Vi,Vj) represent the preference of 
schedule Vi over schedule Vj. We say that an evaluation function 

fW is consistent with the pairwise preference (Vi,Vj) iff W⋅Vi ≤ 

W⋅Vj. Conversely, fW is inconsistent with (Vi,Vj) iff W⋅Vi > W⋅Vj. 

Let Pk be the set of all pairwise preferences implied by the user’s 
selection during the interaction to schedule the request Sk. Then 

we can state PLIANT’s learning task as follows: Given the set of 

pairwise preferences ∪(k=1..n)Pk, derived from the user’s 
interactions over n scheduling sessions with PTIME, find a linear 
cost function fW that produces the same pairwise preferences. That 
is, find a weight vector W that is consistent with the maximum 
number of constraints:  

(V1i,V1j) ∈ P1 : W⋅V1j ≥ W⋅V1i 
… 

(Vni,Vnj) ∈ Pn : W⋅Vnj ≥ W⋅Vni 

This is an NP-hard problem that can be approximated through the 
addition of slack variables [10]. Intuitively, a (nonnegative) slack 
variable represents the degree of satisfaction of a constraint; by 
incorporating them into the objective function of a minimization 
problem as additional terms to be minimized, we transform the 
objective into a tractable one of finding a solution that maximally 
satisfies the constraints. 

Let ξijk be the slack variable introduced for the preference pair 
(Vki,Vkj) of the set of pairwise preferences Pk resulting from 
interaction k. Using the standard SVM learning problem 
formulation, we can formally state PLIANT’s preference learning 
task as follows: 

Minimize: V(W,ξ) = ½ W⋅W + C ∑ξijk 

Subject to: 

(V1i,V1j) ∈ P1 : W⋅V1j ≥ W⋅V1i + 1 - ξ1ij 

…  

(Vni,Vnj) ∈ Pn : W⋅Vnj ≥ W⋅Vni + 1 - ξnij 

∀i∀j∀k : ξijk ≥ 0 

Here we have chosen to use an SVM formulation that limits 
PLIANT to learning linear preference functions. Were we to allow 
nonlinear kernels, PLIANT could automatically explore arbitrary 
feature combinations in a higher-dimensional space, but at 
significantly higher computational cost. More importantly, the use 

of more complex kernels would reduce visibility into the learned 
model: the resulting user model would not explicitly specify 
which combinations of features are particularly important to the 
user. So, we instead advocate designing the feature vector to 
explicitly include certain feature combinations (see Table 1) and 
learning simpler linear functions.  

4.3 Initializing Preferences 
While it is important for PTIME to be able to learn from 
unobtrusively gathered data, as an interactive assistant it must also 
be able to learn from direct user instruction. We have thus 
designed PTIME to be able to take direct advice regarding 
scheduling preferences. Each of the binary variables in Table 1 
corresponds to an easily specifiable preference—for example, “I 
like meetings on Tuesdays” or “I like to have long blocks of free 
time”. We incorporate such explicit preferences into the learned 
model by converting them into an equivalent set of pairwise 
preferences.4 Learned preferences will take precedence over 
explicit preferences in that the training examples PLIANT 
acquires over time will eventually overwhelm these initial pseudo-
examples. This is not necessarily a bad property in that human 
users are notoriously bad at elaborating their own utility 
functions. In the future, however, we may explore more 
sophisticated methods for combining explicit preferences with 
inductively learned preferences [e.g., 7] to address other situations 
such as users always wanting their explicitly stated preferences to 
take precedence, or users radically revising their preferences 
because of external factors such as semester breaks or 
organizational changes. 

5. ACTIVE LEARNING 
In the preceding section, we discussed how the user’s selection 
from a set of candidate schedules can be used to generate pairwise 
preferences for training the preference learner. If our sole 
objective were to learn the user’s preferences as quickly as 
possible, we could maximize the training examples by presenting 
the user with all possibilities or even requesting a complete 
ranking over them. However, such an approach would make 
interaction with PTIME so unwieldy that users would be likely to 
resort to manual scheduling. Instead, to balance the demands of 
maximizing learning while remaining beneficial to the user, 
PLIANT relies on active learning [2,11,19] to determine which 
candidates from the solution set to present to the user. There are 
several constraints on the presentation set: 

• It must be limited in size, to avoid overwhelming the user. 

• It must be responsive to a particular meeting request; PLIANT 
cannot simply engage the user in hypothetical scheduling 
problems, just to increase its knowledge. 

• It must include at least some relatively good solutions; 
otherwise it provides no value over manual scheduling. 

These features arise from the fact that PLIANT is not a stand-
alone learning system but instead is tightly integrated with a larger 

                                                                 

4 Because our current SVM learning algorithm is not incremental, 
we cannot use the explicit preferences to directly set the initial 
profile weights. Our future plans include transitioning to an 
incremental algorithm. 



system, and they distinguish the active learner in PLIANT from 
most other applications of active learning, which are typically 
concerned only with finding the most informative examples (e.g., 
[2,4,12,16]). To address these constraints, we explored a variety 

of both undirected and directed selection schemes [19] (Table 2). 

Table 2. Active learning selection schemes. 

Undirected Schemes Directed Schemes 

Random Max Diversity 

Random + Best Max Diversity + Best 

Best N Max Novelty 

є-greedy Max Novelty + Best 

5.1 Undirected Methods 
The simplest undirected method available is to select candidates 
from the solution set with a uniformly random probability 
(Random). Such a technique performs pure exploration without 

any exploitation. A slight modification is to seed the presentation 
set by having it include the meeting currently believed to be the 
best option (Random + Best). A third technique is to greedily 
choose the schedules that the learner currently believes to be the 
best (Best N). Such a selection policy makes complete use of 
exploitation, and only explores the solution space “accidentally” 
when a random problem forces it into an unexplored area. 

A hybrid of random and greedy techniques, called the є-greedy 
algorithm, chooses with probability 1 – є a solution believed to be 
optimal, and otherwise chooses a random meeting, iterating this 
process until the required number of candidates has been selected. 
This selection policy, inspired by techniques in reinforcement 
learning, attempts to balance exploration and exploitation. 

5.2 Directed Methods 
Directed methods differ from undirected methods in that they 
utilize either domain-specific knowledge or information about the 
search performed thus far. One such policy presents the user with 
a diverse sampling of all the potential solutions. In the context of 
PTIME, in which the candidate solutions are meetings represented 
with binary features, a natural way to measure diversity is to count 
the number of features where two meetings differ in value. Using 
this metric, one could choose a subset of meetings that maximizes 
the total distance over all meetings in the set: 

( )∑∑
= =

n

x

n

y

yx meetingmeetingdist
1 1

,  

Unfortunately, performing this selection requires the evaluation of 
every possible subset of size n, a task that is exponential in the 
size of solution set, which can easily contain well over a hundred 
solutions. A greedy approximation to this technique can be found 
by iteratively populating the presentation set with one meeting 
after another, each time maximizing the total distance between the 
new meeting and all previously chosen meetings. The first 
meeting included can be chosen at random (Max Diversity) or can 
be the solution currently ranked highest (Max Diversity + Best)).  

An alternative directed approach (Max Novelty) presents options 
unlike those that the user has already seen. It keeps track of how 
many times each feature value has been shown to the user. When 
determining which solutions to include in the presentation set, it 

evaluates each meeting by counting the number of Boolean 
features that are present (i.e., are equal to one) and that have not 
been present in any previously presented candidate, and selects 
the meetings with the smallest counts. A seeded variation (Max 

Novelty + Best) includes the current best meeting in the 
presentation set. 

6. EXPERIMENTS 
The first complete implementation of PTIME will be deployed in 
early 2005, at which time PLIANT will be evaluated in actual use 
by real users. In preparation for the deployed system, we 
evaluated PLIANT on synthetic users within a simulated 
environment.  There are, of course, limitations to doing testing 
with simulated users. For example, how well our results translate 
to actual performance depends on whether real users exhibit 
similar preference patterns. The degree to which users will be 
influenced to choose a candidate from the presentation set, 
regardless of its absolute desirability, is also an empirical 
question. However, testing within a simulated environment 
provides us with a way to perform an initial evaluation of our 
approach prior to the availability of a complete system. It provides 
us with a way to validate our design decisions regarding the user 
interaction while also testing hypotheses about the effects of 
different factors on learning performance. 

6.1 Experimental Setup 
We designed our experiments to verify PLIANT’s ability to learn 
from users’ interactions with PTIME. We also aimed to 
investigate the effects of the different active learning selection 
strategies on PLIANT’s performance and to explore the effects of 
certain design decisions such as presentation set size and the 
reliance on implicit pairwise preferences, as opposed to complete 
rankings. Our resulting experimental setup is shown in Table 3. 

Table 3. Basic experiment. 

 
To test PLIANT’s basic adaptation ability, we created 50 random 
linear evaluation functions representing synthetic users and 
devised three user types based on the number of preexisting 
meetings they have in a week: heavily committed (18 meetings), 

learnOnline(target,utype,exprefs,select,feedback,show) { 
 // where target = target profile 
 //     utype = user type 
 //     exprefs = explicit preferences 
 //     select = active learning selection strategy 
 //     feedback = feedback type 
 //     show = #candidates shown to user 
 FOR cycle = 1 to 50 
  profile = initProfile(exprefs) 
  problem = getProblem(target,utype,cycle) 
  solutions = generateAllSolutions(problem) 
  presentset = selectPresentSet(profile,solutions,show) 
  evaluateLearning(profile,target,solutions) 
  newtrain = trainingData(target,solutions,feedback) 
  profile = updateProfile(profile,newtrain) 
 END FOR 
} 
 



moderately committed (9), and lightly committed (3).5 We used 
these to test the active learning strategies presented in Table 2.  

We also used these experiments to validate our design choices. To 
verify that incorporating explicit preferences would benefit 
learning, we looked at three conditions: no explicit preferences, 
some (specify ¼ of features indicating the strongest preferences), 
and many (½ of features). To determine the effects of limiting our 
presentation set size to 5 candidates, we compared it to 
performance with 10 and 25 candidates (both of which we felt 
would be infeasible for real use). We also suspect that users are 
likely to limit their decision to the presented set and so we 
compared this to the condition of users selecting their true best 
schedule overall. Finally, to measure the usefulness of learning 
from a single selection among a set of candidates, we compared it 
to learning from complete ranking. 

To simulate online learning, we ran each simulated user over a 
sequence of 50 randomly generated scheduling problems. In 
generating problems, we created calendars biased toward meetings 
that respect the target preference function and then created new 
meeting requests with randomly selected constraints for day, time, 
and duration. The solution sets ranged from a mean of 36.89 (high 
of 137) in the heavy commitment case to 62.90 (high of 181) in 
the light commitment case. After the solution set was generated 
for each problem, we then simulated user feedback using the 
target profile and updated the learned profile accordingly. 

6.2 Evaluation Metrics 
We use two sets of evaluation criteria to measure how well 
PLIANT learns user preferences and to measure the desirability of 
the presented candidates. 

Quality of Learned Profile: To measure how accurately the 
learned model represents the target preference function, we 
compute a modified Euclidean distance measure that directly 
compares the preference functions.6 Lower values indicate closer 
correlation. Since we are learning a ranking function, we also use 
Spearman’s rank correlation coefficient, a standard statistical 
measure for the similarity between two rankings—in our case, the 
rankings induced by the learned and target functions on the entire 
solution set. 

Quality of Presentation Set: To be useful, PLIANT must present 
desirable schedules—that is, schedules ranked highly according to 
the target function. To capture the quality of the presentation set, 
we rank the entire solution set according to the target function and 
then compute the best rank and the average rank of members of 
the presentation set. Both range from 0 (highest rank) to the size 
of the solution set (lowest rank). 

                                                                 

5 A similar previous experiment with synthetic users [8] showed 
that nonlinear target functions and targets using features 
unknown to the learner can also be approximated using linear 
models at the cost of somewhat degraded learning performance. 

6 The modification involves normalizing the preference vector for 
the learned model, to eliminate linear scaling effects. Within our 
space of target preference vectors, this measure has an upper 
bound of 86.17.  

6.3 Discussion of Experimental Results 
We now turn the discussion to our experimental results, although 
space restrictions limit detailed presentation to only a subset of 
our findings. We hypothesized that directed selection schemes 
would result in faster learning than undirected ones since they are 
designed specifically to maximize exploration. However, the 
results generally did not bear this out. For instance, for lightly 
committed users, when there was a clear difference, the best 
strategy was often undirected (Random or Greedy) (Table 4).7  
Why did the undirected strategies outperform the directed ones? A 
possible explanation is that this results from the nature of learning 
from pairwise preferences. One may actually learn more from 
pairs that are very close to one another than from pairs that are 
quite different, because the former highlight fine-grained 
differences, while the latter are likely not to be very revealing 
once a reasonable hypothesis has been obtained. The directed 
learning schemes that we studied (Max Diversity and Max 

Novelty) are designed precisely to generate sets in which the 
differences are maximal. 

Table 4. Euclidean distance and Spearman’s correlation after 

fifty scheduling sessions for different strategies (light 

commitment, no explicit preferences, presentation set size 5).8 

 select from presentation set select best schedule overall 

 unseeded seeded unseeded seeded 

 Euc Sp Euc Sp Euc Sp Euc Sp 

Rand 47.01 0.82 47.14 0.75 47.04 0.76 47.00 0.78 

MaxDiv 47.07 0.80 47.16 0.75 47.02 0.77 47.00 0.78 

MaxNov 47.13 0.77 47.21 0.70 47.08 0.73 47.01 0.77 

Greedy 47.13 0.72 47.12 0.68 46.99 0.76 46.98 0.77 

The data in Table 4 reflects another interesting and unexpected 
influence. When the user chooses from the presentation set, 
unseeded selection schemes (i.e., those that do not necessarily 
include the current best candidate) tend to result in better 
learning. But when the user selects the best schedule overall, the 
seeded strategies tend to outperform the others. This observation 
can be explained as follows. As the learned model improves, the 
current best solution is likely to have some features in common 
with the one that would actually be ranked best overall by the 
target function. If the user always chooses from a seeded 
presentation set, there is a good chance that the user will select the 
current best candidate, and PLIANT thus will learn very little; 
after all, the selected candidate was already ranked higher than all 
the other elements of the set. In contrast, if the set is not seeded, 
we are more likely to gain new information from the relative 
ranking of the set members. Now consider the case in which the 
user goes outside the presentation set, always selecting the best 
schedule overall. If the presentation set is seeded, we gain a great 
deal of fine-grained information, because the selection expresses a 
pairwise comparison between the actual best and the current best 
hypothesis. But if the presentation set is unseeded, this useful 

                                                                 

7 At higher levels of commitment, the results were similar but less 
pronounced. 

8 Seeded refers to the *+Best strategies. For simplicity, we use 

Greedy Unseeded to denote the ε-greedy selection strategy and 
Greedy Seeded to denote the Best N selection strategy. All 
results are averaged over the last five scheduling sessions. 



comparison will not be expressed unless, by chance, the 
presentation set includes the current best candidate. 

Not surprisingly, seeded strategies—in particular, Best N (Greedy 

Seeded)—result in schedules with much higher average rank 
being presented to the user (Figure 2). Note that the difference is 
less pronounced early in the learning curves. That is, before a 
good user model has been learned, the other strategies are more 
likely to present schedules of similar rank as the greedy strategies. 
In addition, however, they present the user with a variety of 
options, something that may actually be more desirable early on, 
before a good user model has been learned. 
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Figure 2. Average rank of presented candidates for different 

selection schemes (light commitment, presentation set size 5).9 

In designing PLIANT, we decided to incorporate explicit 
preferences, and our experiments revealed dramatic improvement 
from incorporating such preferences, stressing the importance of 
using them when available  (Table 5). We also decided to keep the 
presentation set small (5 candidates) both to let them be presented 
all at once and because we felt many users will not be willing to 
consider more than a handful of candidates at a time. Not 
surprisingly, given that a larger presentation set produces more 
training examples, the results did show that larger presentation 
sets improve performance (Table 6). However, preferences could 
still be effectively learned, even with small presentation sets. Our 
final design decision was to use as training data only the pairwise 
preferences implicit in a user’s selection of one schedule from a 
set of suggestions, rather than to require a complete ranking of the 
presentation set from the user. The results show that while using 
feedback in the form of a complete ranking  improves 
performance, it would do so greatly only for large presentation set 
sizes (Figure 3). This is particularly encouraging, since it shows 
that natural, unobtrusive user feedback can be nearly as effective 
as other techniques that require significantly more effort on behalf 
of the user. 

                                                                 

9 To control for the large variance in solution set sizes, which 
affects the rank-based metrics, we average the results every five 
scheduling sessions. Results for other conditions as well as for 
the other metrics (top rank and selection outside the 
presentation set) were consistent. 

Table 5. Results for different explicit preferences conditions 

(moderate commitment, Greedy selection, presentation set size 

5, selection from presentation set). 

 Euclidean Spearman’s Ave. Rank Top Rank 

 start end start end start end start end 

none 47.38 46.86 0.35 0.70 18.38 4.82 9.41 0.31 

some 45.63 45.39 0.74 0.81 7.16 3.73 1.76 0.24 

many 45.04 44.85 0.80 0.85 5.92 3.58 1.09 0.18 

Table 6. Euclidean distance and Spearman's correlation after 

fifty scheduling sessions for different feedback conditions 

(moderate commitment, Best N (Greedy Seeded) selection).10 

 5 10 25 

 Euc Sp Euc Sp Euc Sp 

present 47.03 0.70 46.89 0.75 46.82 0.78 

candidate 46.86 0.74 46.80 0.78 46.78 0.79 

rank 46.94 0.76 46.62 0.88 46.32 0.96 
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Figure 3. Euclidean distance for different feedback conditions 

(moderate commitment, greedy selection). 

7. CONCLUSIONS AND FUTURE WORK  
We have presented an open calendaring system that manages the 
trade-off between providing immediate benefit to its users and 
learning their scheduling preferences in an unobtrusive manner. 
Overall, our experimental results provide at least initial evidence 
that unobtrusive yet efficient learning of scheduling preferences is 
feasible. Learning occurs even when users are presented with 
relatively small presentation sets, from which they select a single 
option (as opposed to doing a complete ranking). Explicit 
preferences can be incorporated, and, when accurate, do further 
speed up learning. Finally, and interestingly, simple, undirected 
methods for selecting candidates to present to the user seem to be 
quite effective. 

In early 2005, we will be evaluating PTIME in actual use by real 
users. The results from this evaluation will naturally help in 
developing succeeding versions of the system by informing a 

                                                                 

10These are consistent with the results for other selection 
strategies and commitment levels. 



number of issues, including the feature engineering effort, the 
design of the user interaction, and the learning approach. It should 
also help us devise better simulated experiments, which will 
remain useful as a method for carrying out initial studies of new 
functionalities or techniques prior to actual deployment. 

PLIANT’s active learning strategies currently involve a post-hoc 
selection over generated candidates based on evaluation according 
to the profile. We plan to investigate approaches that instead drive 
the generation of candidates directly from the learned profile (e.g., 
[18]), which should lead to more efficient candidate generation 
and, potentially, faster learning. Also, while PLIANT is an online 
learner, it is not an incremental one: it relearns a user model on all 
previous examples after every scheduling session. By converting 
PLIANT to an incremental learner, we expect to accommodate 
more direct weight initialization as well as provide better online 
computational properties.  

The work described in this paper addresses the problem of 
learning preferences primarily for underconstrained situations, 
where multiple feasible options are available. A potentially more 
interesting problem is that of learning preferences in 
overconstrained settings, which will require relaxing the 
scheduling constraints or rescheduling previous commitments. We 
are currently pursuing this issue along various fronts, including 
extending the feature set to capture partial constraint satisfaction, 
and learning procedures and strategies for resolving schedule 
conflicts. 

Finally, there is the issue of nonstationary preferences. The 
calendar domain presents the problem not just of concept drift 
(gradually changing preferences) but also of concept shift 
(abruptly changing preferences) [13]. Simple techniques such as 
keeping a sliding window of training data may be sufficient for 
dealing with the former. However, addressing the latter will 
require the rapid detection of the start of a shift or even the 
prediction of an impending change. This problem remains an area 
for future work but one possibility is to cast this as a dynamic 
exploration/exploitation tradeoff and revisit active learning within 
this setting. 
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