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ABSTRACT 
Active sensor wave propagation technique is a relatively new method for in-situ nondestructive evaluation (NDE). Elastic 
waves propagating in material carry the information of defects. These information can be extracted by analyzing the signals 
picked up by active sensors. Due to the physical property of wave propagation, large area can be interrogated by a few 
transducers. This simplifies the process of detecting and characterizing defects. To apply this method, efficient numerical 
modeling is required to predict signal amplitude and time history of elastic wave scattering and diffraction. In order to 
construct the model, good understanding of these physical phenomena must be achieved. 

This paper presents results of an investigation of the applicability of active sensors for in-situ health monitoring of aging 
aircraft structures. The project set forth to develop non-intrusive active sensors that can be applied on existing aging 
aerospace structures for monitoring the onset and progress of structural damage such as fatigue cracks and corrosion. Wave 
propagation approach was used for large area detection. In order to get the theoretical solution of elastic wave propagating in 
the material, wave functions of axial wave, share wave, flexure wave, Raleigh wave, and Lamb waves were thoroughly 
investigated. The wave velocities and the motion of these different types of waves were calculated and simulated using 
mathematical analysis programs. Finite Element Method was used to simulate and predict the wave propagating through the 
structure for different excitation and boundary conditions. Aluminum beams and plates were used to get experiment results. 
Structures both pristine and with known defects are used in our investigation. The experimental results were then compared 
with the theoretical results.  
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1. INTRODUCTION 
Piezoelectric excitation of isotropic and anisotropic structures was initially studied for structural control. Crawley and 
Lazarus (1991) developed piezoelectric sensor and actuator relations using equivalent line moments. This work was extended 
by Jia and Rogers (1989), Tzou and Tseng (1990), Dimitriadis et al. (1991), Lester and Lefebvre (1993), Song and Librescu 
(1998), and others. Royston (1998) performed modeling, analysis, and experimental investigation smart-materials nonlinear 
dynamics for structural vibro-acoustic control. Saravanos and Heyliger (1994) developed a unified approach for laminated 
beams with incorporated piezo-electric elements. Hall and Flatau (1998) studied the analog feedback control for 
magnetostrictive transducer linearization. Damage detection through built-in piezoelectrics was pioneered by Keilers and 
Chang (1995) for delamination identification in composite plates. Various damage detection criteria, e.g., based on wave 
propagation, are also being studied (Chang, 1998). Lakshmanan and Pines (1997) used wave propagation to detect transverse 
cracks in a rotating composite beam from the structural scattering properties. Saravanos, Birman, and Hopkins (1996) 
modeled the delamination detection in a composite beam using surface mounted piezoelectric sensors. Moetakef, Joshi, and 
Lawrence (1996) performed finite-element modeling and experimental study of elastic waves generation through equally 
spaced piezoceramic wafers. Blanas et al. (1997, 1998) studied the use of active composites sensors for acoustic-emission 
health monitoring. Liang et al. (1996) developed an impedance method for dynamic analysis of active material systems. 
Giurgiutiu and Rogers (1998a,b) used the electro-mechanical (E/M) impedance technique for structural health monitoring and 
performed multiple damage-detection experiments. Pardo de Vera and Guemes (1997) used embedded self-sensing 
piezoelectrics for damage detection of small composite specimens. Quattrone et al. (1998) use the same method to detected 
the onset of delamination in a composite-on-masonry 4-ft by 4-ft specimen under static testing, Quinn  et al. (1999) are 
developing new damage identification, localization, and quantification techniques. Osmont et al (2000) are using Lamb 
waves propagation in sandwich plates to identify the effect of impact damage in sandwich skins and core. Diaz-Valdes and 
Soutis (2000) have experimentally and theoretically studied the propagation of low-frequency Lamb waves in fiber 
composite laminates for real-time non-destructive evaluation. 

Giurgiutiu, V., Bao, J., and Zhao, W., 2001, “Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures”, 
Proceedings of the SPIE’s 8th International Symposium on Smart Structures and Materials, 4-8 March 2001, Newport Beach, CA 
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This paper presents results of an investigation of the applicability of active sensors for in-situ health monitoring of aging 
aircraft structures. The project set forth to develop non-intrusive active sensors that can be applied on existing aging 
aerospace structures for monitoring the onset and progress of structural damage such as fatigue cracks and corrosion. 

2. REVIEW OF WAVE PROPAGATION THEORY 
In order to use ultrasonic waves in NDE, different types of waves must be studied to understand the undergoing physical 
phenomena. The objective is to model the wave propagation for different type of ultrasonic sound waves, and use the 
available software to visualize these waves. Wave is a disturbance that travels, or propagates, from one region of space to 
another. Table 1 below shows some of the wave modes possible in solids. 

Table 1 Waves in solids 
wave type  particle vibrations 
Longitudinal / Compressional / Dilatational Wave parallel to the direction of propagation 
Tansverse / Shear / Distortional Wave Perpendicular to the direction of the propagation of 

the wave 
Surface (Rayleigh) Elliptical orbit - symmetrical mode 
Plate Wave - Lamb  Component perpendicular to surface  
 
To achieve further understanding of waves, visualization of the waveforms was done. Putting the wave equations into 
mathematics software, the particles' displacement as function of space and time was calculated. The resultant displacement 
can be shown in an array of vectors, which is like a "snapshot" of the particles at that moment. By showing the "snapshots" in 
the order of time, the propagation of the wave can be animated. The wave figures in the following sections are part of the 
result of this effort. Animations of waves were posted on the Internet at: http://www.engr.sc.edu/research/lamss/default.htm 
under the research section. 

2.1 Longitudinal wave 
Longitudinal wave is also called compressional wave, axial wave dilatational wave, pressure wave, or P-wave. For this type 
of wave motion, the particle displacement is parallel to the direction of propagation. The wave function can be written as: 
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solids, with E being the Young’s modulus, and ρ  the density of the solid. Equation (1) was plotted in Figure 1 

 
Figure 1 simulation of P-wave.  

Figure 2 simulation of S-wave.

2.2 Shear wave 
Shear wave is also called transverse wave, shear wave, distortional wave, or S-wave. For this type of wave motion, the 
particle displacement is perpendicular to the direction of propagation. The wave function can be written as: 
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ρµ /=Sc . Note that the longitudinal wave velocity can also be written as ρµλ /)2( +=Pc . Equation (2) was plotted in 
Figure 2 

2.3 Flexure wave 
These are transverse motions resulting from bending action. The simplest theory for flexural is based on the Bernoulli-Euler 
theory of beams. The governing equation is: 
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This is a function of wave frequency ω, which means that the flexural wave velocity depends on its frequency (i.e. it is 
dispersive) . 

 
Figure 3 simulation of flexure wave. 

γ  
Figure 4 Dispersion relations from Timoshenko, exact, 
Rayleigh, and Bernoulli-Euler beam theories (Graff, 1975). 

Flexural waves can also be described by more advanced theories, such as Rayleigh theory including rotary-inertia effects, 
Timoshenko beam theory, including rotary-inertia and shear deformation effects, or exact theory of elasticity. Comparison of 

the resultant wave velocity values for different theories as function of the non-dimensional wave number, 
π

γ
2

Fak= , is given 

in Figure 4. It should be noted that the exact theory predicted a leveling off of the flexural speed at high frequency. 

2.4 Rayleigh wave 
These surface waves were named after Lord Rayleigh, mathematical physicist, 1842-1919. In this particular type of wave 
which propagates on the surface of a body, motion decreases rapidly with depth below the surface. The polarization of 
Rayleigh waves lies in a plane perpendicular to the surface. The effective depth of penetration is less than a wavelength. 
Unwanted waves may be generated at the entry surface by shear wave probes of 70° angle or over. They are also responsible 
for cross noise. 
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Figure 5 Simulation of Rayleigh wave.  Figure 6  Distribution of displacement and energy in 

dilatational, shear, and Rayleigh waves generated 
in elastic half-space by a harmonic normal load 
(after Woods, 1968). 

The Rayleigh wave can be decomposed into the horizontal component, U, and the vertical component, W. Both U 
and W are functions of x, z, and t, where x and z are the dimension of the particle in media, t is time. The wave 
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Figure 5 shows the simulation of particle motion for a Rayleigh wave. 

2.5 Lamb wave 
These are a type of ultrasonic waves that is guided between the two parallel surfaces of the test object. For an object 
sufficiently thin to allow penetration to the opposite surface, e.g. a plate having a thickness of the order of a 
wavelength or so, Rayleigh waves degenerate into Lamb waves. Lamb waves can propagate in a number of modes, 
either symmetrical or antisymmetrical. The velocity depends on the product of frequency and material thickness. 
Lamb waves are named after Horace Lamb, in honor of his fundamental contributions to this subject. Investigations 
on Lamb and leaky Lamb waves have been carried out continuously since their discovery and researchers have done 
theoretical and experimental work for different purposes, ranging from seismology, to ship construction industry, to 
acoustic microscopy, and to non-destructive testing and acoustic sensors. Synonymous terms are guided wave and 
plate wave. To define the wave function of Lamb wave, the Rayleigh-Lamb equation must be solved to find the 

wave speed of Lamb wave. Define 22 / PS cc=ξ , 22 / LS cc=ζ , and dkd S= ; where cL is the Lamb wave 
speed, and d is the half thickness of the plate. Then the Rayleigh-Lamb frequency equation can be established, 

 0
)12(

14

tan

)1tan(
22

2222

22

2

=
−

−−
+

−

−
ζ

ζξζζ

ζξ

ζ d
 (7) 

Lamb wave speed can be obtained by solving equation (7). Define the Lamb wave number 
L

L c
k ω= , and 
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SL kks −= , then the two components of the particle movement can be expressed as 
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Equation (8) and (9) are for the symmetric Lamb waves (Figure 7). 
 

 
Figure 7 Simulation of Lamb wave symmetric mode.  

Figure 8 Simulation of Lamb wave asymmetric mode.  

For asymmetric Lamb waves (Figure 8), the Rayleigh-Lamb frequency equation is 
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The two component of the particle movement can be expressed as 
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By solving the Rayleigh-Lamb frequency equation the Lamb wave speed can obtained. We computed this for two aluminum 
thin plate cases; (a) 2d = 1mm; and (b) 2d = 1.6mm, as shown in Figure 9. A comparison of flexural wave and 0-mode 
symmetric and asymmetric Lamb wave is also given in this figure. The figure shows that at low frequency flexural wave and 
A0 mode Lamb wave velocity are very close, but they separate at frequency higher than 200 kHz. So that the frequency will 
be used in health monitoring should be in high frequency (>200 kHz) to avoid interference of the two types of waves.  

Lamb waves and flexure wave velocities dispersion

0.000

1.000

2.000

3.000

4.000

5.000

6.000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Freqency (kHz)

Ve
lo

ci
ty

 (m
m

/m
ic

ro
-s

)

Lamb wave S0 mode(d=0.5mm)

Flexure wave

Lamb wave S0 mode(d=0.8mm)

Lamb wave A0 mode(d=0.5mm)

Lamb wave A0 mode(d=0.8mm)

 
Figure 9 Wave speed dispersion curves for classical and Lamb waves in aluminum alloy medium. 
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3. EMBEDDED PIEZOELECTRIC ACTIVE SENSOR DEVELOPMENT FOR ULTRASONIC NDE 

3.1 Modeling of the Piezoelectric Active Sensor, 
The general constitutive equations of linear piezo-electric material behavior, given by ANSI/IEEE Standard 176-1987, 
describe a tensorial relation between mechanical and electrical variables (mechanical strain Sij , mechanical stress T ij , 
electrical field Ei , and electrical displacement Di ) in the form: 

 
, k

T
jkkljklj

kkijkl
E
ijklij

ETdD

EdTsS

ε+=

+=
 (13) 

where sijkl
E is the mechanical compliance of the material measured at zero electric field ( E = 0 ), ε jk

T is the dielectric 

permittivity measured at zero mechanical stress ( T = 0 ), and dkij is the piezo-electric coupling between the electrical and 
mechanical variables. The second equation reflects the direct piezo-electric effect, while the first equation refers to the 
converse piezo-electric effect. 
The piezo-electric transducers used in the ultrasonic wave propagation technique are thin Lead Zirconate Titanate (PZT) 
ceramic wafers intimately bonded to the surface of the host structure (Figure 10 a). In this configuration, mechanical stress 
and strain are applied in the 1 and 2 directions, i.e. in the plane of the surface, while the electric field acts in the 3 direction, 
i.e., normal to the surface. Hence, the significant electro-mechanical couplings for this type of analysis are the 31 and 32 
effects. The application of an electric field, E3, induces surface strains, S11 and S22, and vice-versa.  

(a)

PZT wafer
transducer

Structure under examination

Connecting
wires

(c)

PZT wafer
transducer

2-D Surface
 

(b)

P Z T  w a f e r
t r a n s d u c e r

 
Figure 10  Piezoelectric active sensor interact with host structure: (a) PZT wafer transducer affixed to the host structure; (b) PZT 

wafer transducer acting on a 1-D structure; (c) PZT wafer transducer acting on a 2-D surface (Giurgiutiu, 1999) 
For a PZT transducer affixed to 1-D member, e.g., a beam along the 1-direction (Figure 26 b), the analysis is mainly one-
dimensional. In this case, the dominant electro-mechanical coupling constant is d31. If the transducer is placed on a 2-D 
surface, the analysis is, in principle, two-dimensional (Figure 10c). Since the electro-mechanical coupling constants, d31 and 
d32, have essentially same value, radial symmetry can be applied, and the analysis can be reduced to a one-dimensional case 
in the radial coordinate, r (Giurgiutiu, 1999). 

3.2 Experiments on simple specimens and on realistic aging aircraft panels with simulated damage. 

3.2.1 1-D specimens specification 

Tests were conducted on aluminum beam to get more information of PZT wafer active sensors, and how they interact with 
wave propagation. The specimens intended for the experiment are presented in Figures 11. Specimen was made from aircraft 
grade sheet aluminum 2024 alloy, 1.6 mm thick. Piezoelectric active sensors (7 mm square, 0.2 mm thick) are installed on 
both sides. (The installation on both sides has been chosen to permit symmetric and anti-symmetric excitation. Thus, axial 
and flexural waves can be selectively excited.) The coordinates of sensor installation are given in Tables 2. The active sensors 
were excited with short burst of constant frequency signal (tone-burst) . Just a few sine waves (3 to 5) were used.  
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Figure 11 Beam, 1.6 mm thick, 2024 Aluminum alloy 
 
Table 2 Locations of sensors on beam 

Sensor# A B C D E 
X (mm) 57 257 457 657 857 
Y (mm) 7 7 7 7 7 

 
In the beginning level, investigations were concentrated on the simple 1-D experiments and modeling. The specimen was 
long beam. On this specimen, we conducted and simulated 1-D wave propagation experiments. One of the five pairs of PZT 
wafer transducers was used for transmission each time in a round-robin fashion, and other locations for reception. 

3.2.2 Finite element analysis 

Numerical simulations of the wave propagation process were 
performed using the commercial finite element code, ANSYS. The 
same beam specimen as used in the experimental measurement was 
modeled using 4-node shell elements (SHELL63). The element has 
six degrees of freedom at each node with both bending and 
membrane capabilities. Two forms of the elastic wave propagation 
are studied: the flexure wave and the pressure wave. Excitation 
“equivalent to” the PZT excitation were applied. In the case of the 
flexure wave, transient nodal rotations were applied on the nodes 
that represent the transverse edges of the PZT sensor. While in the 
case of the pressure wave, nodal translations were applied. The 
excitation was applied in terms of five counts of sine waves. To 
reduce the wave dispersion effect and facilitate the understanding of 
the resulting wave propagation, the excitation wass applied after 
passing through a Hanning window. Fig. 12 shows the resulting form of the excitation signal. Some typical results from the 
simulations are shown in Figures 13 and 14. 
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Figure 13 Result for the flexure wave, 10 kHz 
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Figure 14 Result for the pressure wave, 100 kHz 
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Figure 12 An example of the applied transient load 
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3.2.3 Experimental results 

A HP 33120A signal generator was used to generate the burst signal; a Tektronix TDS 210 digital oscilloscope and a laptop 
computer connected through GPIB interface were used to collect data. Burst signal was applied to PZT transducers, single 
and in pair. At low frequency (<100kHz), PZT transducer pairs were excited with burst signals in-phase and out-phase to test 
the capability of using a pair of PZT wafer transducer to enhance or surpress a certain type of wave, and to examine the wave 
speed of different type of waves. Due to the restriction of instrument’s capability, only in-phase signal were applied at higher 
frequency. Figure 15 presents some data from these experiments. On each plot, signal A was the input burst signal, and B 
through E was the output of PZT active wafer sensors. The amplitude of the output signals was in 100 mV range (Vpp). The 
time of flight for each wave package was picked manually by observing the signals. Wave speed for each frequency was 
calculated using linear regression as shown in Figure 16. For frequencies from 10kHz to up to 4MHz, the wave speed vs. 
frequency curves were created as shown in figure 17. 
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(d) 
Figure 15 Experiment data from beam specimen.  

(a) 10 kHz single excitation; (b) 10 kHz in-phase excitation;  
(c) 10 kHz out-phase excitation; (d) 100 kHz single excitation 
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Figure 16 Wave speed analysis for 10kHz signal 
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Figure 17 Wave speed dispersion from experiment. 

3.2.4 Experiment on realistic aging aircraft panels with simulated damages 

Wave propagation experiments were conducted on realistic aircraft panel specimens with a number of PZT active sensors 
affixed on it at various locations. The experimental setup is shown in Figure 18. Constant-frequency 10 kHz wave bursts 
were sent by the transmitter active sensor, and the response was collected at seven active-sensor receptors placed at various 
x-y locations. The locations of the transmitter and receptors are shown in Figure 19. The transmission and reception time 
signals are shown in Table 3. It is apparent that the arrival time is consistent with the distance from the transmitter active 
sensor to the receptor active sensor. The larger the distance, the larger the time delay recorded on the Figure 20 charts. This 
proves that the proposed emitter-receptor damage detection strategy is viable and implementable. Also significant to mention 
is that the #5, #6, and #7 active-sensor receptors are not in line with the active-sensor transmitter. This verifies the assertion 
that the elastic waves generated by the transmitter propagate in a circular front and open the opportunity for the 
implementation of phase-array beam steering concepts to be explored in future experiments.  

 
 

Aging aircraft panel with 
PZT active sensors 

Tektronix TDS 210 
digital oscilloscope 

Data acquisition 
laptop PC with 
PCMCIA GPIB 

card 

Trek 50/750 
HV amplifier 

HP 33120A 
signal 

generator 

  
Figure 18 Experimental setup for wave propagation 

experiments on aging aircraft panel. 

 

 

R1 R2 R3 R4 Transmitter
R5

R6

R7

10-mm 
EDM crack

 
Figure 19 Installation of emitter and receptor active sensors 

on aging aircraft panel (sensor coordinates are 
given in Table 1). 

Also apparent in Figure 20 is the dispersive nature of flexural waves (wave speed varies with frequency) since the wave 
patterns change with the distance from the transmitter. This dispersion appears because the abrupt start and stop of the 10 
kHz burst used in our experiments generate side lobes in the frequency domain. These side lobes excite other frequencies 
besides the basic 10 kHz frequency of the burst. To reduce this effect, a fade-in/fade-out Hanning window could be used. 
However, this option was not available with the existing equipment. Figure 20 also displays a stray reflection that we 
attribute to the presence of the simulated crack. However, this crack-detection signal is buried in the other signals resulting 
from the signal superposition typical of low-frequency elastic waves traveling within short objects. The frequency-dependent 
flexural waves are reflected by the specimen boundary and become superposed over the incident waves and over the waves 
reflected by the simulated damage. This situation could be alleviated by using MHz range pulse excitation. At MHz 
frequency, the propagation speed of flexural Lamb waves reaches an asymptote, and thus the event timescale can be 
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expanded sufficiently to separate the incident wave from the reflection waves generated by the defect and by the specimen 
boundary. Thus, at MHz frequencies, the timing of pulse events has much higher resolution. However, MHz-range pulse 
excitation equipment, which is considerably more expensive, was not available for the experiments reported in this paper. 
Such equipment is currently under acquisition and will be used in future experiments. 
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Figure 20 Transmission and reception signals for an array of 
PZT wafer active sensors placed at various x-y locations on 
the aging aircraft panel specimen (sensor coordinates are 
given in Table 3). 
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Figure 21 Wave-reception analysis: near-field and far-field 

time-distance correlation. 

Figure 21 shows the correlation between distance and time of flight for the wave 
signals presented in Figure 20. Under ideal conditions, the travel distance should be 
directly proportional with the time of flight. The data in Figure 21 is amiable to 
straight-line fit with a remarkable good R2 correlation. However, two separate 
groups are distinguishable, the near-field and the far-field. Nevertheless, linearity is 
present. The coefficient of the linear fit represents the travel speed. For the material 
used in these experiments (1-mm aluminum alloy sheet), the flexural wave speed at 
10 kHz is 305 m/s, i.e. 0.3050 mm/µs. Figure 18 shows that the near-field speed is 
0.3113 mm/µs, while the far-field speed is 0.3705 mm/µs. These results are within 
2% and 21% of predictions, respectively. We conclude that, the agreement between 
the theory and experiment is very good for near-field, but not so good for far-field. 

The larger discrepancy observed in the far-field can be attributed to wave 
dispersion effects. (As discussed in the previous paragraph, wave dispersion appears due to the frequency side lobs of the 
square-shaped burst; this could be alleviated with a Hanning-window modulation of the burst, but the necessary equipment 
was not available at the time of the reported experiments). Overall, it can be concluded that the preliminary wave-propagation 
experiments have established that this method is a viable alternative for active-sensor damage detection. The limitations and 
challenges of the method have also been revealed. 

4. CONCLUSIONS  
Elastic wave propagation in solid was studied theoretically and experimentally. Experiment results showed that PZT wafer 
active transducers could be used to generate ultrasonic wave in aluminum structures, and simultaneously collect wave 
propagation signals. The well-established theories and methods of ultrasonic testing can be applied to it too. This result 
shows that small PZT wafer transducers can take the places of traditional bulky ultrasonic transducers in some cases and can 
be applied to structures non-intrusively for in-situ health monitoring.  

Table 3 Elastic wave reception data

Sensor # x (mm) y (mm) r (mm) t (µs)

1 70 0 70.0 221

2 84 0 84.0 263

3 98 0 98.0 302

4 112 0 112.0 357

5 200 0 200.0 537

6 200 96 221.8 602

7 200 201 283.6 764
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