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Active RC Single-Opamp Design of 
Driving-Point Impedances 

PETER HORN, MEMBER, IEEE, AND GEORGE S. MOSCHYTZ, FELLOW, IEEE 

&&act-The active RC simulation of LC filters is of interest, due to 
the excellent sensitivity properties thereby obtained. Most known designs 
of active RC driving-point impedances necessary for the simulation of an 
LC filter, require two opamps per impedance. In this paper a method is 
presented that realizes general second-order driving-point impedances with 
only one opamp and with a minimum number of capacitors and resistors. 
The method is based upon an interesting property of active RC drivhg- 
point impedances which is derived in the paper. This property relates the 
well-known properties of driving-point impedance poles and zeros to the 
zeros of the feedback voltage-transfer fonctions in a single-opamp second- 
order filter stroctore. 

Fig. 1. General single-opamp active network. 

T 
I. INTRODUCTION 

HE LOW SENSITIVITY in the passband of passive 
LC filters [l] is the reason for numerous investiga- 

tions [2]-[6] into the design of active filters based on LC 
structures. Recently, several papers [7]-[ lo], [ 161 have 
been published describing the active RC simulation of 
first- or second-order LCR impedances using only one 
opamp. This paper is an additional contribution to this namely 
theme. It deals with the design of general active RC 
driving-point impedances of arbitrary order using 
networks that contain only one opamp. The design 1 
method is based on a useful property of the active RC 2 
driving-point impedance of a network in which a single : 
opamp is used in the differential input mode. In order to 
derive this property and the design method itself, it is 
necessary to review an analysis procedure of the network [r]= f 
that is based on signal-flow graph theory. This is de- k 
scribed in the following section. I 

m 

. ,/-,$d 

tid A 0 
V Vi ‘d m 

Fig. 2. Signal-flow graph of network in Fig. 1. 

II. THE SIGNAL-FLOW GRAPH ANALYSIS OF 
TRANSFER- AND DRIVING-POINTFUNCTIONS OF 

GENERALSINGLE-OPAMPACTIVE RC NETWORKS 

A. Voltage Transfer Functions 
Consider the general active network shown in Fig. 1. It 

comprises a five-terminal RC network N and a differen- 
tial-input opamp with open-loop gain A. Letting V,= V, 
- V,, and using the principle of superposition with respect 
to the voltage sources F and V,, the signal-flow graph of 
Fig. 2 is obtained. The transfer functions tjd and tmd are 
associated with the passive RC network N and are ob- 
tained from the definite admittance matrix [11] of N, 
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(1) 
From (1) the forward transfer function tid results as 

(2) 

and the feedback transfer function tdis as 

ndjs v, - VI t,, = - = ~ 
A;;: - Ai;” 

h v,,, = A;; (3). 
v,=o 

where A$ is a second cofactor of [y]. It is obtained by 
deleting rows a and 6, and columns c and d from [y] and 
multiplying the resulting minor by (- l)a+b+c+d. The 
subscripts i and s in tmdis indicate that the feedback 
function td is obtained with the input terminal i shorted 
to ground (see Fig. 4(b)). 
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Fig. 3. Driving-point impedance (a), and admittance (b), signal-flow 
graphs for network in Fig. 1. 

(4 @) 

Fig. 4. Network of Fig. 1 with corresponding feedback functions. 
Driving terminal open (a), shorted (b). 

From F ig. 2  the overall voltage transfer function qrn 
results as 

%d A;; - A;; =--=- 
n  mdis A;.;: - Ai.7 ’ 

Thus the zeros of T,,, are the zeros of the forward transfer 
function tid, the poles of T.,,, are the zeros of the feedback 
transfer function t,,,dis. This property has been used to find 
all possible zeros of a  voltage transfer function obtainable 
with a  given active network topology [12]. 

B. Driving-Point Functions 
The  driving-point impedance of the network in F ig. 1  

can be  obtained in one  of two ways. F irst, the network 
can be  driven from a  current source (sometimes referred 
to as a  soldering-type entry [19], [20]) and  the resulting 
input voltage then established. This corresponds to the 
signal-flow graph in F ig. 3(a). The  driving-point imped- 
ance is then 

zi= 2  =zii+ A.zidt,,,i 
I ’ - Atmdio A.+~ 

t 
= Zii - -JE z. 

tmdio Id 

where the subscripts i and  o  in tmdio imply that the input 
terminal i is open (see F ig. 4(a)). 

The  second method is to drive the network from a  
voltage source (sometimes referred to as a  pliers-type 
entry [19], [20]) and  to determine the input current. This 
corresponds to the signal-flow’ graph in F ig. 3(b). The  
resulting driving-point admittance is 

=Yii - &Ymi. 

Using Cramer’s rule, the immittance and transfer func- 
tions required for the evaluation of (5) and  (6) can be  
directly obtained from [y] in (1). The  resulting expres- 
sions, given in terms of the corresponding cofactors are 
listed in Table I. Note that tmdio and tmdis are the feedback 
transfer functions for the case that the input terminal i is 
open (i.e., driven from a  current source) and  shorted (i.e., 
driven from a  voltage source), respectively. This distinc- 
tion is not generally made  in the computation of transfer 
functions since the voltage transfer function (i.e., driven 
from a  voltage source) is usually of interest. Thus the 
function tmd occurring in connection with a  transfer func- 
tion is generally tmdjs. 

Naturally, the driving-point functions can be  obtained 
more easily using established methods such as that of 
Nathan [II]. However, the expressions obtained here are 
necessary in order to derive a  useful property of driving- 
point impedances that is valid for any structure resem- 
bling that given in F ig. 1. This property is described in 
what follows. 

III. THE DRIVING-POINT IMPEDANCE OF ACTIVE 
RC-NETWORKS COMPRISING A SINGLE OPAMP 

The Blackman impedance relation [ 13], [ 1  l] is given as 
follows: 

‘i F,(with input terminals shorted) 
zi(x=o) = F,(with input terminals open)  ’ (7)’ 

It states that the ratio of the driving-point impedance of a  
network with and  without feedback (i.e., with x#O and 
x =O, respectively) is equal to the ratio of the return 
difference with respect to the feedback element x when 
the input terminal i is shorted and open, respectively. 
Applying this relation to the signal-flow graphs in F ig. 3, 
we obtain 

z- FA(vi=O) = l-Atmd is ‘r&is - =- 

‘ii . FA’Azi=o) ’ -Atmdio A+~ tmdio . 
(8) 

An equivalent expression is obtained for yi/yii. From 
Table I we have 

vd 
lmdi. = v %dis 

A;;: - Aj;l 
= - = 

m  V, =0 dmdis A$!, (94 

and 

vd n A;:-A;l 
‘mdio=~ ,=,=~= A; . Pb) 

‘In the present discussion the input terminals will refer to the input 
terminal i and ground. 
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TABLE I 
FORMULAS FOR THE CALCULATION OF THE TRANSFER FUNCTIONS 

IN FIG. 3 

Thus with (8) and impedance formula 1 of Table I we 
obtain 

n&driven from voltage source) 
= n,,(driven from current source) ’ (10) 

This expression states that the driving-point impedance at 
any terminal of a network of type given in Fig. 1 is 
determined by the zeros of the feedback transfer functions 
from the amplifier output to the differential input of the 
amp Iijier . 

The zeros of the driving-point impedance are the zeros of 
the feedback function t& with the driving terminal shorted 
(voltage source at the input); the poles of the driving-point 
impedance are the zeros of the feedback function tmd with 
the driving terminal open (current source at the input). 

Referring to the configuration in Fig. 1, the zeros of the 
driving-point impedance at terminal i are the zeros of tmdis 
(see Fig. 4(b)), the poles are the zeros of tdio (see Fig. 
4(a)). This property can be used to advantage in the 
design of driving-point impedances using well-proven ac- 
tive filter structures whose voltage transfer functions are 
known [21]. This will be illustrated in the next section. 

s 

Fig. 5. Parallel and series impedance configurations. 

IV. THE DESIGN OF ACTIVE RC DRIVING-POINT 
IMPEDANCES 

A. Parallel and Series Impedance Configurations 
There are two basic driving-point impedance configura- 

tions which are of particular importance in the design of 
simulated LC filters using active RC networks. The first 
corresponds to a. grounded parallel combination (Fig. 
5(a)), the second to a grounded series combination (Fig. 
5(b)) of three elements. One of the three elements (desig- 
nated S in Fig. 5) is a “simulated” element, i.e., it is an 
active RC network simulating a frequency-dependent 
component; the other two (elements E, and E2 in Fig. 5) 
are passive, i.e., RC or RL combinations. Commonly used 
parallel and series impedances, and the actual compo- 
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TABLE II 
SOME USEFUL DRIVING-POINT IMPEDANCES 

nents making them up, are summarized in Table II. In wherej equals 0, 1, or 2, and  the zeros, defined by o, and  
both cases the impedance can be  expressed in the form q,, are complex conjugate. Due to the normalization, (13) 

Z= R.f(s) (11) and  (14) are dimensionless. 

or, normalized with respect to the resistor R (indicated by 
a  prime) 

Z’=f(s) (12) 
where f(s) is a  dimensionless function in s. Thus the 
parallel configuration can be  expressed by the general  
normalized form 

ajsj 
(z;),= (+ 

s2+ -s+w; 
%  

(13) 

where j equals 0, 1, or 2, and  the poles, which are defined 
by wP and qp, are complex conjugate. Similarly the series 
configuration, normalized with respect to R has the gen- 
eral form 

s2+ “-s+,i 
(‘i>j= zsj (14) 

J 

B. The  Two-Step Design of Driving-Point Impedances 
In order to realize the six basic driving-point impedance 

configurations listed in Table II, we are free to select any 
type of network, as long as it belongs to the category 
represented by F ig. 1. The  selection of a  suitable network 
should take into account such factors as circuit sensitivity 
to component  variations and the number  of components 
required. Furthermore, and  for obvious reasons, the con- 
siderable experience accumulated in the design and devel- 
opment  of single-amplifier building blocks providing sec- 
ond-order voltage transfer functions should be  applicable 
also to the design of driving-point impedances. W ith this 
in m ind, it is advisable to start out with a  well proven 
basic active filter topology such as that shown in F ig. 6(a), 
(b), or (c). Note that these networks are included in the 
basic topology of F ig. 1. Starting out with each of .these 
topologies, whereby resistors and  capacitors are inserted 
as they would be  in the equivalent active filter building 
blocks, and  augment ing them along the lines discussed in 

. 
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Fig. 6. Basic active filter topologies. 

Fig. 7. Generalized active filter topology. 

[21], any one of the impedance types listed in Table II can 
be obtained. In doing so we consider two additional 
design constraints, namely i) the active impedance should 
be canonic in terms of capacitors, i.e., only two capacitors 
should be used for a second-order impedance function 
and ii) the number of resistors should also be as low as 
possible. 

C. A General Approach to Driving-Point Impedance Design 
In the following we show how the driving-point imped- 

ance property derived in Section III can be used to design 
any one of the driving-point impedances listed in Table II. 
We start out with the generalized topology of Fig. 7 which 
includes the special network structures of Fig. 6. In partic- 
ular the topologies of Fig. 6(a) and (b) are included here: 
with the upper opamp signs we have the augmented 
version of Fig. 6(b), with the lower signs the augmented 
version of Fig. 6(a). Using this generalized topology, only 
one analysis is necessary; any impedance in Table II can 
subsequently be obtained by elimination of appropriate 
network elements. 

The analysis of the generalized impedance represented 
by Fig. 7 gives 

(15) 

where 
n,=e(a+d,+d&(b+g,+g,J 

+(ft+fo).(a+d,+d,+e).(b+g,+g,) (16) 

nj = W4 + 4) + W, +h> 
*(a+d,+d,+e)-ae(g,+g,,) 

d,=(6+g,+gl){(c+d,+f,) 

.[e(a+d,)+f,(a+d,+e)] 

(17) 

+cf,(a+d,+d,,+e) 

+~dI(e+f,)+fIdI(a+do+fo)} 

+(~+gokt[e(a+d,+do) 

+(f~+f~)(a+d~+&,+e)] (18) 

+bd,[f,d,+f,(c+f,+g,)] 

+gl[ad,fo+ced,,+c&(a+d,+dO+e)] 

-g,[ae(c+d,+f,+g,)+cd,e 

+ad,f,+cf(a+d,+d,+e)]. (19) 

Note that the polarity of the input terminals of the opamp 
does not influence the expression for the driving-point 
impedance. However, for any given impedance realization 
only one polarity is permissible for the opamp. It is 
determined by the stability of the network, and depends 
on the basic topology (e.g., Fig. 6(a) (b)) from which the 
network in question evolved. 

Considering the design of the zeros of Zi first, we can 
simplify N(s) considerably by setting certain admittances 
to zero (i.e., removing them) or to infinity (i.e., shorting 
them). However, the number of possible realizations is 
still enormous, even if we take into account our two 
constraints i.e., i) canonic in C and ii) minimum number 
of resistors. With the aid of our “impedance property” 
discussed in Section III we can now proceed expeditiously 
nevertheless. Referring to Fig. 7 we assume that the input 
terminal of the driving-point impedance is to be driven 
from a voltage source. With respect to the feedback func- 
tion tmd this implies a shorted input terminal during opera- 
tion of the network, i.e., we are concerned here with tmdis. 
In these circumstances, setting the admittance b equal to 
zero means that there is feedback to only one of the 
opamp input terminals. Then it is easy to see that a low- , 
high- , or bandpass feedback function tdjs will provide a 
term aO, a,s, or a2s2 in the numerator of Zi. Thus we 
obtain a numerator associated with a parallel impedance 
configuration (see (13)). Using (17) and (19) it is then a 
simple matter to select the remaining admittance values 
such that the desired complex conjugate poles of Z, are 
obtained. Proceeding in this manner, the parallel imped- 
ance configurations given as networks l-10 in Table III 
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TABLE III 
SOME PRACTICAL IMPEDANCE CONFIGURATIONS 

..cruc:.k ..c.l 
I 

Z.Z - L 

17 

h 

!.etwor% ao.2 

network ho.4 

i I 

Letwork ~0.6 

D=C1C2.& ; ac+ae+ce c =  c*.------ ; ae  

betwork ,.0.7 

C ,, 2 
II 

do 

5 -- 

L= 
C2dgl+go) 

cfllro(a+do) ' R= 
c2"(81+6'o) 

~olfl(il+C2)(~+c)+C2~(~~gl)]- C2glcdo 

cc (g+g) MC1210 ; CIC*kl+go) 
cfldogo L = (Cl+C2)cflgo - C2cdog1 ; 
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TABLE III (Continued) 

ivetwork ho.9 = - 1 fv C-L R “r I 
glfgo R=goo i 

C2go(ae+ca+ce) 
g1 I 

= 
C=O 

CIW 

hetwork ho.10 

= - 

D=er i C= 
(Cl+C )q,a - C eldo 

a ( el+eo ) 
R,I-+I ; 

g1 go 

a=l-+l ; 
Cl+C2 

G2 G3 
L=- ; I,i = ~ 

2 3 G1G2G3 

a c 
t 

T 

= R 
- 

5 
E 

T 

fl 
fs 

i -J 

1 "=T- ; 
ClC2 

C=x D=C1C2 
1 1 2 a 

R=1 ; 
bC1C2(f1+e1) c c (f +g ) 

ll+gl 
C= bil(Cl+C2) - C2ag1 ; 

D=1211 ; 
a*1 

/ 

bfl(Cl+C2) 
e1 

c =m 
aC2 

Network ia0.I.j 

C 1 e 
II 

1 

+ = - c 

do c2 I 
b 

p -: 
H R i: 1 L i 

2 
c=c161 

bC (d +e) 
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bC 
bdo ' &pf El 

L=3; H =1 
%I P Cl 

c eg 

yp. = o = E$$T 

1.etworr; .‘O.lr, 

c2 
I + 

= - c 

Cl 
1 ” b 

I 
fo 1 

p 0 
R R 

5 L 
1 

2 
c=c2&l bfo(Cl+C2! 

bfo ' H= -I- ; 
bC 

Cl 
L=+i i; =I_ 

Wl P Cl 
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may be  readily obtained. Note that each of the networks 
is canonical in C. 

It is interesting to note that networks l-3 can be  
dimensioned such that they provide the components L  
(network I), M  (network 2), and  D (network 3) by them- 
selves. Thus these three networks are perhaps the most 
universal of the networks given in Table III, in that, 
among others, the six parallel and  series impedance con- 
figurations of Table II can be  obtained merely by adding 
the elements (i.e., E, and  E, of F ig. 5) in parallel or series 
with the simulated element L, M , or D, respectively. It 
should be  noted though, that the impedances thereby 
obtained are not necessarily canonical. For this reason 
some of the other networks may be  preferable. In particu- 
lar the series impedance configurations given as networks 
1  l- 16, which were obtained in a  similar manner  to 
networks l- 10, are generally canonical and  more eco- 
nomical of components than series configurations ob- 
tained from networks l-3. Networks 10  and 14  have been 
previously described in the literature ([ 161  and [lo], respec- 
tively). Network 12  was obtained in a  manner  similar to 
the others, except that a  different starting network topol- 
ogy (see F ig. 6(c)) was used. In this connection it should 
be  pointed out that numerous additional impedance 
networks can be  obtained by starting with other topolo- 
gies than those used here. From there on  the method 
follows the procedure outlined above. Naturally, each 
starting topology must be  part of the fundamental topol- 
ogy represented by F ig. 1. In this regard, an  obvious 
additional starting topology is the one shown in F ig. 6(c); 
it may be  obtained from the topology of F ig. 6(b) by the 
complementary transformation [ 171. 

In conclusion it may be  useful to compare the method 
of driving-point impedance design described in this paper  
with ,the general  method of driving-point impedance 
synthesis suggested by Sandberg [ 181. Certainly, Sand- 
berg’s synthesis method is more general, in that any 
impedance function of arbitrary order can be  synthesized 
with it. However the resulting network will generally not 
be  canonical, nor will it necessarily have a  low resistor 
count. Moreover, since it is to be  expected that active 
impedance networks of order higher than two (or three) 
will depend as critically on  the open-loop amp lifier gain 
as is known to be  the case for conventional active filters, it 
is doubtful whether single-opamp active driving-point im- 
pedances of order higher than two or three are practically 
feasible. By contrast, the impedance design suggested in 
this paper  uses active networks that are compatible with 
well proven active filter building blocks and, like the 
latter, may readily be  optimized for m inimum passive 
component  sensitivity and  m inimum gain-sensitivity prod- 
uct [14]. 
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Noise and Sensitivity Optimization of a 
Single-Amplifier Biquad 

HERBERT J. BACHLER, MEMBER, IEEE, WALTER GUGGENBUHL, SENIOR MEMBER, IEEE, 

Akrrucr-Many papers bave dealt either with noise or sensitivity opti- 
mization of second-order active networks. III this article a joint optimiza- 
tion criteria is developed for a well-kuowu single-amplifier biquad (MB). 
Tbe noise performauce and the sensitivity properties of tbe SAB are 
described by two free network parameters, uamely the resistor ratio r* aud 
the capacitor ratio c*. A two-dimensional object function is left to mini- 
mize for either low-noise or low-sensitivity design. Curves which determine 
the best r,c values are given for both design objectives. A comparison 
indicates that only a slight sacrifice of tbe overall sensitivity properties is 
required by the optimum noise design, while a significant increase iu 
output noise can result if the circuit is designed for minimum sensitivities. 

I. INTRoDLJCTI~N 

T HE NOISE properties of different K-active filter 
structures have been analyzed by several authors 

[ I]-[4]. A general noise analysis procedure, applicable to 
all single-amplifier second-order networks has been in- 
troduced in [2] and [4]. Depending on the application, 
different circuit design objectives have to be considered. 

Second-order networks are very often used as basic 
building blocks to realize higher order networks. That 
application requires a large dynamic range. 

Since the maximum output signal level is limited by the 
active element supply voltages, the dynamic range is opti- 
mized by minimizing the output noise level of the specific 
second-order blocks. Minimizing the total output noise 
power will therefore be the main circuit design directive in 
this paper. 
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Several authors have dealt with the relationship be- 
tween sensitivity and noise of active circuits [5]-[7]. From 
[6] it follows, that the same circuit structure once opti- 
mized for minimum sensitivities and once for minimum 
output noise brings out different results. 

It is the purpose of this article to compare the sensitiv- 
ity optimization and the noise optimization of second- 
order filters. Some general noise and sensitivity funda- 
mentals are presented first and then applied to a single- 
amplifier biquad (SAB) circuit. 

II. GENERALCIRCUITDESCRIPTION 

The following calculations are restricted to second- 
order networks using a single amplifier, according to Fig. 
l(a). The circuit decomposes into a passive RC-4 terminal 
network and an active device with amplification K. The 
signal performance of the passive RC-network can be 
described by its short circuit admittance parameters. The 
active device contains an operational amplifier in the 
inverting mode with additional resistive, positive feed- 
back. The operational amplifier (opamp) is assumed to be 
ideal with respect to the input and output resistances, the 
open loop gain is A, (A >> 1). 

With 

t12= 
-Y21 

t32 = 
-Y23 

Y22 Y22 

the signal transfer function T(s) from terminal 1 to the 
output yields ’ 

T(s) = K*t,,W N(s) =- 
I- Kt,,(s) D(s) ’ 

s=ju. (2) 
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