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Abstract—In this paper we propose an active control
strategy for scanning laser sensors on autonomous vehicles
traveling offroad at high speeds. As speed increases the
amount of sensor information about the terrain decreases.
We address the problem of sensor control in the context
of this speed-coverage trade off. The algorithm and testing
methodologies are described with results comparing our active
sensing method to a passive sensing method.

Index Terms—active sensing, active perception, active vi-
sion, high speed, offroad

I. INTRODUCTION

Perception is the key to high-speed offroad driving. A
vehicle needs to have maximum data coverage on regions
in its trajectory, but must also sense these regions in time
to react to obstacles in its path. In offroad conditions, the
vehicle is not guaranteed a traversable path through the en-
vironment, thus better sensor coverage provides improved
safety when traveling.
Scanning lasers are the preferred sensor for offroad
applications [8]. A disadvantage of a scanning laser is
its limit in range and speed. Consequentially, lasers have
limited spatial density of data [8]. At slow speeds under 5
m/s, a scanning laser sensor can collect enough data from
the environment to fully sense the vehicle path. Therefore,
the vehicle always has enough time to react to obstacles and
is in a minimal amount of danger at any point. When the
vehicle moves at high speeds greater than 10 m/s (22 mph),
the vehicle can no longer sense its entire path and will
travel over unknown regions. Traversing unknown regions
on its trajectory is a calculated risk of traveling at high
speeds.
A remedy for this problem is to increase the number
of laser sensors. An alternative approach is to increase the
utility of the existing sensors on the vehicle. One way to
perform this is to actuate the sensors toward interesting
features in the vehicle’s environment, such as unknown
regions on its current trajectory.
A passive sensing model is described as having either a
sensor mounted that is:

• attached directly to the vehicle in a fixed position and
orientation
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• attached to the vehicle on a movable platform, such
as a pan/tilt unit. This movable platform is actuated in
a pre-defined motion, such as a sweeping arc motion.

Conversely, an active sensing model has a sensor mounted
on a movable platform whose position and orientation is
chosen to examine points of interest in the environment.
The active sensing model provides two distinct ad-
vantages over a passive sensing model. Regions of the
environment that are not accessible to a passive sensor
can be viewed by a moving active sensor. Unlike passive
sensing, active sensing focuses the sensor’s data on the
most important regions.
Active sensing has been previously explored [6], [7],
in particular with computer vision. The ability to orient a
camera has increased the ability for 3-D shape parameteri-
zation, obtaining range from 2-D segmentation of an image
[1], and recovering surface shape from occluding contours
[3]. Active sensing with vision has also been used for
improving data association within the SLAM problem [2].
Other recent papers have used sensing to smartly navigate
through indoor and outdoor terrains [4], [9], [10].
Previous work has been done with sensor actuation for

navigation and localization. Nabbe [4] has recently applied
an active sensing strategy to the task of mobile robot
planning and Burgard [14] has applied an active sensing
strategy to the task of mobile robot localization. Both
of these works have focused on identifying key points
of interest in the terrain that, when coupled with active
perception, will provide a better solution for navigation
or localization. Neither addresses the issue of continuous
active sensing for offroad navigation.
Much of the previous work in active sensing has been
more static, in that there has been no time limit in which
a region has to be sensed. However, autonomous driving is
a temporal problem. The greater the distance at which the
environment is perceived allows more time for the system
to react and the safer the vehicle can travel on its trajectory.
Active sensing allows an increased reaction time which is
pivotal for high-speed offroad driving.
On-road autonomous driving has been feasible since the

early 1990’s [15]. Since then, there has been a considerable
amount of interest in autonomous offroad driving [16].
However, little work has been done in high-speed offroad
conditions [5], [17].
Sukthankar [13] performs active sensor control for a



camera mounted on an autonomous vehicle which provides
better coverage on sharp turns. However, this camera
system has only been used on drivable roads and is unclear
on its performance in an offroad setting at high speeds.
To the best of our knowledge, no prior work has suc-

cessfully merged high-speed offroad driving with active
sensing. The melding of these two issues is key for safe
autonomous driving under these conditions.
At first glance, a greedy strategy that points the sensor at
the nearest unknown region may seem optimal. However,
this may inhibit the ability to sense upcoming cells. It is
to the vehicles advantage to traverse one unknown region
in order to see more later.
Our active sensing algorithm addresses the vehicle navi-
gation problem by identifying key unknown regions in the
trajectory that would be interesting to view. Our approach
aims to minimize the number of unknown regions the vehi-
cle traverses while traveling on a fixed way-point trajectory.
The algorithm performs a lookahead search which picks
the optimal direction to pan the laser according to a utility
function. The utility function dynamically assigns value to
each region based on distance from the vehicle and the
ability of the laser to sense the region.
This paper will compare an active model for sensor
actuation against a passive sensing model at high speeds in
offroad conditions. If the vehicle is permitted to traverse a
certain percentage of unknown regions on its trajectory, we
will show that the active sensing model allows for better
data coverage on its trajectory in comparison to a passive
model. This increase in data coverage will allow the vehicle
to travel at quicker velocities while maintaining a minimum
level of unknown region traversal.

II. METHOD
At any given point in time, regions close to the vehicle

are immediately important and require attention. Distant
regions are less important because the laser has time to
sense them in the future. However, as the vehicle begins to
move, the temporal nature of the problem presents itself.
Close regions matter less as they are traversed, and distant
regions become close and more important. We incorporate
this variable importance into a dynamic utility function.
Our dynamic utility function is an evaluation metric for

a fixed horizon lookahead planner. The planner does a
shallow lookahead search to estimate what the vehicle will
sense in the near future. Based on the evaluation of the
utility function, the vehicle chooses a direction to move its
laser.

A. Traversability Map and Trajectory

A 2-D traversability map is an underlying structure
for making decisions. 2-D traversability maps have been
successfully used on offroad driving to interpret 3D data
and create reasonable assessments of the terrain [5], [17].
Reducing dimensionality of the problem also allows for
faster real-time algorithms.

(a) A point cloud of our terrain.

(b) A traversability map of the point
cloud.

Fig. 1. The images above were gathered by moving the vehicle in the
evaluation environment. The black object in the middle of (a) and the
blue object in (b) is the vehicle. The green (light gray) areas and points
are traversable regions. The red (dark gray) indicates obstacles.

The vehicle builds a map as it senses its environment.
Each laser scan is converted into a set of points in the
global coordinate frame. The points in a scan are compared
to their neighbors and labeled. Points with sudden steep
changes in z value are labeled as obstacles, otherwise they
are labeled as free [15]. The points are placed into their
corresponding grid cells and the status of the cell is updated
in the standard manner. A picture of a point cloud and its
corresponding map are shown in Figure 1.

The traversability map gives the status of the terrain,
however all regions on the terrain are not of interest. We
only care about regions of the terrain that will be hazardous
to the vehicle as it performs it task. In our case, the task
is to follow a fixed trajectory on the terrain.

The vehicle’s trajectory is specified by a set of 2-D
way-points. Each way-point is connected by a straight
line to form a path for the vehicle to travel. We specify
important regions as those along our trajectory. In terms of
the traversability map, we create a corridor of cells which
may be encountered by our vehicle as it travels between
way-points.

Due to limitations in the speed of laser refresh and sensor
actuation, at high speeds it becomes impossible to know the
state of all of the cells in our trajectory corridor. Therefore,
a successful trajectory run is one that minimizes the number
of unknown cells traversed by the vehicle.



B. Active Sensing Method
As the vehicle runs its trajectory, the cells of interest
and information about the terrain change. The goal is to be
able to assimilate this information into a control strategy.
For the purposes of choosing a control direction, we

simplify to a 2-D traversability map. The 2-D motion of
the vehicle is estimated by moving it along the way-points.
A single vertical scan is just a stripe of data in a straight
line from the laser. In a 2-D setting, the data strip is just
ray cast from the laser at the angle of the laser.
Given a 2-D vehicle and a laser angle, we estimate which
cells are sensed by casting a fixed length ray over the
traversability map. Figure 2 illustrates this process. Each
ray returns a list of n grid cells in the order they are
intersected by the ray. These grid cells c1:n make up a
scan ray s.
The ordering of cells in s provides information about

the distance of the cells from the vehicle. Closer cells are
more important. However, pointing a sensor to the closest
cell may inhibit the ability of the vehicle to sense distant
cells. Since distant cells become close as the vehicle moves,
knowing the future effect of moving the sensor is important.

Fig. 2. The 2-D vehicle does a ray cast to compute a scan ray s. The
length of the ray is set in the experiment and is constant for each ray.
The scan ray comprises of the numbered cells in the order that they are
numbered. For example this scan ray would contain cells c1:16.
To estimate what the vehicle will sense, we
must estimate how it moves across the terrain. Let
[r̄, S̄] move(r,D, i) be the function for moving the
vehicle. The function takes as arguments a vehicle r, a
direction to move our laser D, and a count i of how
many scan rays to collect. For each scan ray gathered, the
vehicle is moved, a ray is cast, and the intersecting cells
are collected.
The 2-D pose has a translational velocity v and an

instantaneous rotation, the laser has a rotational velocity
ωpan. Before moving, the v is updated by acceleration. The
scan rate of the laser T (Hz) is known. The vehicle moves
by v

T and the laser pans in direction D by ωpan

T . When i
scan rays have been gathered, move returns a vehicle at its
current position r̄ and a list of scan rays S̄.
While scan rays can now be gathered for moving the
laser in a given direction, there is only one decision point

TABLE I
SEARCH ALGORITHM

1: float search(d, S, r, D)
2: [r̄, S̄] = move(r, D, i)
3: S′ = S ∪ S̄
4: if (d �= 0)
5: return maxD̄(search(d − 1, S′, r̄, D̄))
6: else return U(S′)

for choosing the direction of the laser. To improve its
estimate, the planner takes into account multiple decision
points.
Our lookahead planner has two steps for its search. The

first step involves the use of the move function. The search
first moves the vehicle and collects a fixed number of scans
rays. These scans rays are incorporated into a dynamically
maintained list of scan rays S′. Based on the horizon of
the search, the algorithm either branches or evaluates the
utility of S′. The details of the algorithm are presented in
Table I.
The search parameters given in line 1 include a list of
scan rays S, a vehicle r, an actuation direction D, and a
search depth d. The vehicle is moved in line 2 to gather a
list of i scan rays S̄ and a new vehicle r̄. Lookahead time
is based on the initial value of d, i, and the scan rate of
the laser.
The current list of scans S is concatenated with S̄ to
create an updated list S′. If search has not reached a leaf
node, it branches and returns the value of the maximum
branch (lines 4-5). Otherwise it evaluates and returns the
utility of S′ (line 6).
The utility function evaluates the usefulness of a list of
scan rays. Lists that are more likely to sense unknown cells
on our trajectory are given higher values. The utility func-
tion is initialized by assigning the probability of sensing a
cell to a small non-zero number.
Each scan ray s ∈ S′ consists of the list of map cells

ci:n in the order that they are seen by a ray cast (Figure
2). The probability of sensing cell ci given a scan ray is
as follows:

p(ci|s) = p(ci|c1:n) (1)
= p(ci|c1:i−1) (2)
= p(ci|ci−1)p(ci−1|c1:i−2) (3)

(1) expands s into its component cells. (2) assumes that
sensing ci is independent of sensing any cells after ci.
(3) assumes that given that ci−1 is sensed, sensing ci is
independent of any other cells before it. This leaves two
terms. The first, p(ci|ci−1), is the probability of sensing ci

through ci−1. The second, p(ci−1|c1:i−2) is the recursive
step. Since there are no cells obstructing the view of c1,
p(c1) = 1. Unrolling the recursion leaves:

p(ci|s) =
i∏

j=2

p(cj |cj−1)



p(ci|ci−1) is based on the classification of ci−1 in the
occupancy map. The probability of sensing through an
occupied cell is lower than sensing through a free cell. For
simplification of the model, the case where the vehicle has
the ability to sense over small obstacles has been ignored.
Since the cells in a scan ray are ordered from closest
to farthest from the vehicle, cells further away will have a
lower probability of being sensed. This is important for two
reasons. First, cells that are close must be sensed before
they are traversed. Secondly, since the laser gives more
information about a close range, the vehicle is less likely
to sense distant cells.
The probability of sensing a list of scans S ′ is the
following:

p(c|S′) = p(c|s ∪ S′′)

= 1 −
(
1 − p(c|s)

)
×

(
1 − p(c|S′′)

)

The list S is split into first scan ray s and the rest S ′′.
Each scan ray is an independent observation of the cells, so
the probabilities of multiple observations of the same cell
are added. Since each scan ray is associated with a vehicle
pose, cells that are far away in the current scan ray may
be close in a future scan ray. Therefore we have a higher
utility for not only cells that are close now but also cells
that will be close in the future.
The utility is computed in the following manner:

U(S) =
∑

c

p(c|S)1{c == unknown ∧ c ∈ trajectory}

An indicator function, 1{x}, is one if x is true and zero
if x is false. We use the indicator to only consider areas
that are unknown on the trajectory. The cells are further
weighted by the probability of seeing them given our list
of scans rays S.
The planner uses the search to choose a direction D by
the following:

D = arg max
D′
search(d, {}, r,D′)

The search is initialized with an empty list of scan rays
and the direction is chosen according the maximum value
over all candidate directions D′.

C. Evaluation Environment
Comparing the relative effectiveness of different sensing
modalities requires repeated runs over the same terrain.
Changing environments, safety concerns, and time con-
straints make these comparisons impossible. To make our
results more informative, we use vast amounts of prere-
corded 3D data to create a systematic evaluation environ-
ment. In this environment we can develop algorithms and
meaningfully compare them.
We gathered laser data from a Sick LMS mounted on
a VW Touareg (Figure 3(a)). Pose data from various pose

estimation devices was integrated through a Kalman filter.
Using the laser data and the pose information we created
a point cloud of the terrain (Figure 4(a)).
A height grid, with cell size of half a meter, is created
with points placed into their respective cells. The z value
for each cell is the average z for cells with low variance and
the maximum z for cells with high variance. Each grid cell
is represented by a point that consists of its center x, center
y, and z values. Empty grid cells are interpolated using
data from adjacent cells. Grid points are then connected
with each other to create a terrain mesh. The terrain mesh
still retains the obstacleness of the original terrain, but in
a slightly coarser representation (Figure 4(b)).

(a) vehicle (b) evaluation environment

Fig. 3. The VW Touareg

(a) Point Cloud (b) Terrain Mesh

Fig. 4. The protrusions in the point cloud and mesh correspond to trees.
(a) Point Cloud of 3D data (b) Corresponding mesh overlay on top of
point cloud.

The vehicle moves along our terrain by following a
straight line way-point trajectory. The vehicle starts at rest
and accelerates up to a maximum velocity. Our evaluation
for the vehicle’s pose is based on a 6-DOF vehicle estima-
tion system.
The laser has an angular seperation of half a degree over
a 180 degree spread. The laser is mounted such that it cuts
a vertical plane in front of the vehicle. The laser pans left
and right at a fixed velocity.

III. RESULTS
A. Experimental Setup
To judge the effectiveness of our algorithm, we compare
it to a passive sensing model. Passive sensing consists of
panning the sensor left to right to sweep out an arc in front
of the vehicle. The arc angle is also known as the field of
view (FOV) of the laser.



Figure 5 displays the full vehicle trajectory. The trajec-
tory consists of two 180 degree turns, two straight sections,
and two sweeping gradual turns. In later testing, we felt
the need to perform comparison tests specifically around
a single curve. For these later runs, we truncated our
trajectory to only include a single 180 degree turn.

Fig. 5. The trajectory the vehicle traverses.

As the vehicle travels on its trajectory, it moves at a fixed
maximum velocity. The vehicle starts at rest accelerating
at a rate of 3 m/s2 up to the fixed maximum velocity. The
remainder of the trajectory is traversed at this maximum
velocity. As the vehicle nears the final trajectory way-point,
it decelerates to a resting position at a rate of 3 m/s2. For
braking, we assign µ = 1 for ground friction.
The laser is allowed to pan about the vehicle at a rate

of π radians per second. The laser collects data from the
environment at a rate of 25 Hz.
As will be discussed later, a vertically mounted laser
provides sparse data coverage past 10 meters. Therefore,
the length of the scanning ray was limited to 15 meters
with no adverse effects on control. We chose to perform
depth searches of 3

5 of a second while allowing a direction
branch every 1

5 of a second (search depth, d, of 2). For the
utility function, the parameter chosen for sensing a cell are
as follows:

• If ci−1 is free, p(ci|ci−1) = 0.9
• If ci−1 is unknown, p(ci|ci−1) = 0.9
• If ci−1 is an obstacle, p(ci|ci−1) = 0.1

We performed a test run for every fixed maximum
velocity between 3 to 20 m/s at 1 m/s increments. For
passive sensing, we also varied the field of view of the
laser between 10 and 90 degrees in 5 degree increments.
There are two different definitions for traversing an

unknown cell. The first definition is if the vehicle phys-
ically passes over an unknown cell. The second definition
involves the ability to react to a dangerous cell. While there
are many ways to react, we chose braking distance to test
our algorithm. The vehicle traverses an unknown cell if it
cannot stop in time to avoid crossing the cell. The stopping
distance s is based on the velocity v, acceleration a, and
the friction µ of the ground.

s =
v2

2µa

B. Discussion

(a) Active (b) Passive 15 degree FOV

(c) Passive 75 degree FOV

Fig. 6. This grid shows a 180 degree curved trajectory that has been
traversed by the vehicle. Dark cells in the grid indicate unknown cells
and light cells in the grid indicate known cells. (a) Active sensing model
(b) Passive sensing model with narrow FOV (c) Passive sensing model
with wide FOV

Figure 6 contains visuals comparing our active control
model with narrow and wide FOV passive models. A wide
FOV gives more data about the cells on the edge of the
corridor but covers many areas off the trajectory. Rays from
a narrow FOV fall on cells of interest more frequently but
may not see all of the cells on the corridor.
The grid in each figure represents a 180 degree curved
trajectory through which the vehicle has already traversed.
The light cells are areas in the trajectory that have been
sensed and the dark cells are areas in the trajectory that
are unknown. These tests were performed at a velocity of
15 m/s.
From Figure 6(b), we can see that the narrow FOV pas-
sive perception model misses large areas of the trajectory,
particularly on the inside of the curve. As the vehicle drives
around the curve, the narrow field of view only allows the
sensor to perceive objects directly in front of the vehicle,
thus it misses much of the inside track of the curve as it
progresses.
Figure 6(c) illustrates a wide FOV passive perception

model. This model performs better than the narrow FOV
model around the curve, but the greater sweeping radius



results in a lower frequency of sensing directly in front of
the vehicle. The wide FOV also wastes part of its cycle
viewing areas on the outside of the curve that are of no
importance to the vehicle.
Figure 6(a) illustrates the active sensing model. As it
traverses the curve, it is able to maintain the sensor focus
on the curved trajectory. This results in fewer missed cells
in comparison to either of the passive sensing models.
Figure 7(a) illustrates test runs of the passive sensing

strategy. Each line in Figure 7(a) represents the vehicle’s
velocity from 3 to 20 m/s. For each velocity, we changed
the laser FOV in five degree increments and recorded the
percentage of unknown cells that the vehicle traversed. The
black circles for each velocity indicate the laser FOV that
provided the minimum percentage of unknown traversed
cells. For easier viewing, the black circles have been
replotted in Figure 7(b).
At faster velocities, we see that the minimum FOV

provides the best passive sensing strategy. The vehicle is
moving quickly enough that is cannot sense the entire
trajectory and a minimum FOV provides a greater density
of data in front of the vehicle. As the velocity decreases,
the vehicle is able to sense the entire path directly in front
of it on a straight trajectory, thus the wide FOV provides
greater advantage on the curved trajectory.
In Figure 8, we plotted the black indicator line for the

optimum FOV from Figure 7(b) against our own active
sensing control algorithm. Active sensing consistently out-
performs the passive sensing model by a signficant margin
and particularly excels between the two to six unknown
percentage areas.
One would expect that a passive sensing algorithm with

a narrow FOV would rival an active sensing strategy on
straight regions of the trajectory. In fact, when viewing
the algorithm in action on a straight section, we see
that the active sensing strategy mimics passive sensing
by performing a consistent sweeping motion across the
planned path. Straight trajectories do not take advantage
of the power that active sensing provides.
In Figure 9 we truncated our trajectory to only contain a
single 180 degree turn. We again found the fixed perception
optimum FOV for each velocity and plotted against active
perception. As previously seen in Figure 6, the active
sensing model significantly outperforms the passive sensing
model.
Table II lists the metrics that are plotted in Figures 8 and
9. By maintaining a relatively low percentage unknown
(between 4 and 6 percent), we can travel at fairly quick
velocities using passive or active sensing. We see that active
outperforms passive on the full trajectory, but provides a
significant advantage on the curved trajectory. By maintain-
ing a certain fixed percentage unknown around the curve,
the active sensing model allows double the velocity as the
passive sensing model.
Up to this point, the data has been the percentage of
unknown areas the the vehicle has passed over. It is much
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(a) Passive sensing’s performance on the full trajec-
tory
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(b) Passive sensing’s optimum FOV

Fig. 7. (a) Finding the optimum FOV for passive sensing at various
velocities (b) Plotting the optimum FOV for each velocity

TABLE II
VELOCITIES ALLOWED PER FIXED PERCENTAGE UNKNOWN

Full Trajectory Curved Trajectory
Percent Unknown Passive Active Passive Active

3 10.2 (m/s) 12.5 4.8 7.3
4 11.6 13.8 5.6 11.4
5 12.7 13.9 6.2 12.7
6 13.0 14.1 7.0 13.8

more interesting to explore the option of not only viewing
the cells, but the necessity to the view the cells in enough
time to react. In Figure 10, we explore the ability of braking
distance. As shown, the percentage of unknown traversed
areas quickly scales with velocity. At 3 m/s, we can view
almost all areas before the required braking distance. But
even as velocity approaches over 5 m/s, the percentage of
unknown areas has already reached 50%.
This is a problem prone to using a vertically mounted
sensor. As the laser scans a vertical stripe in front of the
vehicle, the laser gather a considerable amount of data
within the 5 meter range of the vehicle. But as the scan
progresses outwards, the data density quickly drops. Past
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Fig. 8. Passive vs. active on the full trajectory
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Fig. 9. Passive vs. active around the curved trajectory

the 10 meter range, the laser provides very sparse data
converage.
When we increase the velocity of the vehicle past 3 m/s,
the braking distance will far exceed the sensor’s view. In
most cases, using active perception will gain us an average
of 0.5 m/s increase in velocity for the same percentage of
unknown traversed regions.
This data must be taken with a grain of salt. We have a

very conserative estimate of the deceleration of the vehicle.
Furthermore, other metrics for reaction, such as swerving
distance, can be considered and require less lookahead. The
data is presented to show the active model still outperforms
the passive when considering reaction time.
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Fig. 10. Passive vs. active with braking distance

IV. SUMMARY
In this paper we presented a method for actively con-
trolling the laser sensor for high speed navigation. Our
algorithm aims to minimize the number of unknown cells
the vehicle traverses while traveling on a fixed way-point
trajectory. The algorithm performs a look ahead search
which branches on the direction to pan the laser. Each
direction is assigned a utility based on a heuristic depen-
dent on the probability of viewing unknown cells on our
trajectory.
The algorithm was tested against the passive model of
fixed panning along a field of view. Our results showed
that for an acceptable percentage of unknown cells, active
perception allows us to drive faster than the passive model.
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