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Abstract— We present an active contour framework for seg-
menting neuronal axons on 3D confocal microscopy data. Our
work is motivated by the need to conduct high throughput ex-
periments involving microfluidic devices and femtosecond lasers
to study the genetic mechanisms behind nerve regeneration
and repair. While most of the applications for active contours
have focused on segmenting closed regions in 2D medical and
natural images, there haven’t been many applications that have
focused on segmenting open-ended curvilinear structures in 2D
or higher dimensions. The active contour framework we present
here ties together a well known 2D active contour model [5]
along with the physics of projection imaging geometry to yield a
segmented axon in 3D. Qualitative results illustrate the promise
of our approach for segmenting neruonal axons on 3D confocal
microscopy data.

I. INTRODUCTION

Understanding the genetic mechanism behind how neu-

rons in the peripheral nervous system repair themselves

after injury and how they maintain their axonal structure

and function over time holds the key to developing better

treatments for neurodegenerative diseases and nerve injuries.

This goal has led to recent advances in developing state-

of-the art infrastructure using microfluidic devices and fem-

tosecond lasers [1], [2] for performing axotomy on model

organisms such as the nematode C. elegans. Microfluidic

devices enable easy and efficient handling of C. elegans for

axotomy and imaging without the need for additional im-

mobilizing chemicals, while femtosecond lasers have shown

to be valuable as a precise cutting tool for severing axons

in C. elegans without heating or damaging the surrounding

cells. These devices combined with confocal microscopy

imaging allow for a study of axonal repair and the associated

genetic mechanisms. However, to be able to draw meaning-

ful statistical conclusions, it is necessary to perform high-

throughput experiments involving many C. elegans worms.

High-throughput experiments necessitate automated analysis

of the 3D confocal microscopy imaging data after axotomy in

order to quantify changes such as re-growth and reconnection

that take place along the severed axon. This has resulted in

the development of image analysis techniques for quantifying

neuronal morphology, e.g., [3] and [4].

In this paper, we present an active contour framework

for segmenting neuronal axons, which manifest as open-
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Fig. 1. Proposed framework.

ended curvilinear structures on 3D confocal microscopy

data. Active contour models, also known as snakes [6],

[7], [8], are commonly employed to represent and track

objects of interest in natural and medical images. While the

traditional application of active contour models has been the

representation of closed regions in images, they have been

applied in a few applications involving segmentation of open-

ended curvilinear structures [9], [10], particularly in 3D.

Finding and modeling open-ended structures such as axons

involves unique challenges such as not knowing the length

of the axon a priori. We address these questions by joining

a well known 2D active contour model [5] with projection

imaging geometry to yield a 3D segmentation of the axon.

Preliminary qualitative results illustrate the promise of our

approach for segmenting neuronal axons on 3D confocal

microscopy data.

II. PROPOSED FRAMEWORK

The proposed framework is illustrated in Fig. 1. We next

describe these steps in detail.

A. Forward Projection

Let f ∈ RN represent the vectorized 3D confocal mi-

croscopy data, where N is the total number of voxels. Then,

for noise-free data, the forward model can be written as:

g = Hf, (1)

where g is a vector that represents the projection images,

and H is the projection matrix, also known as the forward

operator. The projection matrix H essentially models the

imaging process. For example, the coefficients of H could

model the attenuation and linear blur mechanisms inherent

in the imaging. The coefficients of H serve as weights that



describe the contribution of each voxel in the data f to a

particular projection gi. We assumed the Radon model while

designing the projection matrix H , i.e., only those voxels that

lie along a line defined by the coefficients of H contribute

to the projection data.

B. 2D Active Contour Model

We next deployed an open-ended parametric 2D active

contour on each projection image generated by the forward

projection process. A parametric active contour is defined

as the parametric curve v(s) = [x(s), y(s)]T , which evolves

through the image to minimize the following energy func-

tional [6]:

E(v(s)) =

∫ 1

0

[

1

2
(α|v′(s)|2 + β|v′′(s)|2) + Eext(v(s))

]

ds

(2)

where v′(s), and v′′(s) are first and second derivatives of

v(s) that represent continuity and tautness of the curve,

respectively. The weighting terms α and β determine how

much importance is placed on the continuity and the taut-

ness of the curve, respectively. The terms v′(s), and v′′(s)
contribute to the internal energy of the contour, i.e., the

energy that is inherent in the contour. The term Eext(v(s))
determines the external energy typically arising from image

features such as edges and is meant to draw the evolving

contour towards the boundaries of the object of interest.

Typical choices of the external energy include variants of

the image gradient [7], [6]. At a local minima of the

evolving curve, the Euler-Lagrange force balanced equation

Fint +Fext = 0 is satisfied, where Fint = αv′′−βv′′′′ is the

internal force controlling the curve’s continuity and tautness,

while Fext = −∇Eext(v) is the external force arising from

image features such as edges, respectively.

We use the vector field convolution (VFC) formulation

for the external energy term [5]. In the VFC formulation, a

standard feature map derived from the image is convolved

with a user-defined vector field kernel. A requirement on the

vector field kernel is that all the vectors in the field should

point towards the kernel origin. Hence, when the kernel

origin coincides with a feature such as an object boundary

or a curvilinear structure, all the vectors in the vector field

point towards this feature, causing the evolving contour to

be deformed towards the feature. The VFC formulation also

provides a large capture range for subtle features of interest

and is robust to noise [5].

The feature maps that were convolved with the vector field

kernel were derived from the projection images by using a

steerable ridge detector that responds to curvilinear structures

[11]. The axon seen on each projection image was enhanced

on the feature map, as illustrated in Fig. 2. It should be

noted that any good off-the-shelf ridge or line detector could

be used to derive the feature maps. The only criterion to be

satisfied is that the curvilinear structures be enhanced and

the background be suppressed.

Fig. 2. Left: A projection image depicting the axon. Right: The corre-
sponding feature map depicting the enhanced axon.

C. Active Contour Initialization and Growth

One of the challenges in using a parametric active contour

model is the initialization of the curve. We adopt a semi-

automatic approach for active contour initialization with a

focus on minimal user interaction. Towards this goal, we

define the initial curve on each projection image using only

two manually marked points on the 3D data that have been

projected onto the 2D space. Our approach is driven by the

observation that an impulse in a higher dimensional space

remains an impulse when projected onto a lower dimensional

space. For example, consider the projection of a Dirac

singularity centered at (x0, y0) in 2D, i.e. the projection of

δ(x − x0, y − y0):

Pθ(t) =

∫ +∞

−∞

δ(x − x0, y − y0)δ(xcosθ + ysinθ − t)dxdy

= δ(x0cosθ + y0sinθ − t),
(3)

where Pθ(t) is the 1D projection that is the Radon transform

of the function δ(x − x0, y − y0). It is immediately evident

from (3) that the 1D projection of the 2D impulse is also

an impulse, which is located at t = x0cosθ + y0sinθ. Using

this observation, we manually marked only two end points

of each active contour that had to be initialized on the 3D

data. These two end points contained in a 3D point volume

were then projected onto 2D via the same forward projection

process used for the imaging data, as described earlier. The

resulting point projections were then automatically processed

to retain only the two non-neighboring strongest impulses on

each projection image. The initial curve of the active contour

was then defined as a straight line segment between these two

points on each projection image.

Once the active contour is initialized, the curve deforms

iteratively using well known discrete-time coordinate update

equations derived from a finite-difference approximation

of the Euler Lagrange equation [5]. However, a problem

encountered when segmenting open-ended curvilinear struc-

tures such as axons, is that the length of the structure is

not known a priori. To solve this problem, we adopt a

scheme that we have used previously to segment open-ended

curvilinear structures on mammograms [9]. Essentially, we

let the active contour curve alternately grow and deform. To

begin with, the curve is defined as a straight line segment

between the two point projections. The curve then deforms



Fig. 3. Growing active contour. top left: initial curve; top right: after 5
iterations; bottom left: after 15 iterations, bottom right: after 25 iterations.

under the influence of its internal and external forces for

a fixed number of iterations. The deformation is followed

by extending the curve along one of it’s end points in

the direction of the tangent computed at that end point by

introducing another short line segment of a predefined length.

This new segment then deforms under the influence of its

internal and external forces for a fixed number of iterations.

The process of extension and deformation repeats until a

stopping criterion is met or a certain number of iterations

have been completed. We do not use a stopping criterion

but rely on a fixed number of iterations, though a stopping

criterion based on factors such as curvature could easily be

incorporated. For instance, in our previous work [9], we

have used a curvature based stopping criterion for open-

ended active contours, where the growth of the contour was

terminated at a point where the curvature exceed a 30◦ limit.

The predefined length of each extended straight line segment

was set to an arbitrarily chosen value of 10 pixels and the

number of iterations of extension and deformation was set

to 25. Fig. 3 illustrates four iterations of the growing active

contour along an axon trajectory on one of the projection

images.

D. 3D Reconstruction of the Axon

Once the 2D active contours have been deployed on each

projection image and the axon has been segmented in 2D,

reconstruction of the 3D axon is performed using the simple

back-projection operator HT , i.e.

fseg = HT gseg, (4)

where gseg is the vectorized projection data containing non-

zero values only along the active contour coordinates. The

result of this operation yields the segmented axon in 3D.

III. EXPERIMENTS AND RESULTS

The data set for this study comprised of a stack of 51

confocal microscopy images depicting the anterior longitu-

dinal microtubule (ALM) - a touch receptor neuron in the C.

elegans worm. The theoretical resolution of the data was 149
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Fig. 4. Two pairs of initial active contour end-points on a projection image.
The blue points represent one pair, while the red points represent the other.
Also illustrated are the axotomy region and the two trajectories of the axon
pre-and post-axotomy.

nano-meters in the x-y plane, while the resolution along the

optical axis of the microscope (z-direction) was 529 nano-

meters. Each image was 2048 × 2048 pixels in dimension

with 8 bits per pixel. Hence, the dimensions of the 3D

volume was 2048×2048×51 voxels. For efficient processing,

we considered a cropped 3D volume that best depicted the

axon. The dimensions of the cropped volume was 1549 ×
901×28 voxels. The forward projections were then computed

on the cropped volume. For the forward projection Radon

model, we considered 91 angular increments from -45 to + 45

degrees. Each projection image was further sub-sampled by

a factor of two to accelerate processing. The active contours

and the subsequent 3D reconstruction of the segmented axon

were then carried out on the sub-sampled projections. We

manually initialized two pairs of end points on a 3D slice best

depicting the region where the axon had been severed. These

two pairs of points were then projected onto the projection

space using the same forward projection model used for the

imaging data. The projected points are illustrated in Fig. 4

along with the region where the axon was severed. Also

illustrated in Fig. 4 are the original and axon re-growth tra-

jectories pre- and post-axotomy. The 3D rendering of the seg-

mented axon trajectories is illustrated in Fig. 5. We used the

open source software VolRover (http://cvcweb.ices.

utexas.edu/cvcwp/?page_id=100) to perform 3D

volume rendering and visualization. It is evident from Fig. 5

that the two active contours were able to capture, segment,

and accurately represent the original axon trajectory as well

as the re-growth trajectory after axotomy.

IV. CONCLUSION

We have presented a framework for reconstructing and

representing neuronal axons in 3D from confocal microscopy

imaging data. The basic framework can be extended to

represent open-ended curvilinear structures on other multi-

slice imaging modalities that follow the principles of projec-

tion imaging geometry. Future work includes a quantitative

validation of the framework, and modeling the repair and

regeneration of multiple 3D neuronal axons from confocal

microscopy images acquired after axotomy on a large num-

ber of C. elegans worms.



Fig. 5. 3D rendering and visualization of the active contours.
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