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ABSTRACT
We describe a computational model for studying the com-

plexity of self-assembled structures with active molecular
components. Our model captures notions of growth and
movement ubiquitous in biological systems. The model is in-
spired by biology’s fantastic ability to assemble biomolecules
that form systems with complicated structure and dynamics,
from molecular motors that walk on rigid tracks and pro-
teins that dynamically alter the structure of the cell during
mitosis, to embryonic development where large scale com-
plicated organisms efficiently grow from a single cell. Using
this active self-assembly model, we show how to efficiently
self-assemble shapes and patterns from simple monomers. For
example we show how to grow a line of monomers in time
and number of monomer states that is merely logarithmic
in its length. Our main results show how to grow arbitrary
connected two-dimensional geometric shapes and patterns in
expected time polylogarithmic in the size of the shape plus
roughly the time required to run a Turing machine deciding
whether or not a given pixel is in the shape. We do this while
keeping the number of monomer types logarithmic in shape
size, plus monomers required by the Kolmogorov complex-
ity of the shape or pattern. This work thus highlights the
fundamental efficiency advantage of active self-assembly over
passive self-assembly and motivates experimental effort to
construct active molecular self-assembly systems.

Categories and Subject Descriptors
F.1.1 [Computation by abstract devices]: Models of

Computation—Computability theory

Keywords
Self-assembly; model of computation; molecular program-

ming; reconfigurable robotics

1 Introduction
One of the main inspirations for our model comes from

biology. Embryonic development showcases the capability
of molecules to compute efficiently. A human zygote cell
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contains within it a program that encodes the geometric
structure of an organism with roughly 1014 cells, that have a
wide variety of forms and roles, with each such cell containing
up to tens of thousands of proteins and other molecules with
their own intricate arrangement and functions. Early stages
of embryonic development demonstrate exponential growth
rates in the number of cells over time, showing remarkable
time efficiency. Not only this, but the developmental path
from a single cell to a functioning organism is an intricately
choreographed, and incredibly robust, temporal and spatial
manufacturing process that operates at the molecular scale.
Development is possibly the most impressive example of the
ubiquitous process of molecular self-assembly, where relatively
simple components (such as nucleic and amino acids, lipids,
carbohydrates) organize themselves into larger systems with
extremely complicated structure and dynamics (cells, organs,
humans).

Molecular programming, where nanoscale engineering is
thought of as a programming task, provides our second moti-
vation. The field has progressed to the stage where we can
design and synthesize a range of programable self-assembling
molecular systems, all with relatively simple laboratory tech-
niques. For example, short DNA strands that form ‘tiles’ can
be self-assembled into DNA tile crystals [6] that are algo-
rithmically patterned into counters and Sierpinski triangles.
This form of passive self-assembly is theoretically capable of
growing arbitrarily complex algorithmically described shapes
and patterns. DNA origami can be used to create uniquely
addressable shapes and patterns upon which objects can be
localized within six nanometer resolution [4]. These systems
are static, in the sense that after formation their structure
is essentially fixed. However, DNA nanotechnology has seen
increased interest in the fabrication of active nanostructures
that have the ability to dynamically change their structure.
Examples include DNA-based walkers, reconfigurable DNA
origami, and molecular motors that transition between a
small number of discrete states. In these systems the inter-
play between structure and dynamics leads to behaviors and
capabilities not seen in static structures.

Here we suggest a model to motivate engineering of molec-
ular structures that have complicated active dynamics of the
kind seen in living biomolecular systems. Our model combines
features seen in passive DNA-based tile self-assembly, molec-
ular motors and other active systems, molecular circuits that
evolve according to well-mixed chemical kinetics, and even
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Figure 1: (a) A monomer in the triangular grid coordinate system. (b) Example monomer interaction rules.
The movement rule (r7) nondeterministically applies one of two possible symmetric movements. When a
movement rule is applied, any monomers attached to the arm are pushed along with it.

reaction-diffusion systems. The model is designed to capture
the interplay between molecular structure and dynamics. In
our model, simple molecular components form assemblies that
can grow and shrink. Individual components can undergo
state changes and move relative to each other.

The model consists of a two-dimensional grid of monomers,
as shown in Figure 1. A specified set of rules, or a program,
directs adjacent monomers to interact in a pairwise fash-
ion. Monomers have internal states, and a pair of adjacent
monomers can change their state with a single rule applica-
tion. Monomers can appear and disappear from the grid. So
far, the model can be thought of as a cellular automaton of
a certain kind (rules are applied asynchronously and can be
nondeterministic, and there is a notion of a growth front).
An additional rule type allows monomers to move relative to
each other. The movement rule is locally applied but propa-
gates movement throughout the system in a very non-local
fashion. This geometric and mechanical feature distinguishes
our model, the nubot model, from previous molecular models
and cellular automata, and crucially underlies its construction
efficiency. The system evolves as a continuous time Markov
process, with rules being applied to the grid asynchronously
and in parallel analogous to standard chemical kinetics, mod-
eling the distributed nature of molecular reactions.

The model can carry out local state changes on a grid, so
it can easily simulate Turing machines, walkers, and cellular
automata-like systems. We show examples of other simple
programs such as robotic molecular arms that can move dis-
tance n in expected time O(logn), something that can not
be done by cellular automata. By using a combination of
monomer movement, appearance, and state change we show
how to build a line of monomers in time that is merely loga-
rithmic in the length of the line, something that is impossible
in the (passive) abstract tile assembly model [1]. We go on
to efficiently build a counter, that counts from 0 to n, within
time and number of monomer states that are both logarith-
mic in n. We build on these results to show that the model
is capable of building wide classes of shapes exponentially
faster than passive self-assembly. We show how to build a
computable shape of size n× n in time polylogarithmic in n,
plus roughly the time needed to simulate a Turing machine
that computes whether or not a given pixel is in the final
shape. Our constructions are not only time efficient, but
efficient in terms of their program-size: requiring at most
polylogarithmic monomer types in terms of shape size, plus
that required by the Kolmogorov complexity of the shape.

For shapes that have short algorithmic descriptions, but
require a lot of time and space to compute their pixels, the
previous computable shape construction necessarily requires
(temporary) growth beyond the shape boundary. One can ask
if there are interesting structures that we can build efficiently,

but yet keep all growth confined within the boundary. It turns
out that colored patterns, where the color of each pixel in the
pattern is computable by a polynomial time Turing machine,
can be computed extremely efficiently in this way. More
precisely, we show that n×n colored patterns are computable
in expected time O(log`+1 n) and using O(s + logn) states,
where each pixel’s color is computable by a program-size s
Turing machine that runs in polynomial time in the length
of the binary description of pixel indices (specifically, in time
O(log` n) where ` is O(1)). This entire construction is initiated
by a single monomer and is carried out using only local
information and in an entirely distributed and asynchronous
fashion.

Our results are related to theoretical work in passive self-
assembly [1, 6], chemical reaction networks [5], cellular au-
tomata, Lindenmayer systems [3] and reconfigurable robot-
ics [2]—each such model sharing a subset of our active self-
assembly model’s features. In particular, reconfigurable mod-
ular robots with a similar long-range motion primitive to ours
can achieve arbitrary reconfiguration in time logarithmic in
shape size [2], so it will be interesting to compare such models
to ours. Our constructions serve to show that exponentially
large complicated shapes and patterns can be fabricated in
polynomial time and using a linear number of states, besides
the states that are required by the Kolmogorov complexity of
the shape or pattern. Thus the model illustrates the power of
active local growth along with non-local movement. We hope
that the model can serve as the basis of further investigation
into the computational properties of active self-assembly.
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