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We theoretically demonstrate a near(field radiative thermal switch based on thermally excited 

surface plasmons in graphene resonators. The high tunability of graphene enables substantial 

modulation of near(field radiative heat transfer, which, when combined with the use of resonant 

structures, overcomes the intrinsically broadband nature of thermal radiation. In canonical 

geometries, we use nonlinear optimization to show that stacked graphene sheets offer improved 

heat conductance contrast between “ON” and “OFF” switching states, and that a >10x higher 

modulation is achieved between isolated graphene resonators than for parallel graphene sheets. In 

all cases, we find that carrier mobility is a crucial parameter for the performance of a radiative 

thermal switch. Furthermore, we derive shape(agnostic analytical approximations for the resonant 

heat transfer that provide general scaling laws and allow for direct comparison between different 

resonator geometries dominated by a single mode. The presented scheme is relevant for active 

thermal management and energy harvesting as well as probing excited(state dynamics at the 

nanoscale. 

Keywords: graphene, thermal radiation, near(field radiative heat transfer, surface plasmon 

 

Radiative heat transfer on the nanoscale holds promise for next(generation energy conversion 

technologies, including heat(to(electricity conversion platforms such as near(field thermophotovoltaics 

and near(field solid(state refrigeration. A key enabler is the idea that closely separated objects at different 

temperatures—�-�- objects at separation distances much smaller than the characteristic thermal 

wavelength—can exhibit order(of(magnitude increases in the radiatively exchanged power relative to the 

power that can be transferred in the far field.  While the early work on near(field radiative heat transfer 

(NF(RHT) focused on the thermal energy exchange between conducting plates,1,2 the advancements in 

nanofabrication have led to experimental demonstrations of NF(RHT in a number of configurations.3–17 

Among recent studies, radiative nanoscale energy transfer has been investigated in metasurfaces,18 non(

Page 1 of 17

ACS Paragon Plus Environment

ACS Nano

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



reciprocal systems and systems with gain,19,20 van der Waals stacks,21 and for concepts such as 

luminescent refrigeration,22 thermal extraction,23 thermal rectification and amplification,24–27 and radiative 

heat transfer limits.28–30  

A key functionality central to the application of NF(RHT is a means of ����"� heat transfer 

control—a scheme whereby external parameters can dynamically modulate the radiative flux between 

objects without necessitating a temperature change. The challenge of realizing such a thermal switch is 

two(fold: (1) the broadband spectrum of thermal radiation makes it difficult to modulate the radiative heat 

transfer to a significant degree, and (2) such a switch must comprise materials with tunable emissivity at a 

fixed temperature. Here, we propose use of coupled graphene resonators as a means to overcome both 

challenges; their highly tunable optical properties allow for constant(temperature operation, and provide a 

means to dramatically modulate NF(RHT despite the broadband nature of thermal radiation. In contrast to 

their bulk counterparts, low(dimensional plasmonic materials such as graphene exhibit highly tunable 

optical properties when electrically biased. Moreover, graphene supports strongly confined surface 

plasmons in the technologically important thermal IR spectral range. Finally, graphene combines a strong 

optical response with low losses, endowing it with the largest optical response of known plasmonic 

materials.30 Jointly, these attributes have sparked a significant interest in the study of plasmon(mediated 

NF(RHT in graphene.31–40  

In this work, we find that optimal combinations of resonator size and material properties, 

specifically carrier concentration and relaxation rate, can enable large thermal switching ratios and high 

levels of modulation sensitivity. The working principle behind thermal switching with plasmonic 

graphene resonators is the ability to dynamically tune the modes of the resonances of the emitting and the 

absorbing objects into and out of resonance. We illustrate the idea of a thermal switch in several relevant 

configurations, including thermal switching between (a) graphene sheets, (b) multilayer graphene stacks, 

(c) dipolar graphene resonators, and (d) hybrid resonator(multilayer structures (Fig. 1). In this radiative 

heat transfer analysis with multiple configurations and inputs (�-�- temperature, distance, ���.), we 

identify carrier mobility as a critical parameter in achieving a large contrast between the “ON” (maximal 

heat transfer) and “OFF” (minimal heat transfer) states: higher mobility gives rise to sharper plasmonic 

resonances that are more easily detuned. For each value of mobility, identifying the ON and OFF thermal 

conductance states constitutes a nonlinear optimization problem over a parameter space of all allowable 

gate voltages. We find that in all structures, ON states comprise similarly doped graphene structures—

where the individual plasmonic resonances of the two sides efficiently overlap—and where optimal Fermi 

levels depend on carrier mobility and resonator size. For analyzed OFF states, we identify relevant 

regimes that depend on carrier mobility. Finally, we derive analytical approximations that highlight the 

relevant scaling laws and key parameters, and show that heat flux modulation is possible even with 

graphene on infrared active substrates.  

 

������������� ����� !��

�

The radiative energy flux exchanged between two structures of temperatures �� and �� is given by41 
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 ��→� = � d	
��	, ��� − ��	, ������	; ��, ��
�

�
�, (1) 

where ��	, �� = ℏ	/
exp� ℏ	 ���⁄ � − 1� is the mean energy of a photon, and � is the spectral transfer 

function which accounts for the geometry, shape, and (temperature(dependent) material properties of the 

two objects. In this work, we focus on the radiative thermal conductance (RTC) ℎ between two structures, 

defined for a given temperature � as ℎ��� = lim"#,"$→" ����, ��� ��� − ��� = 	 & d	 '(
'" �	, ����	, ���

�) . 

As a first step in our analysis, we examine the radiative heat transfer between two graphene sheets, as 

shown in Fig. 1a. For two parallel graphene sheets radiatively exchanging heat in the near field, and 

separated by a distance *, the spectral transfer function per unit area is33,34 

 �sheets�	� = 1
.� � d/	/	 Im
1��Im
1��

|1 − 1�1�e�345|� e�345,�
6/7

 (2) 

where / and 8 are the in(plane and the perpendicular wave(vector, respectively (8 = 9	� :�⁄ − /�), and 

1; is the reflection coefficient of the �.th sheet (related to the, generally nonlocal, graphene surface 

conductivity, see SI). In this configuration, the radiative thermal conductance ℎ depends on several 

physical parameters:  ℎ = ℎ�<; , =>, �, *�, where <; = �<�, <�� and =; = �=�, =�� denote the Fermi levels 

and carrier mobilities of the two sheets, respectively, � is the temperature, and * is the separation. 

Because both <�, <� are actively tunable through electrostatic gating, our goal is to determine the optimal 

pairs �<�on, <�on� and �<�off, <�off� that correspond to the ON and OFF states, namely where ℎon ≡
ℎ�<�on, <�on� and ℎoff ≡ ℎ�<�off, <�off�. A thermal switch with excellent modulation ability will then have a 

high switching ratio C = 	 ℎon ℎoff⁄ . 

Figure 2a shows the maximum conductance ℎDE and the switching ratio C as a function of the 

carrier mobility. We assume equal mobilities =�,� = =, and fix the temperature (�
= 300 K) and the sheet 

separation (�
= 100 nm). Carrier mobility quantifies the magnitude of optical losses in graphene and is 

related to the carrier relaxation time F "�� the impurity(limited approximation F = =<G HIG�⁄ .42 For each 

value of mobility, we find the optimal <�,�on  and <�,�off  pairs in the allowable range <; ∈ 
<K3E, <KLM�. For 

the allowable range, we assume <K3E~��� and <KLM =0.6 eV, consistent with typical experimental gate 

voltages (we note that presented results are not sensitive to the choice of <min, whether it is zero or �B�). 

The <�,�on  and <�,�off  pairs are computed numerically using a (multi(start) local, derivative(free, optimization 

algorithm.43–45 For the case of two graphene sheets radiatively exchanging heat in Fig. 2a, we observe a 

peak in the maximum conductance ℎDE (solid black), implying the existence of an optimal optical loss 

rate which maximizes the heat transfer. The existence of �������
 ���� arises from the geometry of the 

problem. A parallel plate configuration, due to multiple reflections between the plates, does not achieve 

the optimal(absorber condition, exhibiting a heat transfer rate that is substantially weaker than the 

extended(structure limit.29 Because of this, we do not expect the optical response and the heat transfer rate 

to monotonically increase with mobility (or, equivalently, decrease with mounting optical loss). For the 

parameters under analysis here, we find the optimal mobility for the case of two graphene sheets to be 

=DPQ ≈1800 cm2/Vs, and the corresponding radiative thermal conductance ℎDE ℎSS⁄ ≈	340 for <�on =
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<�on =	0.173 eV. Here, the conductance is normalized to the far(field limit of radiatively coupled 

blackbodies (with unity view factor) ℎbb��� = U
U" �VSB�X� = 4VSB�Z, where VSB is the Stefan(Boltzmann 

constant. We note that in all cases, the emitter–receiver symmetry ensures that the ON state comprises 

equally doped graphene sheets �<�on = <�on�, such that the resonances are aligned (Fig. 2c). For analyzed 

OFF states, the carrier mobility is relevant. For low carrier mobility, maximal detuning of broad 

plasmonic resonances is achieved at the extremes of the allowable range of Fermi levels. In contrast, for 

higher carrier mobilities, once the plasmonic resonances are sufficiently detuned, the heat flux 

suppression in the OFF state is reduced with further separation of the emitter/absorber Fermi levels due to 

the onset of the interband transition in the lower(doped graphene structure (and the corresponding 

additional contribution to the radiative heat transfer). 

In contrast to the heat transfer rate, the switching ratio C monotonically increases with carrier 

mobility (solid, red in Fig. 2a), which reduces the plasmonic linewidths and thus enables improved 

detuning of resonances. We also observe (Fig. 2c) a cross(over value of mobility (~1300 cm2/Vs) that 

separates the two regimes of C: for low mobility (�-�- broad resonances), the OFF state is achieved for the 

end values of the range of allowable Fermi levels, namely <����off = <min�max�; in contrast, for higher 

mobility <�off > <min and the switching ratio increases faster with increasing mobility. Despite the 

multiple reflections in the parallel(plate geometry and the failure to achieve the optimal(absorber 

condition, the switching ratio can be appreciable, reaching a value of C ≈ 8.5 for = = 10Z	cm�/Vs	(and 

C ≈ 45 for = = 10X	cm�/Vs). 

The concept of thermal switching using two graphene sheets can be further extended to parallel 

graphene ����/� (Fig. 1b). As an example, we focus on the near(field radiative heat transfer between a 

single graphene sheet (object 1) and a stack comprising two graphene sheets in close proximity (object 2). 

We fix the separation between the sheets in the second stack at c = 10	nm	and object separation, as 

before, at * = 100	nm. In this case, active modulation is achieved with parameters <; = �<�, <��, <��), as 

sketched in Fig. 2a. Similar to the 2(sheet case, we also observe the existence of an optimal mobility that 

maximizes the radiative thermal conductance (blue, dashed, in Fig. 2a). In addition, we note a slight 

decrease (~20%) of ℎDE relative to the 2(sheet case, which can be attributed to the inability to achieve 

perfectly resonant coupling in this asymmetric configuration. The condition for maximal RTC is reached 

for a nearly(symmetric configuration <�~<�� and <��~<min. Despite the optimal low carrier 

concentration of the bottom sheet, its optical response is appreciable enough to detune the plasmonic 

resonance, resulting in a decrease of ℎDE.  

While the presence of the bottom sheet in the stack reduces the maximum heat transfer rate, it in 

turn enables a noticeably larger switching ratio. The improved switching ratio arises from the ℎoff 
suppression due to resonance blue(shift in the graphene stack. This effect is elucidated by examining the 

local density of states (LDOS) above a layered stack. The LDOS at a point d is proportional to the decay 

rate of an (orientation(averaged) dipole at that point, given by46 e�d, 	� = �2	 .:��Im{Trjklmn�d, d, 	�o}⁄ , 

where klmn�is the dyadic Green function (SI). Fig. 3a shows the spectral LDOS above a graphene stack of )


identically doped sheets (of mutual, constant sheet(separation c). For q > 1 the one(sheet plasmon 
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dispersion fractures into a set of )
hybridized resonances, split into mutually bonding and anti(bonding 

modes, corresponding to low( and high(frequency branches. The principal LDOS contribution originates 

from the highest frequency branch. Normalizing the stack’s LDOS to that of an individual sheet, we 

observe a substantially enhanced optical response at higher frequencies (Fig. 3b). Finally, Fig. 3c shows 

the ��, 	) dependence of the LDOS and the relevant higher order modes of the graphene stack. Together, 

these considerations further elucidate the previously noted blue shift of the two(sheet case with <��,��off =
<max	 relative to the single sheet case with <�off = <max.  In summary, while the maximum thermal 

conductance ℎon suffers from the introduction of the bottom sheet, the reduction is more than made up by 

the lower ℎoff, thus leading to an enhanced switching ratio C. 

Moving beyond extended structures, we analyze radiative heat transfer between isolated graphene 

resonators, as shown in Fig. 1c. In the dipolar limit, the spectral transfer function for resonators 1 and 2 

(normalized to resonator area r) can be expressed as ��	, *� = �
stu

�
5v ∑ xyy∈ẑ Im
|�y�Im
|�y�/r where * 

is the resonator separation distance, |���� is the polarizability of resonator 1(2), and xy is a numerical pre(

factor that depends on the relative orientation of the two resonators (SI). The polarizability connects the 

induced dipole moment }�	� = ~�|�	�<� with an external field <�, and can be expressed as the 

eigenmode sum47 

 |�	� = 2�Z � Δ��� − ��	��	
, (3) 

where the geometrical shape of a graphene resonator is captured by the normalized eigenfrequencies ��  

and the oscillator strengths ��. The size and the material(response dependence of the graphene resonator 

are embedded in the dispersive parameter ��	� = 2i~�~	�/V�	�, where �	is the characteristic length 

scale and V�	� is graphene’s surface conductivity. For identical resonators (|� = |��, assuming 

intraband (Drude) conductivity, we can approximate the ON state radiative thermal conductance (and the 

corresponding optimal Fermi levels) to emphasize the parameter dependencies as (SI)  

 

																								ℎON ≈ 	116.23 � ~��B��X
2.ℏ�HZIF�

�	1r
x�2 = ��

*�
�����Z

 

<ON ≈ 71.27 �~�.�����
H� �	 �

�� 

(4) 

which are valid assuming the optical response is dominated by a single (or a set of degenerate) mode(s) 

associated with ��, �� from (3). Note, x� ≡ ∑ xyy∈ẑ  is the sum of all corresponding numerical pre(factors. 

For disk resonators of radius �, we associate � ≡ √r = √��., and give the relevant oscillator parameters 

in the SI. Figure 4 shows the normalized maximum thermal conductance ℎon/ℎbb and the switching ratio 

C, for graphene disks of varying size (we assume disks are co(axial, hence x� = 2). We observe that the 

optimal doping (< = <�,�on ) that maximizes the RTC is not particularly sensitive to mobility (Fig. 4b); 

instead, it is dependent on the resonator size, exhibiting a linear relationship with the disk radius 0 (in 

agreement with Eq. 4). The higher optimal doping would seem to imply weaker radiative conductance per 

unit area between larger disks at temperature � (due to a blue(shifted resonance frequency); nevertheless, 

the cubic dependence of polarizability on disk size leads to the overall increase of ℎon with the disk size, 
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as shown in Fig. 4c. We make two remarks. First, while the RTC between identical disks of radius � is 

proportional to �� for ��1�� Fermi levels, the ������� conductance (�-�- the ON state) has a stronger (��) 

size dependence (Fig. S4b). Second, Eqs. (3) and (4) are shape(agnostic: they apply to graphene 

resonators other than disks, allowing for direct comparison between different resonator geometries. For 

example, using the values from Table S1 (SI), we can readily infer that square, triangular, or elliptical 

resonators would exhibit stronger on(resonance heat transfer than disks, for the same resonator area. For 

elliptical resonators, the enhancement arises from the fact that increasing the aspect ratio simultaneously 

increases the long(axis oscillator strength �� while reducing its eigenfrequency ��. For squares and 

triangles, the argument is more nuanced: both the polarizability and the eigenfrequency are lower relative 

to disks, but the latter has the stronger effect. Finally, sharp, geometry(dictated resonances lead to order(

of(magnitude higher switching ratios relative to those in planar structures (Fig. 4d). 

 In addition to thermal switching in extended (sheets and multi(layer stacks) and dipolar (�-�- 

disks) structures, we also analyze a hybrid scenario that combines the two; for example a graphene disk 

above a single sheet (or a stack) as shown in Fig. 1d.  The spectral transfer function of the configuration 

consisting of a dipolar nanostructure above a planar sheet can be expressed as 

 ��	� = 2	�
.:� � Im
|;�	��

;��,�,�
Imjklmn�	, d��o;;	, (5) 

where klmn� is the dyadic Green tensor of the planar interface (see SI). In the nonretarded limit (/ ≫ �) 

relevant to NF RHT, the expression for the spectral transfer function ��	) features terms proportional to 

Im�|�Im�1��, where | is the resonator polarizability and 1� is the p(polarization (TM) reflection 

coefficient for the underlying sheet (SI). Fig. S3 shows the RTC enhancement and the switching ratio, 

assuming the polarizability of the disk is � = ∑ |;��; =; |�1,1,0�" where Eq. (3) applies for the scalar |. 

We observe that it is still possible to bring the disk and the sheet into resonance, as indicated by the very 

large possible switching ratios relative to the sheet/stack configuration of Fig. 2. In contrast to the latter, 

the inclusion of an additional layer in the stack does not appear to improve either the RHT enhancement 

or the switching ratio (Fig. S3, dashed). Attainable switching ratios would, in general, depend on the 

separation between graphene resonators. For the sheet(sheet configuration, Fig. S5 shows the switching 

ratio as a function of mobility, for different separations. We observe similar trends as before: namely, the 

switching ratio increases with mobility and that shorter separations are generally favorable due to the 

enhancement of the ON state conductance as sheets become closer. We note that for resonators in the 

dipolar limit both the ON and the OFF state energy fluxes scale in the same way with the separation *, 

making the switching ratio insensitive to separation. 

Besides the heat transfer enhancement and the switching ratio, another relevant quantity for active 

modulation is the switching sensitivity. Here, we define the switching sensitivity as � = kB�/
min; |<;on − <;on/2|	, a quantity that is proportional to the minimum change in any single Fermi level <; 
that is needed to halve the maximum radiative conductance ℎ¡¢. Figure 5 shows the sensitivity � for 

different values of mobility for the discussed configurations. In the disk(disk and the 2(sheet case, the ON 

state of the system is (due to symmetry) equally sensitive to changes in <� and <�. In the 3(sheet case (Fig 
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2., dashed), the most “sensitive” parameter is the doping of the top sheet �<��; likewise, in the disk(sheet 

case (Fig. S3, dashed) the doping of the disk (<�) is the most sensitive. Similar to the switching ratio, the 

sensitivity of switching increases with increasing graphene mobility, especially for the disk(disk heat 

transfer characterized by sharp resonances. 

Finally, we briefly characterize thermal switching with graphene sheets on substrates. The 

simplest example comprises a sheet of graphene on a semi(infinite substrate of constant permittivity (�-�- 

CVD diamond, ~~5.8). In that case, much of the analysis from Fig. 2 holds, with switching ratios 

exhibiting similar mobility dependence, with generally lower magnitude due to stronger mode 

confinement for ~ > 1. A more interesting extension includes the analysis of thermal switching in the 

presence of IR active substrates (�-�- substrates that themselves support surface electromagnetic modes in 

the mid(IR). For this case, we focus on SiO2, SiC, and SiNx, materials that exhibit surface phonon(

polaritons. As indicated in Fig. S6, these three materials can be characterized by both sharp and broad 

resonances as well as by both low and high background permittivities. Figure 6 shows the switching ratio 

C between two graphene sheets on substrates as a function of mobility. The substrates are identical and, as 

before, we find optimal Fermi levels <; that maximize/minimize the RTC. To emphasize the substrate 

"����� graphene contribution to RTC, we plot the switching ratio for different separation distances *. 

From Fig. 6 we can draw several qualitative conclusions. As expected, for a given substrate, modulation 

is generally stronger at smaller separations due to enhanced contribution of tightly(confined surface 

modes in graphene. As a result, at smaller separations (where graphene response is more dominant) 

higher mobility is still favored. In terms of the most suitable substrate material, silicon carbide appears to 

provide the largest switching ratio of the analyzed substrates. We attribute this to its narrowest resonant 

response (as indicated by its permittivity function, Fig. S6) that allows for stronger detuning of the heat 

transfer in the presence of graphene. 

At larger separations, where graphene response is less dominant, the effect of carrier mobility is 

more nuanced. At a separation of * = 400	nm, we find graphene(on(SiO2 to have the strongest switching 

ratio. This is attributed to the (comparatively) low ~re of SiO2, giving rise to less strongly confined 

surface modes that can more effectively modulate the RTC at such distances. This is the same reason why 

SiO2 outperforms SiNx, and even optically inactive CVD diamond, as the substrate material. This implies 

that, among polaritonic materials, SiO2 may be a suitable substrate for RTC modulation at larger, more 

experimentally accessible separations.  

 

 

�!����� !���

 

In this work, we proposed and demonstrated a radiative thermal switching scheme with graphene 

plasmon nanoresonators in several relevant configurations. We showed that optimal combinations of 

resonator size and carrier concentration give rise to strongly contrasting ON and OFF thermal 

conductance states, and identified carrier mobility as a critical material parameter. In addition to 

numerical optimizations, we derived analytical, shape(agnostic approximations that highlight parameter 
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dependence for resonant heat transfer and allow for direct comparison between different resonator 

geometries. Finally, we characterized thermal switching and heat flux modulation of graphene on infrared 

active substrates. Though the focus of this work is radiative flux modulation "�� the control of plasmonic 

resonances in graphene, other reduced(dimensionality materials and other types of polaritons (phonon(

polariton, exciton(polariton, magnon, ���-) would exhibit similar radiative thermal emission 

enhancements. In addition to electrostatic gating, other mechanisms, such as an imposed elastic strain, 

offer another means for polariton resonance modulation. Because of its vanishing density of states at its 

neutrality point, graphene exhibits exceptional tunability and is particularly suitable for radiative flux 

modulation. The described active thermal switching may be relevant for applications that include near(

field thermophotovoltaic modulation, and cooling of electronic nano(devices. These results demonstrate 

the potential of graphene(based plasmonic resonators for active thermal management on the nanoscale. 

 

 

�!"����� !����"��#!���

 

Calculations in the present paper were performed by numerical evaluation of Equations (1(5). Unless 

otherwise specified, optical conductivity of graphene is numerically obtained (for desired values of 

frequency, Fermi energy, mobility, temperature) by summing the intraband and the interband 

contributions (see, for example, Ref [47]). For optimizations, the Fermi energy pairs (<�,�on  and <�,�off) are 

computed numerically using a (multi(start) local, derivative(free, optimization algorithms44,45, accessed 

"�� the NLopt package.43 
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Analysis beyond the local response approximation (LRA) conductivity; expressions for the 

radiative heat transfer involving dipolar structures; polarizability model for graphene 
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resonators; first(order approximations to the radiative thermal conductance; separation 

distance; effect of substrate (PDF). 
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������ Operating principle for a radiative thermal switch using graphene plasmon nanoresonators 

in structures comprising (a, b) parallel (multi)layers, (c) di/multipolar resonators, and (d) hybrid 

configurations. External control of the relevant Fermi levels <; = �<�, … � modulates the near(

field heat transfer between the “OFF” state at minimal radiative thermal conductance ℎoff =
ℎ�<�off, … �, and the “ON” state at maximal conductance ℎon = ℎ�<�on, … �.  
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������ Thermal switching in parallel graphene stacks. (a) RHT enhancement ℎon/ℎbb (left) and 

the switching ratio C = ℎon/ℎoff (right) for a 2(sheet (solid) and a 3(sheet (dashed) 

configuration, as a function of mobility =�,� = =. (b) Spectral heat flux indicating the “ON” and 

the “OFF” states for mobility ==	=opt from (a). Shaded region shows Planck’s prefactor from 

(1). (c) Corresponding Fermi levels for the “ON” (<�,�on ) and the “OFF” (<�,�off) states in the 2(

sheet case. Here, � = 300	K, * = 100	nm, c = 10	nm. 
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������ (a) Orientation(averaged local density of states (LDOS) e at a height � above 

a graphene stack of ) identical sheets (<;=0.6 eV), separated by c (see inset in (b)). 

(b) LDOS for q > 1 normalized to that of q = 1. (c) Decomposed (�, 	) LDOS for 

q = 1 and q = 6. Here, * = 100	nm, c = 10	nm. 
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����	� Radiative thermal switching between parallel graphene disks (a). Optimal 

carrier concentration levels <�,�on = < for the “ON” state (b), RHT enhancement 

(c), and the switching ratio (d), as a function of mobility (=) and disk radius (0). 

Here, � = 300	K,
* = 200	nm. 
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����
� Sensitivity of thermal switching defined as � = kB� min; |<;on − <;on/2|	⁄  

(�-�- inversely proportional to the smallest change in <; needed to halve the 

“ON” state thermal conductance), for resonator configurations from Fig. 1. For 

parallel disks (Fig. 4), a range from � = 10	nm (most sensitive) to � = 70	nm 

(least sensitive) is shown. 
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������ Thermal switching between parallel graphene sheets (Fig. 1a), now on identical 

substrates that support surface phonon(polaritons (SiC, SiN, or SiO2). Different line 

styles indicate the switching ratio C for separation distance * of 25 nm (dashed), 100 

nm (solid), and 400 nm (dotted) (�= 300 K). As before, for each value of mobility, the 

respective Fermi levels for the ON (<�,�on ) and the OFF (<�,�off) state are determined.   
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