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ACTIVE SEQUENTIAL HYPOTHESIS TESTING1

BY MOHAMMAD NAGHSHVAR AND TARA JAVIDI

Qualcomm Inc. and University of California, San Diego

Consider a decision maker who is responsible to dynamically collect ob-
servations so as to enhance his information about an underlying phenomena
of interest in a speedy manner while accounting for the penalty of wrong
declaration. Due to the sequential nature of the problem, the decision maker
relies on his current information state to adaptively select the most “informa-
tive” sensing action among the available ones.

In this paper, using results in dynamic programming, lower bounds for the
optimal total cost are established. The lower bounds characterize the funda-
mental limits on the maximum achievable information acquisition rate and
the optimal reliability. Moreover, upper bounds are obtained via an analysis
of two heuristic policies for dynamic selection of actions. It is shown that
the first proposed heuristic achieves asymptotic optimality, where the notion
of asymptotic optimality, due to Chernoff, implies that the relative difference
between the total cost achieved by the proposed policy and the optimal total
cost approaches zero as the penalty of wrong declaration (hence the num-
ber of collected samples) increases. The second heuristic is shown to achieve
asymptotic optimality only in a limited setting such as the problem of a noisy
dynamic search. However, by considering the dependency on the number of
hypotheses, under a technical condition, this second heuristic is shown to
achieve a nonzero information acquisition rate, establishing a lower bound
for the maximum achievable rate and error exponent. In the case of a noisy
dynamic search with size-independent noise, the obtained nonzero rate and
error exponent are shown to be maximum.

1. Introduction. This paper considers a generalization of the classical se-
quential hypothesis testing problem due to Wald [58]. Suppose there are M hy-
potheses among which only one is true. A Bayesian decision maker is responsible
to enhance his information about the correct hypothesis in a speedy and sequen-
tial manner while accounting for the penalty of wrong declaration. In contrast to
the classical sequential M-ary hypothesis testing problem [2, 22, 39], our decision
maker can choose one of K available actions and, hence, exert some control over
the collected samples’ “information content.” We refer to this generalization, origi-
nally tackled by Chernoff [17], as the active sequential hypothesis testing problem.
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The active sequential hypothesis testing problem naturally arises in a broad
spectrum of applications such as medical diagnosis [6], cognition [54], sensor
management [27], underwater inspection [28], generalized search [48], group test-
ing [16] and channel coding with perfect feedback [12]. It is intuitive that at any
time instant, an optimized Bayesian decision maker relies on his current belief
to adaptively select the most “informative” sensing action, that is, an action that
provides the highest amount of “information.” Making this intuition precise is the
topic of our study.

The most well-known instance of our problem is the case of binary hypothe-
sis testing with passive sensing (M = 2, K = 1), first studied by Wald [58]. In
this instance of the problem, the optimal action at any given time is provided by a
sequential probability ratio test (SPRT). There are numerous studies on the gener-
alizations to M > 2 (K = 1) and the performance of known simple and practical
heuristic tests such as MSPRT [2, 22, 39]. The generalization to the active testing
case was considered by Chernoff in [17] where a heuristic randomized policy was
proposed and whose asymptotic performance was analyzed. More specifically, un-
der a certain technical assumption on uniformly distinguishable hypotheses, the
proposed heuristic policy is shown to achieve asymptotic optimality where the no-
tion of asymptotic optimality [17] denotes the relative tightness of the performance
upper bound associated with the proposed policy and the lower bound associated
with the optimal policy.

The problem of active hypothesis testing also generalizes another classic
problem in the literature: the comparison of experiments first introduced by
Blackwell [9]. This is a single-shot version of the active hypothesis testing prob-
lem in which the decision maker can choose one of several (usually two) ac-
tions/experiments to collect a single observation sample before making the final
decision. There have been extensive studies [9, 21, 24, 35–37, 57] on compar-
ing the actions. Applying various results from [9, 21] in our context of active
hypothesis testing and utilizing a dynamic programming interpretation, a notion
of optimal information utility, that is, an optimal measure to quantify the infor-
mation gained by different sensing actions, can be derived [43]. Inspired by this
view of the problem, which coincides with that promoted by DeGroot [20], we
provide a set of (uniform) lower bounds for the optimal information utility. Fur-
thermore, we provide two heuristic policies whose performance is investigated via
nonasymptotic and asymptotic analysis. The first policy is shown to be asymp-
totically optimal, matching the performance of the scheme proposed in [17] (and
follow-up works [8, 11]), and provides a benchmark for comparison when con-
sidering Chernoff’s asymptotic regime. In contrast, our second proposed policy is
only shown to be asymptotically optimal in a limited setup, including that of noisy
dynamic search. However, this policy has a provable advantage for large M over
those proposed in the literature. More specifically, this policy can provide, under
a technical condition, reliability and speedy declaration simultaneously. In infor-
mation theoretic terms, this policy can be shown to achieve nonzero information
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acquisition rate and, hence, to generalize Burnashev’s [12] variable-length channel
coding scheme. We elaborate on a complete literature survey in Section 2.2.

The remainder of this paper is organized as follows. In Section 2 we formu-
late the active sequential hypothesis testing problem and discuss the related works.
Section 3 provides a dynamic programming formulation and characterizes a notion
of optimal information utility. In Section 4 we provide three lower bounds and two
upper bounds on the optimal information utility. The bounds are nonasymptotic
and complementary for various values of the parameters of the problem. Section 5
states the asymptotic consequence of the bounds obtained in Section 4. In partic-
ular, the obtained bounds are used to establish notions of order and asymptotic
optimality for the proposed policies (generalizing that of [17]); and characterize
lower and upper bounds on the maximum achievable information acquisition rate
and the optimal reliability. In Section 6 we investigate an important special case
of the active hypothesis testing, namely, the noisy dynamic search. In Section 7
we discuss the technical assumptions made in our work and contrast them with the
(weaker) assumptions in the literature. More specifically, we show that our first
technical assumption weakens significantly one of the assumptions made in [17].
On the other hand, our second technical assumption is significantly stronger than
the corresponding assumptions in the literature. However, we show that while this
assumption is critical in obtaining the nonasymptotic lower and upper bounds of
Section 4, it has no bearing on our asymptotic results in Section 5. Finally, we con-
clude the paper and discuss future work in Section 8. In the interest of brevity, we
have chosen to focus our analysis, provided in the Appendix, on Theorems 1–3,
whose results, to the best of our knowledge, are entirely new and whose proofs
require a substantially different approach than those commonly available in the
literature. In contrast, the proofs of Propositions 1–4 as well as Corollaries 1, 3,
5–7 follow similar lines of argument to the proofs in the literature or in those
obtained in the Appendix and are included in the form of a supplemental arti-
cle [44].

Notation: Let [x]+ = max{x,0}. The indicator function 1{A} takes the value 1
whenever event A occurs, and 0 otherwise. For any set S , |S| denotes the car-
dinality of S . All logarithms are in base 2. The entropy function on a vector
ρ = [ρ1, ρ2, . . . , ρM ] ∈ [0,1]M is defined as H(ρ) = ∑M

i=1 ρi log 1
ρi

, with the

convention that 0 log 1
0 = 0. Finally, the Kullback–Leibler (KL) divergence be-

tween two probability density functions q(·) and q ′(·) on space Z is defined as
D(q‖q ′) = ∫

Z q(z) log q(z)
q ′(z) dz, with the convention 0 log a

0 = 0 and b log b
0 = ∞

for a, b ∈ [0,1] with b �= 0.

2. Problem setup and summary of the results. In Section 2.1 we formulate
the problem of active sequential hypothesis testing, referred to as Problem (P) here-
after. Section 2.2 states the main contributions of the paper and provides a sum-
mary of related works.
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2.1. Problem formulation. Here, we provide a precise formulation of our
problem.

PROBLEM (P) (Active sequential hypothesis testing). Let �M = {1,2, . . . ,

M}. Let Hi , i ∈ �M , denote M hypotheses of interest among which only one
holds true. Let θ be the random variable that takes the value θ = i on the event
that Hi is true for i ∈ �M . We consider a Bayesian scenario with prior ρ(0) =
[ρ1(0), ρ2(0), . . . , ρM(0)], that is, initially P(θ = i) = ρi(0) > 0 for all i ∈ �M .
AM is the set of all sensing actions which may depend on M and is assumed to
be finite with |AM | < ∞. Let P(AM) denote the collection of all probability dis-
tributions on elements of AM , that is, P(AM) = {λ ∈ [0,1]|AM | :

∑
a∈AM

λa = 1}.
Z is the observation space. For all a ∈ AM , the observation kernel qa

i (·) (on Z)
is the probability density function for observation Z when action a is taken and
Hi is true. We assume that observation kernels {qa

i (·)}i∈�M,a∈AM
are known and

the observations are conditionally independent over time. Let L denote the penalty
(loss) for a wrong declaration, that is, the penalty of selecting Hj , j �= i, when Hi

is true.2 Let τ be the stopping time at which the decision maker retires. The objec-
tive is to find a sequence of sensing actions A(0), A(1), . . . ,A(τ − 1),3 a stopping
time τ and a declaration rule d :Aτ

M × Zτ → �M that collectively minimize the
expected total cost

E[τ ] + LPe,(1)

where Pe = P(d(Aτ−1
0 ,Zτ−1

0 ) �= θ) denotes the probability of making a wrong
declaration, and the expectation is taken with respect to the initial prior distribution
ρ(0) on θ as well as the distributions of action sequence, observation sequence and
the stopping time.

2.2. Overview of the results and summary of the related works. The first at-
tempt to solve Problem (P) goes back to Chernoff’s work on active binary com-
posite hypothesis testing [17]. Chernoff proposed the following scheme to select
actions: at each time t , find the most likely true hypothesis, and then select an ac-
tion that can discriminate this hypothesis the best from each and every element in
the set corresponding to the alternative hypothesis. Much of the subsequent liter-
ature extended this approach [1, 8, 11, 31, 32, 34, 47]. Chernoff showed that as
L goes to infinity, the relative difference between the expected total cost achieved
by his proposed scheme and the optimal expected total cost approaches zero, which

2In general, we can define a loss matrix [Lij ]i,j∈�M
, where Lij denotes the penalty (loss) of

selecting Hj when Hi is true.
3We assume that A(t) is selected as a (possibly randomized) function of At−1

0 := [A(0),A(1), . . . ,

A(t − 1)] and Zt−1
0 := [Z(0),Z(1), . . . ,Z(t − 1)], that is, sensing actions and observations up to

time t .
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he termed as asymptotic optimality.4 One of the main drawbacks of Chernoff’s
asymptotic optimality notion was his neglecting the complementary role of asymp-
totic analysis in M . In particular, the notion of asymptotic optimality in L falls
short in showing the tension between using an (asymptotically) large number of
samples to discriminate among a few hypotheses with (asymptotically) high ac-
curacy or an (asymptotically) large number of hypotheses with a lower degree of
accuracy. As a result, although the scheme proposed in [17] and its subsequent
extensions [1, 8, 11, 31, 32, 34, 47] are asymptotically optimal in L, their provable
information acquisition rate is restricted to zero. Intuitively, the rate of information
acquisition under any given heuristic relates to the ratio between logM and the ex-
pected number of samples: the larger this ratio, the faster information is acquired.

As elaborated in Section 5.3, to obtain asymptotic characterization of the opti-
mal expected total cost in a nonzero rate regime, it is important to propose schemes
which scale optimally with M as well. In his seminal paper [12], Burnashev tackled
the primal (constrained) version of Problem (P) in the context of channel coding
with feedback, and provided lower and upper bounds on the expected number of
samples (or, equivalently, channel uses) required to convey one of M uniformly
distributed messages over a discrete memoryless channel (DMC) with a desired
probability of error. The lower bound identified the dominating terms in both num-
ber of messages and error probability, hence characterized the optimal reliability
function (also known as the error exponent) in addition to the feedback capacity
(which was known to coincide with the Shannon capacity [53]). In this paper, we
generalize5 this lower bound to the problem of active sequential hypothesis testing,
that is, Problem (P):

• We derive three lower bounds on the expected total cost (1). The bounds hold
for all prior beliefs and are nonasymptotic and complementary for various values
of L and M . In Section 5 these bounds are collectively used to generalize the
(information theoretic) notions of achievable communication rate [18] and error
exponent [23] to the context of active sequential hypothesis testing.

• The first and second lower bounds identify the dominating terms in L and hence
are useful in establishing asymptotic optimality of order-1 (due to Chernoff [17])

4In [17], the objective was to minimize cE[τ ] + Pe and the proposed policy was shown to be
asymptotically optimal as c → 0. It is straightforward to show that for L = 1

c , this problem coin-
cides with Problem (P) defined in this paper. However, we have chosen E[τ ] + LPe as an objective
function for Problem (P) because of its interpretation as the Lagrangian relaxation of an informa-
tion acquisition problem in which the objective is to minimize E[τ ] subject to Pe ≤ ε, where ε > 0
denotes the desired probability of error.

5In [13], Burnashev attempted to tackle the problem of active sequential hypothesis testing by
Chernoff [17]. However, the sensing actions in [13] were allowed to be functions of the true hypoth-
esis, θ , which, in general, is not observable in the active testing setting [17]. In this sense, [13] only
extends Burnashev’s earlier work [12] on variable-length coding over a discrete memoryless channel
(DMC) with feedback to allow for more general channels.
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and order-2 in L. Furthermore, from an information theoretic viewpoint, these
bounds are used to characterize an upper bound on the reliability function (error
exponent) at zero rate.

• The third lower bound characterizes the dominating terms of growth in the op-
timal expected total cost in terms of L and M simultaneously. We use this
as a converse (in a fashion somewhat similar to Shannon’s channel coding
converse [18]) to derive an upper bound 	Imax on the maximum achievable
information acquisition rate. Additionally, this lower bound allows us to pro-
vide an upper bound on the reliability function (error exponent) for all rates
R ∈ [0,	Imax], and establish order optimality in M as a necessary condition for
any policy which achieves nonzero information acquisition rate.

In addition to a lower bound on an expected number of samples, Burnashev pro-
posed a coding scheme with two phases of operation whose performance provides
a tight upper bound (in both number of messages and error probability). It is inter-
esting to note that the scheme of Chernoff, if specialized to channel coding with
feedback, coincides with the second phase of Burnashev’s scheme and is of a rep-
etition code nature. This means that while the first phase of Burnashev’s scheme
can achieve any information rate up to the capacity of the channel, Chernoff’s
one-phase scheme has a rate of information acquisition equal to zero. Inspired by
Burnashev’s coding scheme, we also obtain two heuristic two-phase policies π̃1
and π̃2 whose nonasymptotic analysis in Proposition 2 and Theorem 3 provides
two upper bounds on the optimal performance:

• Policy π̃1 is a simple two-phase modification of Chernoff’s scheme in which
testing for the maximum likely hypothesis is delayed and contingent on obtain-
ing a certain level of confidence. More specifically, in its first phase, π̃1 selects
actions in a way that all pairs of hypotheses can be distinguished from each
other, while its second phase coincides with Chernoff’s scheme [17] where only
the pairs including the most likely hypothesis are considered. The second phase
of π̃1 ensures its asymptotic optimality in L, while its first phase in a very nat-
ural manner weakens the technical assumption in [17] in which all actions are
assumed to discriminate between all hypotheses pairs or the need for the in-
finitely often reliance on suboptimal randomized action deployed in [17, 47].

• Policy π̃2 is only shown to be asymptotically optimal in L under a stronger
condition, which is later shown to be satisfied in the important cases of binary
hypothesis testing and noisy dynamic search in Section 6, however, with the ad-
vantage that here for a fixed M the asymptotic optimality [17] can be strength-
ened to a higher order. In particular, in Section 5.1, we show that when π̃2 is
asymptotically optimal it achieves a bounded difference with the optimal per-
formance. Furthermore, under a technical condition, policy π̃2 can ensure that
information acquisition occurs at a nonzero rate. Mathematically, this means
that, under policy π̃2, the expected total cost (1) grows in L and M in an or-
der optimal fashion establishing a lower bound on the maximum achievable
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information acquisition rate I 2 ≤ 	Imax as well as a lower bound on the optimal
reliability function (optimal error exponent) for all rates R ∈ [0, I 2].
To illustrate contributions of our work as well as highlight the rate–reliability

trade-off, we treat the problem of noisy dynamic search in Section 6.2. This prob-
lem is of independent and extensive interest, and arises in a variety of fields from
fault detection to whereabouts search to noisy group testing. We specialize the re-
sults obtained in the earlier sections for the general active hypothesis testing, and
discuss our findings in the context of other solutions in the literature. Particularly,
in the case of size-independent Bernoulli noise, the upper bound corresponding to
policy π̃2 is shown to be asymptotically tight in both L and M , hence ensuring the
maximum acquisition rate and reliability simultaneously, but there is no guarantee
on the tightness of the bounds for general noise models. The potentially growing
gap between the lower and upper bounds obtained here, in particular, underline the
significant complications of acquiring information in the general active hypothe-
sis testing over that of (variable-length coding with feedback) [13]. For instance,
while in the channel coding context the maximum information rate and reliabil-
ity are fully known and match that of channel capacity and error exponent, they
remain largely uncharacterized, beyond our bounds here, even in the practically
relevant problem of a noisy dynamic search.

As briefly discussed in the Introduction, the above results have all been obtained
under an important technical assumption which is stronger than those commonly
made in the literature. However, we will show that this assumption can be signifi-
cantly weakened. More precisely, we show that our original technical assumption
can be replaced with one that is weaker, to the best of our knowledge, than all other
assumptions in the literature [1, 8, 11, 12, 32, 39, 47], and, in particular, subsumes
that of [17], to obtain a set of (nonasymptotic) bounds which are looser than those
obtained in Section 4. On the other hand, these looser (nonasymptotic) bounds are
shown to have similar dominating terms to those obtained in Section 4, and hence
ensure the validity of our asymptotic results in Section 5.

3. Dynamic programming and characterization of an optimal policy. In
this section we first derive the corresponding dynamic programming (DP) equa-
tion for Problem (P). From the DP solution, we characterize an optimal policy for
Problem (P).

The problem of active M-ary hypothesis testing is a partially observable Markov
decision problem (POMDP) where the state is static and observations are noisy.
It is known that any POMDP is equivalent to an MDP with a compact yet uncount-
able state space, for which the belief of the decision maker about the underlying
state becomes an information state [33]. In our setup, thus, the information state at
time t is the belief vector ρ(t) whose ith element is the conditional probability of
hypothesis Hi to be true given the initial belief and all the observations and actions
up to time t , that is, ρi(t) := P({θ = i}|At−1

0 ,Zt−1
0 ). Accordingly, the information
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state space is defined as P(�M) := {ρ ∈ [0,1]M :
∑M

i=1 ρi = 1} and the optimal
expected total cost can be defined as follows.

DEFINITION 1. For all ρ ∈ P(�M), let functional V ∗(ρ), hereafter referred to
as the optimal value function, denote the optimal expected total cost (1) of Prob-
lem (P) given the Bayesian prior ρ. In other words, V ∗(ρ) := min{E[τ ] + LPe}
given the initial belief ρ, where the minimization is taken over the stopping time τ ,
the sequence of actions and observations, and the declaration rule.

A general approach to solving Problem (P) is to provide a functional character-
ization of V ∗: given V ∗ in its functional form, the optimal expected total cost for
Problem (P) can be obtained by a simple evaluation of V ∗ at the initial belief ρ(0).
Next we state a dynamic programming equation which characterizes V ∗.

To obtain the dynamic programming equation, consider a single step of the
problem. In one sensing step, the evolution of the belief vector follows Bayes’
rule and is given by �a , a measurable function from P(�M) ×Z to P(�M) for all
a ∈ AM :

�a(ρ, z) :=
[
ρ1

qa
1 (z)

qa
ρ (z)

, ρ2
qa

2 (z)

qa
ρ (z)

, . . . , ρM

qa
M(z)

qa
ρ (z)

]
,(2)

where qa
ρ (z) = ∑M

i=1 ρiq
a
i (z), and �a(ρ, z) = ρ if qa

ρ (z) = 0. In other words, if
ρ ∈ P(�M) is an a priori distribution, �a(ρ, z) gives us the posteriori distribution
when sensing action a has been taken and z has been observed.

We define a Markov operator Ta , a ∈ AM , such that for any measurable function
g :P(�M) →R,

(
T

ag
)
(ρ) :=

∫
g
(
�a(ρ, z)

)
qa
ρ (z) dz.(3)

Note that at any given information state ρ, taking sensing action a ∈ AM fol-
lowed by the optimal policy results in expected total cost 1 + (TaV ∗)(ρ), where 1
denotes the one unit of time spent to take the sensing action and collect the corre-
sponding observation sample, and (TaV ∗)(ρ) is the expected value of V ∗ on the
space of posterior beliefs; while declaration j results in expected cost (1 − ρj )L

where (1−ρj ) is the probability that hypothesis Hj is not true, and L is the penalty
of making a wrong declaration. This intuition, while relying on the compactness
of P(�M) to treat various measurability issues, can be formalized in the following
dynamic programming equation.

FACT 1 (Proposition 9.8 in [7]). The optimal value function V ∗ satisfies the
following fixed point equation:

V ∗(ρ) = min
{
1 + min

a∈AM

(
T

aV ∗)
(ρ), min

j∈�M

(1 − ρj )L
}
.(4)
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DEFINITION 2. A Markov stationary policy is a stochastic kernel from the
information state space P(�M) to AM ∪{d} describing the conditional distribution
on sensing actions A(t), t = 0,1, . . . , τ − 1 and stopping time τ (the choice of
declaration d marks the stopping time τ ). In other words, under policy π , the
probability that action a is selected at belief state ρ is given by π(a|ρ).

As shown in Corollary 9.12.1 in [7], equation (4) provides a characterization of
an optimal Markov stationary deterministic policy π∗ for Problem (P) as follows:
sensing action a∗ = arg mina∈AM

(TaV ∗)(ρ) is the least costly sensing action, re-
sulting in 1 + mina∈AM

(TaV ∗)(ρ), hence is the optimal action to take unless
wrongly declaring Hi∗ , where i∗ = arg minj∈�M

(1 − ρj )L, is even less costly,
in which case it is optimal to retire and declare Hi∗ as the true hypothesis.

REMARK 1. It follows from (4) that if minj∈�M
(1 − ρj )L ≤ 1, then we

have a full characterization of V ∗(ρ) = minj∈�M
(1 − ρj )L and the optimal pol-

icy. Therefore, the region of interest in our analysis is restricted to L > 1 and
PL(�M) := {ρ ∈ P(�M) : minj∈�M

(1 − ρj )L > 1}.
Before we close this section, we provide the following lemma.

LEMMA 1. Suppose there exist β > 0 and a functional V :P(�M) →R+ such
that for all belief vectors ρ ∈ P(�M),

V (ρ) ≤ min
{
β + min

a∈AM

(
T

aV
)
(ρ), min

j∈�M

(1 − ρj )βL
}
.

Then V ∗(ρ) ≥ 1
β
V (ρ) for all ρ ∈ P(�M).

The proof is provided in the supplemental article [44], Section 1.

4. Performance bounds. In lieu of numerical approximation of or derivation
of a closed form for V ∗, in Section 4.1 we use Lemma 1 to find lower bounds for
the value function V ∗. In Section 4.2 we analyze two heuristic schemes to achieve
upper bounds for V ∗.

We have the following technical assumptions:

ASSUMPTION 1. For any two hypotheses i, j ∈ �M , i �= j , there exists an
action a, a ∈AM , such that D(qa

i ‖qa
j ) > 0.

ASSUMPTION 2. There exists ξM < ∞ such that

max
i,j∈�M

max
a∈AM

sup
z∈Z

log
qa
i (z)

qa
j (z)

≤ ξM.

Assumption 1 ensures the possibility of discrimination between any two hy-
potheses, hence ensuring Problem (P) has a meaningful solution. Assumption 2
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implies that no two hypotheses are fully distinguishable using a single observation
sample. Assumption 2 is a technical one which enables our nonasymptotic char-
acterizations, however, in Section 7 we discuss the consequence of weakening this
assumption in detail.

4.1. Lower bounds for V ∗.

THEOREM 1. Under Assumption 1 and for L > 1 and ρ ∈ PL(�M),

V ∗(ρ) ≥ V1(ρ) :=
[

M∑
i=1

ρi max
j �=i

log((1 − L−1)/L−1) − log(ρi/ρj )

maxa∈AM
D(qa

i ‖qa
j )

− K ′
1

]+
,

where K ′
1 is a constant independent of L whose closed form is given in the supple-

mental article [44], equation (144).

The proof of Theorem 1 is provided in Appendix.
Following Chernoff’s approach (Theorem 2 in [17]), and for large values of L,

the lower bound can be tightened as follows:

PROPOSITION 1. Under Assumptions 1 and 2, and for L > 1, ρ ∈ PL(�M),
and arbitrary δ ∈ (0,1),

V ∗(ρ) ≥
[

M∑
i=1

ρi

[(1 − δ) log(L/(K ′ log 2L)) − maxj �=i log(ρi/ρj )]+
maxλ∈P(AM) minj �=i

∑
a∈AM

λaD(qa
i ‖qa

j ) + δ

×
(

1 − 2M(K ′ log 2L/L)δ

ρi

)
− Mξ2

M

δ2

]+
,

where K ′ is a constant independent of δ and L whose closed form is given in the
supplemental article [44], equation (81).

The proof of Proposition 1 is provided in the supplemental article [44], Sec-
tion 5.1.

Next we provide another lower bound which is more appropriate for large
values of M . Let I (ρ;qa

ρ ) = H(ρ) − (TaH)(ρ) denote the mutual information
between θ ∼ ρ and observation Z under action a. Let Dmax(M) :=
maxi,j∈�M

maxa∈AM
D(qa

i ‖qa
j ), Imax(M) := maxa∈AM

maxρ̂∈P(�M) I (ρ̂;qa
ρ̂
), and

α(L,M) := M−1
M−1+2LImax(M) .

THEOREM 2. Under Assumption 1 and for L > 1 and ρ ∈ PL(�M),

V ∗(ρ) ≥
[
H(ρ) − H([α(L,M),1 − α(L,M)]) − α(L,M) log(M − 1)

Imax(M)

+ α(L,M)L

]+
.
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Furthermore, under Assumptions 1 and 2, and for L > max{1,
logM

Imax(M)
} and arbi-

trary δ ∈ (0,0.5],
V ∗(ρ) ≥ V2(ρ)

:=
[
H(ρ) − H([δ,1 − δ]) − δ log(M − 1)

Imax(M)

+ log((1 − L−1)/L−1) − log((1 − δ)/δ) − ξM

Dmax(M)

× 1{maxi∈�M
ρi≤1−δ} − K ′

2

]+
,

where K ′
2 is a constant independent of δ and L whose closed form is given in the

supplemental article [44], equation (151).6

The proof of Theorem 2 is provided in Appendix.
Theorem 2 can be used to show that when L <

logM
Imax(M)

, Problem (P) will have
a trivial solution. The precise statement is given by the following corollary.

COROLLARY 1. Let L <
logM

Imax(M)
, and suppose the decision maker has a uni-

form prior belief about the hypotheses. For sufficiently large M , the optimal policy
randomly guesses the true hypothesis without collecting any observation, hence,
Pe, the probability of making a wrong declaration, approaches 1 − 1

M
.

The proof of Corollary 1 is provided in the supplemental article [44], Sec-
tion 2.1.

REMARK 2. The lower bounds in Theorems 1 and 2 can be explained
by the following intuition: for any measure of uncertainty U :P(�M) → R+,
the number of samples required to reduce the uncertainty down to a target
level Utarget has to be at least U(ρ(0))−Utarget

max(U)
, where max(U) is the maximum

amount of reduction in U associated with a single sample, that is, max(U) =
maxa∈AM

maxρ∈P(�M){U(ρ) − (TaU)(ρ)}. The lower bound in Theorem 1 is as-
sociated with such a lower bound when taking U to be the log-likelihood function,
while the lower bound in Theorem 2 is associated with setting U to be the Shannon
entropy.

6As it will be discussed in Section 5.2, K ′
2 can be selected independent of M as well if

supM ξM < ∞.
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4.2. Upper bounds for V ∗. Next we propose two Markov policies π̃1 and π̃2.
Policies π̃1 and π̃2 have two operational phases. Phase 1 is the phase in which the
belief about all hypotheses is below a certain threshold, while in phase 2, the belief
about one of the hypotheses has passed that threshold and actions are selected in
favor of that particular hypothesis. The difference between the two policies is in
the actions they take in each phase.

First we describe policy π̃1. Let μ0 and μi , i ∈ �M , be vectors in P(AM) such
that

μ0 := arg max
λ∈P(AM)

min
i∈�M

min
j �=i

∑
a∈AM

λaD
(
qa
i ‖qa

j

)
,

μi := arg max
λ∈P(AM)

min
j �=i

∑
a∈AM

λaD
(
qa
i ‖qa

j

) ∀i ∈ �M.

Moreover, let μ0a and μia denote elements of μ0 and μi corresponding to a ∈ AM ,
respectively. Consider a threshold ρ̃, ρ̃ > 1

2 . Markov (randomized) policy π̃1 is
defined as follows:7

• If ρi ≥ 1 − L−1, retire and select Hi as the true hypothesis.
• If ρi ∈ [ρ̃,1 − L−1), then

– π̃1(a|ρ) = μia ∀a ∈ AM .
• If ρi < min{ρ̃,1 − L−1} for all i ∈ �M , then

– π̃1(a|ρ) = μ0a ∀a ∈AM .

In [17], Chernoff proposed a policy that, at each time t , selects action a with
probability μi∗a , where i∗ = arg maxi∈�M

ρi(t) denotes the most likely true hy-
pothesis. In other words, π̃1 coincides with Chernoff’s scheme in its second phase
and ensures its asymptotic optimality in L, while its first phase in a very natural
manner relaxes the technical assumption in [17] where all actions were required to
discriminate between all hypotheses pairs. Following Chernoff’s approach (Theo-
rem 1 in [17]), we can analyze the performance of policy π̃1 and obtain the fol-
lowing upper bound for V ∗.

For notational simplicity, let

Iμ0(M) := min
i∈�M

min
j �=i

∑
a∈AM

μ0aD
(
qa
i ‖qa

j

)
,

I1(M) :=
(

logM + 4ξM

mini∈�M
minj �=i

∑
a∈AM

μjaD(qa
i ‖qa

j )

)−2

Iμ0(M),

Dμi
(M) := min

j �=i

∑
a∈AM

μiaD
(
qa
i ‖qa

j

) ∀i ∈ �M.

7Policies π̃1 and π̃2 are not unique; they each represent a class of parameterized policies. In fact,
the tilde in π̃1 and π̃2 has been chosen to emphasize the dependency of these policies on the thresh-
old/parameter ρ̃.
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PROPOSITION 2. Under Assumptions 1 and 2, and for L > 1, ρ ∈ PL(�M),
and arbitrary ι ∈ (0,1),

V ∗(ρ) ≤ 	V1(ρ)

:= H(ρ) + logM + log(ρ̃/(1 − ρ̃))

I1(M)
(1 + ι) +

M∑
i=1

ρi

logL

Dμi
(M)

(1 + ι)

+ M

(
2 + 1

((ι/2)/(1 + ι))5(I1(M)/(2ξM))4

)

×
(
L

(
1 − max

j∈�M

ρj

))−(ι3/(1+ι)2)I 2
1 (M)/(4ξ3

M) + 2.

The proof is based on a performance analysis of policy π̃1 and is provided in
the supplemental article [44], Section 5.2.

Next we describe policy π̃2. Let η0 and ηi , i ∈ �M , be vectors in P(AM) such
that

η0 := arg max
λ∈P(AM)

min
i∈�M

min
ρ̂∈PL(�M)

∑
a∈AM

λaD

(
qa
i

∥∥∥∥∑
j �=i

ρ̂j

1 − ρ̂i

qa
j

)
,

ηi := arg max
λ∈P(AM)

min
ρ̂∈PL(�M)

∑
a∈AM

λaD

(
qa
i

∥∥∥∥∑
j �=i

ρ̂j

1 − ρ̂i

qa
j

)
∀i ∈ �M.

Moreover, let η0a and ηia denote elements of η0 and ηi corresponding to a ∈ AM ,
respectively. Consider a threshold ρ̃, ρ̃ > 1

2 . Markov (randomized) policy π̃2 is
defined as follows:

• If ρi ≥ 1 − L−1, retire and select Hi as the true hypothesis.
• If ρi ∈ [ρ̃,1 − L−1), then

– π̃2(a|ρ) = ηia ∀a ∈AM .
• If ρi < min{ρ̃,1 − L−1} for all i ∈ �M , then

– π̃2(a|ρ) = η0a ∀a ∈AM .

For notational simplicity, let

Iη0(M) := min
i∈�M

min
ρ̂∈PL(�M)

∑
a∈AM

η0aD

(
qa
i

∥∥∥∥∑
j �=i

ρ̂j

1 − ρ̂i

qa
j

)
,

Iη,ρ̃(M) := min
i∈�M

min
k �=i

min
ρ̂ : ρ̂k≥ρ̃

∑
a∈AM

ηkaD

(
qa
i

∥∥∥∥∑
j �=i

ρ̂j

1 − ρ̂i

qa
j

)
,

I2(M) := min
{
Iη0(M), Iη,ρ̃ (M)

}
,

Dηi
(M) := min

ρ̂∈PL(�M)

∑
a∈AM

ηiaD

(
qa
i

∥∥∥∥∑
j �=i

ρ̂j

1 − ρ̂i

qa
j

)
∀i ∈ �M.
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THEOREM 3. Under Assumptions 1 and 2, and for L > 1 and any ρ ∈
PL(�M),

V ∗(ρ) ≤ 	V2(ρ) := H(ρ) + log(ρ̃/(1 − ρ̃)) + ξM + log e

I2(M)
+

M∑
i=1

ρi

logL

Dηi
(M)

+ 1.

The proof is based on a performance analysis of policy π̃2 and is provided in
the Appendix.

5. Asymptotic analysis and consequences. In this section we state and dis-
cuss the consequence of the bounds obtained in Section 4 in asymptotically large
L and M . Note that Table 1 provides a list of the notation introduced in Section 4.

5.1. Order and asymptotic optimality in L. The lower and upper bounds pro-
vided in Section 4 can be applied to establish the order optimality and asymptotic
optimality of the proposed policies as defined below. Let Vπ(ρ) denote the value

TABLE 1
Summary of notation

Notation Description

Imax(M) maxa∈AM
maxρ̂∈P(�M) I (ρ̂;qa

ρ̂
)

Dmax(M) maxi,j∈�M
maxa∈AM

D(qa
i ‖qa

j )

μ0 arg maxλ∈P(AM) mini∈�M
minj �=i

∑
a∈AM

λaD(qa
i ‖qa

j )

μi arg maxλ∈P(AM) minj �=i
∑

a∈AM
λaD(qa

i ‖qa
j )

Iμ0(M) mini∈�M
minj �=i

∑
a∈AM

μ0aD(qa
i ‖qa

j )

I1(M) (
logM+4ξM

mini∈�M
minj �=i

∑
a∈AM

μjaD(qa
i ‖qa

j )
)−2Iμ0(M)

Dμi
(M) minj �=i

∑
a∈AM

μiaD(qa
i ‖qa

j )

η0 arg maxλ∈P(AM) mini∈�M
minρ̂∈PL(�M)

∑
a∈AM

λaD(qa
i ‖∑

j �=i
ρ̂j

1−ρ̂i
qa
j )

ηi arg maxλ∈P(AM) minρ̂∈PL(�M)

∑
a∈AM

λaD(qa
i ‖∑

j �=i
ρ̂j

1−ρ̂i
qa
j )

Iη0 (M) mini∈�M
minρ̂∈PL(�M)

∑
a∈AM

η0aD(qa
i ‖∑

j �=i
ρ̂j

1−ρ̂i
qa
j )

Iη,ρ̃ (M) mini∈�M
mink �=i minρ̂ : ρ̂k≥ρ̃

∑
a∈AM

ηkaD(qa
i ‖∑

j �=i
ρ̂j

1−ρ̂i
qa
j )

I2(M) min{Iη0(M), Iη,ρ̃ (M)}

Dηi
(M) minρ̂∈PL(�M)

∑
a∈AM

ηiaD(qa
i ‖∑

j �=i
ρ̂j

1−ρ̂i
qa
j )
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function for policy π , that is, the expected total cost achieved by policy π when
the initial belief is ρ.

DEFINITION 3. For fixed M , policy π is referred to as order optimal in L if
for all ρ ∈ P(�M),

lim
L→∞

Vπ(ρ) − V ∗(ρ)

Vπ(ρ)
< 1.

DEFINITION 4. For fixed M , policy π is referred to as asymptotically optimal
of order-1 in L if for all ρ ∈ P(�M),

lim
L→∞

Vπ(ρ) − V ∗(ρ)

Vπ(ρ)
= 0.

DEFINITION 5. For fixed M , policy π is referred to as asymptotically optimal
of order-2 in L if for all ρ ∈ P(�M), there exists a constant B independent of L

such that

Vπ(ρ) − V ∗(ρ) ≤ B.

REMARK 3. It is clear from the definitions above that order optimality is
weaker than asymptotic optimality of order-1, while asymptotic optimality of
order-2 is the strongest notion. The notion of asymptotic optimality of order-1 was
first introduced in [17], which naturally motivates the extension of higher orders.

The next corollary establishes order and asymptotic optimality of our proposed
policies.

COROLLARY 2. Under Assumptions 1 and 2, policy π̃1 is asymptotically op-
timal of order-1 in L. Furthermore, policy π̃2 attains asymptotic optimality of
order-2 in L if

min
j �=i

max
a∈AM

D
(
qa
i ‖qa

j

) = Dηi
(M) ∀i ∈ �M.(5)

PROOF. Using Proposition 1 and by setting δ = (logL)−1/3, we obtain

V ∗(ρ) ≥
M∑
i=1

ρi

logL

Dμi
(M)

+ O
(
(logL)2/3)

.(6)

On the other hand, from Proposition 2 and by setting ι = (logL)−1/4, we get

V ∗(ρ) ≤
M∑
i=1

ρi

logL

Dμi
(M)

+ O
(
(logL)3/4)

.(7)
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The proof of the first part of the corollary simply follows from Definition 4, in-
equality (6) and (7).

Similarly, the proof of the second part of the corollary follows from Definition 5,
Theorems 1 and 3. �

5.2. Order and asymptotic optimality in both L and M . As mentioned in Sec-
tion 2.2, one of the main drawbacks of Chernoff’s asymptotic optimality notion
was his neglecting the complementary role of parameter M . In particular, the no-
tion of asymptotic optimality in L falls short in showing the tension between using
an (asymptotically) large number of samples to discriminate among a few hypothe-
ses with (asymptotically) high accuracy or an (asymptotically) large number of hy-
potheses with a lower degree of accuracy. In this section we address this issue by
analyzing the bounds when L and M are both asymptotically large. More specif-
ically, we consider a sequence of problems indexed by parameter M in which the
set of actions and observation kernels grow monotonically as M increases, that is,
for all M < M ′,

AM ⊆ AM ′ and
{
qa
i (·)}i∈�M,a∈AM

⊆ {
qa
i (·)}i∈�M′ ,a∈AM′ .(8)

Recall the notation listed in Table 1. Also, let D1(M) and D2(M) denote, re-
spectively, the harmonic mean of {Dμi

(M)}i∈�M
and {Dηi

(M)}i∈�M
, that is,

D1(M) = M

(
M∑
i=1

1

Dμi
(M)

)−1

, D2(M) = M

(
M∑
i=1

1

Dηi
(M)

)−1

.(9)

Moreover, let

	Imax := sup
M

Imax(M), 	Dmax := sup
M

Dmax(M),(10)

Imax := inf
M

Imax(M), Dmax := inf
M

Dmax(M),(11)

I 2 := inf
M

I2(M), D2 := inf
M

D2(M).(12)

By the definition and from (8), Dmax(M) and Imax(M) are nondecreasing in M .
Furthermore, from Jensen’s inequality,

Imax(M) = max
a∈AM

max
ρ̂∈P(�M)

M∑
i=1

ρ̂iD

(
qa
i

∥∥∥∥∥
M∑

j=1

ρ̂j q
a
j

)

≤ max
a∈AM

max
ρ̂∈P(�M)

M∑
i=1

ρ̂i

M∑
j=1

ρ̂jD
(
qa
i ‖qa

j

)
(13)

≤ max
a∈AM

max
i,j∈�M

D
(
qa
i ‖qa

j

) = Dmax(M)
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and by Assumption 2, we have8

Dmax(M) ≤ max
i,j∈�M

max
a∈AM

sup
z∈Z

log
qa
i (z)

qa
j (z)

≤ ξM.(14)

Similarly, I2(M) ≤ Dηi
(M) ≤ Dμi

(M) ≤ Dmax(M) ≤ ξM , ∀i ∈ �M , for all M .
Since Dmax(M) and Imax(M) are nondecreasing in M , we have Dmax = Dmax(2),
	Dmax = limM→∞ Dmax(M), Imax = Imax(2) and 	Imax = limM→∞ Imax(M).

Furthermore, to ensure that the distance between the observation kernels re-
mains bounded as M increases (and 	Dmax < ∞), we consider the following as-
sumption:

ASSUMPTION 3. There exists ξ < ∞ such that

sup
M

ξM ≤ ξ.

This assumption allows us to specialize Theorem 2 as follows.

COROLLARY 3. Let ρu,M denote a uniform prior on the set of hypotheses

�M . Under Assumptions 1, 2 and 3, and for δ = 1
log 2ML

and L > max{2,
logM

Imax(M)
},

V2(ρu,M) ≥
[

logM − 2
	Imax

+ log((1 − L−1)/L−1)

	Dmax
− log logLM + ξ

Dmax
− K ′

2

]+
,

where K ′
2 is a positive constant independent of L and M .

The proof of Corollary 3 is provided in the supplemental article [44], Sec-
tion 2.2.

The next definition extends the notions of order and asymptotic optimality de-
fined in Section 5.1 to the case where M increases as well.

DEFINITION 6. Policy π is referred to as order optimal and asymptotically
optimal of order-1 in L and M if, respectively,9

lim
L,M→∞

Vπ(ρu,M) − V ∗(ρu,M)

Vπ(ρu,M)
< 1, lim

L,M→∞
Vπ(ρu,M) − V ∗(ρu,M)

Vπ(ρu,M)
= 0.

8Inequality (14) holds true even if Assumption 2 is replaced by a more general assumption such as
those suggested in Section 7.

9Note that unlike Definitions 3–5 where we considered the performance gap between policy π and
the optimal policy π∗ for all values of ρ ∈ P(�M), here we consider the performance gap specifically
at the uniform vector in the information state space.
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COROLLARY 4. Under Assumptions 1, 2 and 3, for L >
logM

Imax(M)
, and if

I 2 > 0, policy π̃2 is order optimal in L and M . Furthermore, if 	Imax = I 2 and
	Dmax = D2, policy π̃2 is asymptotically optimal of order-1 in L and M .

PROOF. The proof follows from Definition 6, Corollary 3 and Theorem 3. �

5.3. Information acquisition rate and reliability. In this section we explain the
primal (constrained) version of Problem (P), referred to as Problem (P′), and use
the obtained bounds in Section 4 to extend the (information theoretic) notions of
achievable communication rate and error exponent to the context of active sequen-
tial hypothesis testing.

PROBLEM (P′) (Information acquisition problem). Consider a sequence of ac-
tive hypothesis testing problems indexed by parameter M (i.e., the number of hy-
potheses of interest), action space AM and observation kernels {qa

i (·)}i∈�M,a∈AM
:

a Bayesian decision maker with uniform prior belief ρ(0) = ρu,M is responsible
to find the true hypothesis with the objective to

minimize E[τ ] subject to Pe ≤ ε,(15)

where τ is the stopping time at which the decision maker retires, Pe is the proba-
bility of making a wrong declaration, and ε > 0 denotes the desired probability of
error. Furthermore, let the set of actions and observation kernels grow monotoni-
cally as M increases, that is, for all M < M ′,

AM ⊆ AM ′ and
{
qa
i (·)}i∈�M,a∈AM

⊆ {
qa
i (·)}i∈�M′ ,a∈AM′ .(16)

Let Eπ [τ ] and Peπ denote, respectively, the expected stopping time (or, equiv-
alently, the expected number of collected samples) and the probability of error
under policy π . Following the notation in [49], we define Mπ(t, ε) as the maxi-
mum number of hypotheses among which policy π can find the true hypothesis
with Eπ [τ ] ≤ t and Peπ ≤ ε. Policy π is said to achieve information acquisition
rate R > 0 with reliability (also known as error exponent) E > 0 if

lim
t→∞

1

t
logMπ

(
t,2−Et ) = R.(17)

For a fixed number of hypotheses M , hence at information acquisition rate R = 0,
policy π is said to achieve reliability E > 0 if

lim
t→∞

−1

t
log Peπ(t,M) = E,(18)

where Peπ(t,M) is the minimum probability of error that policy π can guarantee
for M hypotheses with the constraint Eπ [τ ] ≤ t .
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The reliability function E(R) is defined as the maximum achievable error ex-
ponent at information acquisition rate R.

Before we proceed with the upper and lower bounds on the maximum achiev-
able information acquisition rate and the optimal reliability function, we refer the
reader to Table 1 for the list of notation introduced in Section 4. Also recall that
D1(M) and D2(M) denote, respectively, the harmonic mean of {Dμi

(M)}i∈�M

and {Dηi
(M)}i∈�M

.

COROLLARY 5. For any given fixed M (rate R = 0), no policy can achieve re-
liability higher than D1(M). Also, no policy can achieve positive reliability E > 0
at rates higher than 	Imax. Furthermore,

E(R) ≤ 	Dmax

(
1 − R

	Imax

)
, R ∈ (0,	Imax).(19)

REMARK 4. Corollary 5 establishes an upper bound, 	Imax, on the maximum
achievable information acquisition rate. As shown in the supplemental article [44],
Section 3.3, this result can be strengthened to show that no policy can achieve
diminishing error probability at rates higher than 	Imax.

COROLLARY 6. For fixed M , hence at rate R = 0, a policy π can achieve the
maximum reliability, that is, E = D1(M), if and only if it is asymptotically optimal
(of order-1 or higher) in L. Furthermore, a policy π can achieve a nonzero rate
R > 0 with nonzero reliability E > 0 only if it is order optimal in L and M .

Corollary 6 implies that for fixed M , hence at R = 0, policies π̃1 and π∗ achieve
the optimal error exponent, while policy π̃2 might or might not [depending on
condition (5)]. Furthermore, Corollary 6, in effect, underlines the deficiency of
characterizing the solution to Problems (P) in terms of L in isolation from M ,
hence, Chernoff’s notion of asymptotic optimality (solely in L). In particular, an
order optimal policy can achieve nonzero rate and reliability simultaneously, an
improvement over π̃1 (and all extensions of [17]).

COROLLARY 7. Policy π̃2 achieves rate R ∈ [0, I 2] with reliability E if

E ≤ D2

(
1 − R

I 2

)
.(20)

Figure 1 summarizes the results above. The upper bound on the reliability func-
tion is shown in red. Policy π̃1 achieves the optimal reliability D1(M) for fixed M

(at R = 0) with no provable guarantee for R > 0 (this point is shown in green),
while policy π̃2 ensures an exponentially decaying error probability (the error ex-
ponent is shown in blue) for R ∈ [0, I 2).
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FIG. 1. Lower and upper bounds on the optimal reliability function E(R).

REMARK 5. It can be shown that any optimal policy π∗ for Problem (P) also
achieves any rate R ∈ [0, I 2] with reliability E satisfying (20) for Problem (P′).

The proofs of all the results in this section are provided in the supplemental
article [44], Section 3, and are based on the fact that Problem (P) can be viewed as
a Lagrangian relaxation of Problem (P′). It is somewhat intuitive that as L → ∞
the solution of Problem (P) is closely related to that of Problem (P′) when ε → 0.
The following lemma makes this intuition precise.

LEMMA 2. Let E[τ ∗
ε ] denote the minimum expected number of samples re-

quired to achieve Pe ≤ ε. We have

E
[
τ ∗
ε

] ≥ (1 − εL)
(
V ∗(

ρ(0)
) − 1

)
,(21)

where V ∗(ρ(0)) is the optimal solution to Problem (P) for prior belief ρ(0) and
penalty of wrong declaration L.

Given the above connection, Corollary 5 follows readily from the lower bounds
obtained in Proposition 1 and Theorem 2 (in particular, its Corollary 3), and Corol-
laries 6 and 7 follow from the upper bounds given by Proposition 2 and Theorem 3.

6. Examples. In this section we consider important special cases of the active
hypothesis testing to provide some intuition about the conditions of Corollaries
2 and 4, and, in particular, establish the order-2 asymptotic optimality of π̃2 for a
fixed value of M and rate–reliability optimality of policy π̃2.
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6.1. Binary hypothesis testing. Consider Problem (P) for M = 2. In this set-
ting, policies π̃1 and π̃2 are equivalent and by Corollary 2, both policies are asymp-
totically optimal of order-1 in L. Asymptotic optimality of order-2 of π̃1 and π̃2
is also verified from Corollary 2 since equality (5) holds trivially for M = 2. Fur-
thermore, we obtain

V ∗(ρ) = ρ1
logL − log(ρ1/ρ2)

maxa∈AM
D(qa

1 ‖qa
2 )

+ ρ2
logL − log(ρ2/ρ1)

maxa∈AM
D(qa

2 ‖qa
1 )

+ O(1).

The problem of reliability (error exponent) associated with passive binary
hypothesis testing with fixed-length (nonsequential) as well as variable-length
(sequential) sample size has been studied by [10, 19, 25]. The generalization to
channel coding with feedback with two messages was addressed in [4, 5, 46]. Re-
cently, the authors in [26] and [50] have generalized this problem for fixed-length
and variable-length sample size, respectively, to the active binary hypothesis test-
ing in the non-Bayesian context, and identified the error exponent corresponding
to both error types. Our work provides nonasymptotic bounds as well as an asymp-
totic optimal solution in a total cost and Bayesian sense, and is consistent with the
findings in [50].

6.2. Noisy dynamic search. Consider the problem of sequentially searching
for a single target in M locations where the goal is to find the target quickly and
accurately. In each step, the player can inspect an allowable combination of the lo-
cations, and the outcome of the inspection is noisy. This problem is closely related
to the problems of fault detection, whereabouts search and group testing. In fault
detection, the objective is to determine the faulty component in a system known to
have one failed component [15, 42]. In whereabouts search, the goal is to find an
object which is hidden in one of M boxes, where it is usually assumed that there
is no false alarm, that is, the outcome of inspecting box i is always 0 if no object
is present, and is a Bernoulli random variable with a known parameter otherwise
[30, 56]. In group testing, the goal is to locate the nonzero element10 of a vector in
R

M with a possible noisy linear measurement of the vector [16, 52]. One possible
search strategy for these problems is the maximum likelihood policy. In the case
of fault detection/whereabouts search, this policy is equivalent to one that inspects
a segment with the highest probability of having the faulty component/hidden ob-
ject, while in the case of group testing, it is equivalent to measuring the most likely
nonzero element of the vector. However, as the number of segments or the dimen-
sion of vectors, M , increases, the scheme becomes impractical. In such a case, it
is more intuitive to initially follow a noisy binary search [14, 29, 48] and narrow
down the search to single segments only after we have collected sufficient infor-
mation supporting the presence of the target in those segments [51, 55].

10Group testing with d > 1 nonzero elements is also a special case of active hypothesis testing

with
(M
d

)
hypotheses (possible configurations).
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In this section, we first consider the problem of a noisy dynamic search with
size-dependent Bernoulli noise whose special cases have been independently stud-
ied in [14, 16, 29, 30, 42, 48, 52, 56].11 Remark 6 at the end of this section dis-
cusses a generalization for the symmetric noise model of [15].

Let a ⊂ �M be a subset of locations that can be simultaneously inspected, re-
ferred to as the inspection region hereafter, and let AM = 2�M be the collection
of all allowable inspection regions. We assume that the outcome of an inspection
depends on the size of the inspection region. More precisely, the outcome of in-
specting region a, where |a| = n, is a random variable with Bernoulli distribution:

qa
i =

{B(1 − pn), if i ∈ a and |a| = n

B(pn), if i /∈ a and |a| = n
∀i ∈ �M,∀a ∈ AM,

where p1 > 0 and for all n, pn ≤ pn+1 and pn ≤ p for some p < 0.5.

LEMMA 3. Consider the problem of a noisy dynamic search with size-
dependent Bernoulli noise explained above. We have

min
j �=i

max
a∈AM

D
(
qa
i ‖qa

j

) = Dηi
(M) = (1 − 2p1) log

1 − p1

p1
∀i ∈ �M,(22)

D2 = 	Dmax = (1 − 2p1) log
1 − p1

p1
,(23)

0 < 1 − sup
n

H
([pn,1 − pn]) ≤ I 2 ≤ 	Imax ≤ 1 − H

([p1,1 − p1]).(24)

The proof is provided in the supplemental article [44], Section 4.
Lemma 3, together with Corollaries 2 and 4, implies that π̃2 attains asymptotic

optimality of order-2 in L, and order optimality in L and M . Furthermore, for the
special case of size-independent Bernoulli noise where 0 < p1 = p2 = · · · = p <

0.5, policy π̃2 attains asymptotic optimality of order-1 in L and M .
The active hypothesis testing scheme proposed by Chernoff [17] as well as its

variants [8, 11], when specialized to a noisy dynamic search with size-independent
Bernoulli noise, simplifies to one that inspects, at each instant, a location with
the highest probability of having the target. This scheme, which was also studied
in [15] in a finite horizon context, has an information acquisition rate that is re-
stricted to zero, while at zero rate, it achieves asymptotic optimality and maximum
error exponent 	Dmax = (1 − 2p) log 1−p

p
. In contrast, in [14, 29], a noisy binary

search was proposed in which the locations are partitioned along the median of the
posterior and, in effect, are inspected along a generalized binary tree. It was shown
in [14, 29] that the proposed policy can achieve any rate R < 1 − H([p,1 − p])

11Of course in this paper we are interested in a sequential setting where the sample size is not fixed
a priori and is determined by the observation outcomes.
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with reliability E(R) = 1 − H([p,1 − p]) − R. In other words, the proposed pol-
icy in [14, 29] is asymptotically optimal in M (since 1−H([p,1−p]) = 	Imax) but
only order optimal in L (since 0 < 1−H([p,1−p]) < (1−2p) log 1−p

p
= 	Dmax).

Lemma 3 shows that, in the case of size-independent Bernoulli noise, our pro-
posed policy π̃2 combines the best of the above two approaches: in its first phase,
by randomly selecting actions from AM , it ensures the maximum acquisition rate
obtained by the noisy binary search of [14, 29], while its second phase coincides
with the schemes in [8, 11, 17], ensuring the maximum feasible error exponent.

REMARK 6. Lemma 3 can be extended beyond the Bernoulli noise model so
long as the observation kernels

qa
i (·) =

{
fn(·), if i ∈ a and |a| = n

f̄n(·), if i /∈ a and |a| = n
∀i ∈ �M,∀a ∈ AM,

satisfy the following conditions:

fn(z) = f̄n(b − z) ∀z ∈ Z for some b ∈ R,(25)

D(fn‖αfn + ᾱf̄n) ≥ D(fn+1‖αfn+1 + ᾱf̄n+1) ∀α ∈ [0,1], ᾱ = 1 − α,(26)

sup
n

sup
z∈Z

fn(z)/f̄n(z) < ∞.(27)

In particular, under these conditions

min
j �=i

max
a∈AM

D
(
qa
i ‖qa

j

) = Dηi
(M) = D(f1‖f̄1) ∀i ∈ �M,(28)

D2 = 	Dmax = D(f1‖f̄1),(29)

inf
n

D

(
fn

∥∥∥∥1

2
fn + 1

2
f̄n

)
≤ I 2 ≤ 	Imax ≤ D

(
f1

∥∥∥∥1

2
f1 + 1

2
f̄1

)
.(30)

Condition (25) implies that given a fixed inspection area, the collected samples
provide identical information regarding the presence of the target or its absence.
Condition (26) implies that the samples become less informative as the size of
the inspection region increases. Conditions (25) and (26) are natural, while condi-
tion (27) is a technical one to ensure that Assumptions 2 and 3 hold (we address
weakening these assumptions in Section 7).

7. Discussions. In this section we provide a discussion on the technical as-
sumptions of the paper. In particular, we discuss the necessity of our Assump-
tions 1 and 2, and compare them with the common assumptions in the literature.
In contrast to Assumption 1 which is shown to be necessary for the problem of ac-
tive hypothesis testing to have a meaningful solution, Assumption 2 can be relaxed
to more general assumptions without affecting the asymptotic results of the paper.
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7.1. Assumption 1. We first discuss the necessity of Assumption 1. If Assump-
tion 1 does not hold, then there exist two hypotheses i, j ∈ �M , i �= j such that
for all a ∈ AM , D(qa

i ‖qa
j ) = 0. In other words, qa

i (·) = qa
j (·) for all a ∈ AM , and,

hence, the decision maker is not capable of distinguishing these two hypotheses.
In this sense, Assumption 1 is necessary for Problem (P) to be meaningful.

Next we compare Assumption 1 to its counterpart in [17]:

ASSUMPTION 1′ . D(qa
i ‖qa

j ) > 0, ∀i, j ∈ �M , i �= j , ∀a ∈AM .

This assumption assures consistency (see Lemma 1 in [17]), that is,
arg maxi∈�M

ρi(t) converges exponentially fast to the true hypothesis regardless of
the way the sensing actions are selected. However, this assumption is very restric-
tive and does not hold in many problems of interest such as channel coding with
feedback [12] and noisy dynamic search (e.g., one cannot discriminate between
locations 1 and 2 by inspecting location 3). It was remarked in [17], Section 7, that
the above restrictive assumption can be relaxed if the proposed scheme is modi-
fied to take a (possibly randomized) action capable of discriminating between all
hypotheses pairs infinitely often (e.g., at any time t when t is a perfect square). In
this paper, however, we took a different approach and constructed policy π̃1, a sim-
ple two-phase modification of Chernoff’s original scheme in which testing for the
maximum likely hypothesis is delayed and contingent on obtaining a certain level
of confidence.

7.2. Assumption 2. We first discuss the necessity of Assumption 2. For ob-
servation kernels with bounded support, Assumption 2 is a necessary condition to
ensure that the observation kernels are absolutely continuous with respect to each
other and, hence, no observation is noise free. Although this assumption might hold
in many settings such as the problem of a noisy dynamic search with Bernoulli
noise explained in Section 6.2, it does not hold in general for observation kernels
with unbounded support such as Gaussian distribution. Next we replace Assump-
tion 2 by more general assumptions on the observation kernels and discuss the
consequences.

To the best of our knowledge, Assumption 2′ below, given first by [17], is the
weakest condition in the literature of hypothesis testing and sequential analysis,
and is often interpreted to an assumption which limits the excess over the boundary
at the stopping time [38].

ASSUMPTION 2′ . There exists ξM < ∞ such that

max
i,j∈�M

max
a∈AM

∫
Z

qa
i (z)

∣∣∣∣log
qa
i (z)

qa
j (z)

∣∣∣∣
2

dz ≤ ξM.
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Proposition 1 remains valid even if Assumption 2 is replaced with Assump-
tion 2′ (with the only change that ξ2

M is replaced with ξM in the bound). The proof
of Proposition 2 relies on Chernoff’s approach [17], and the asymptotic behavior
of the bound remains intact if Assumption 2 is replaced with Assumption 2′. How-
ever, as shown in the proof of this proposition in the supplemental article [44],
Section 5, Assumption 2 allows us to give a precise nonasymptotic characteriza-
tion of the bound by applying the method of bounded differences and, in particular,
McDiarmid’s inequality [41].

Next we consider the consequence of weakening Assumption 2 on Theorems
2 and 3, hence on the performance of policy π̃2. To do so, we consider an even
weaker assumption than Assumption 2′ as given below:

ASSUMPTION 2′′ . There exist ξM < ∞ and γ > 0 such that

max
i,j∈�M

max
a∈AM

∫
Z

qa
i (z)

∣∣∣∣log
qa
i (z)

qa
j (z)

∣∣∣∣
1+γ

dz ≤ ξM.

Define function ψM :R+ →R+ as follows:

ψM(b) := max
i,j∈�M

max
a∈AM

∫
Z

qa
i (z)

[
log

qa
i (z)

qa
j (z)

]
b

dz,

where [g]b = g1{g>b}. Note that ψM(b) is in general nonincreasing in b, and if
Assumption 2′′ holds, ψM(b) ≤ b−γ ξM . Under the weaker Assumption 2′′ (and
naturally Assumption 2′), Theorems 2 and 3 can be replaced by the following:

PROPOSITION 3. Under Assumptions 1 and 2′′ and for L >
logM

Imax(M)
, ρ ∈

PL(�M), δ ∈ (0,0.5], and b > 0,

V ∗(ρ) ≥ V3(ρ) := 1

1 + ψM(b)/Dmax(M)

×
[
H(ρ) − H([δ,1 − δ]) − δ log(M − 1)

Imax(M)

+ log((1 − L−1)/L−1) − log((1 − δ)/δ) − b

Dmax(M)

× 1{maxi∈�M
ρi≤1−δ} − K ′

3

]+
,

where K ′
3 is a positive constant independent of δ and L. In addition, if Assump-

tion 3 also holds, then K ′
3 can be selected independent of M as well.

The proof is provided in the supplemental article [44], Section 8.1.
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PROPOSITION 4. Under Assumptions 1 and 2′′, and for L > 1 and ρ ∈
PL(�M), ∃b′ ∈ (0,∞) such that for all b ≥ b′, 0 ≤ (1+(log e)/b)2−bψM(b)

I2(M)−ψM(b)
< 1, and

V ∗(ρ) ≤ 	V3(ρ)

:=
(

1 − (1 + (log e)/b)2−bψM(b)

I2(M) − ψM(b)

)−1

×
(

H(ρ) + log(ρ̃/(1 − ρ̃)) + b + log e

I2(M) − ψM(b)
+

M∑
i=1

ρi

logL

Dηi
(M) − ψM(b)

)

+ 1.

The proof is provided in the supplemental article [44], Section 8.2.
As we discussed, ψM(b) ≤ b−γ ξM under Assumption 2′′. Furthermore, if As-

sumption 3 holds, then supM ψM(b) ≤ b−γ ξ . In other words, we can select b as
a function of L and M (e.g., b = log logLM) such that V3 and 	V3 have the same
dominating terms (in L and M) as V2 and 	V2, respectively.

In summary, the asymptotic results of the paper presented in Section 5 hold
under the weaker Assumptions 2′ and 2′′ replacing Assumption 2 (with the only
exception that the asymptotic optimality of order-2 of policy π̃2 established in
Corollary 2 is degraded to asymptotic optimality of order-1). Our choice to present
the work under Assumption 2, however, significantly simplifies the presentation
and also enables a precise nonasymptotic characterization of the lower and upper
bounds.

8. Conclusions and future work. In this paper we considered the problem
of active sequential M-ary hypothesis testing. Using a DP formulation, we char-
acterized the optimal value function V ∗. Three lower bounds (complementary for
various values of the parameters of the problem) were obtained for the optimal
value function V ∗. We also proposed two heuristic policies whose performance
analysis resulted in two upper bounds for V ∗. Subsequently, we discussed impor-
tant consequences of the bounds and established order and asymptotic optimality
of the proposed policies under different scenarios. An important problem which
remains is further improvement of the performance bounds.

In this paper we focused on sequential policies, that is, policies whose sample
size is not known initially and is dependent on the observation outcomes. There
exist other types of policies in the literature. For example, nonsequential policies
take a fixed number of samples (independent of observation outcomes) and make
the final decision afterward, while multi-stage policies (introduced in [3, 40]) can
take a retire–declare action only at the end of each stage, and stages are not nec-
essarily of the same size. Comparing the performance of sequential, nonsequential
and multi-stage policies in the context of active hypothesis testing is an area of
future work.
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In this paper we assumed that all sensing actions incur one unit of cost (each
action can be executed in one unit of time). It is also of interest to consider the
scenario where there is a cost associated with each action which, for example,
characterizes the amount of energy or time required to perform that action; and the
goal is to find the true hypothesis subject to a cost criterion. Such generalization
has been studied for the problem of variable-length coding with feedback in [45].

APPENDIX: PROOF OF THEOREMS 1–3

A.1. Proof of Theorem 1. Let � be the set of all mappings γ :�M → �M

such that γ (i) �= i for i ∈ �M . Now associated with any γ ∈ �, define

V1
γ (ρ) =

[
M∑
i=1

ρi

log((1 − L−1)/L−1) − log(ρi/ργ (i))

maxâ∈AM
D(qâ

i ‖qâ
γ (i))

− K ′
1

]+
.(31)

Next we use Lemma 1 to show that V ∗ ≥ V1
γ for all γ ∈ �. In partic-

ular, we show that for all γ ∈ � and all ρ ∈ P(�M), V1
γ (ρ) ≤ min{1 +

mina∈AM
(TaV1

γ )(ρ),minj∈�M
(1 − ρj )L}. For any ρ such that V1

γ (ρ) = 0, the
inequality holds trivially. For V1

γ (ρ) > 0 and for any action a ∈ AM , we have(
T

aV1
γ )

(ρ)

≥
M∑
i=1

∫
ρiq

a
i (z)

log((1 − L−1)/L−1) − log(ρiq
a
i (z)/(ργ (i)q

a
γ (i)(z)))

maxâ∈AM
D(qâ

i ‖qâ
γ (i))

dz

− K ′
1

= V1
γ (ρ) −

M∑
i=1

ρi

D(qa
i ‖qa

γ (i))

maxâ∈AM
D(qâ

i ‖qâ
γ (i))

≥ V1
γ (ρ) − 1.

CLAIM 1 (In Section 9.1 of the supplemental article [44]). Constant K ′
1 can

be selected independent of L such that V1
γ (ρ) ≤ minj∈�M

(1 − ρj )L is satisfied
for all γ ∈ �.

Using Claim 1 and letting V1(·) = maxγ∈� V1
γ (·), we have the assertion of the

theorem.

A.2. Proof of Theorem 2. We first show that for all ρ ∈ P(�M),

V ∗(ρ) ≥
[
H(ρ) − H([α(L,M),1 − α(L,M)]) − α(L,M) log(M − 1)

Imax(M)(32)

+ α(L,M)L

]+
.
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Note that the right-hand side of (32) can be written as

G(ρ) :=
[
H(ρ) − H(ν)

Imax(M)
+ α(L,M)L

]+
,(33)

where

ν =
[
α(L,M)

M − 1
, . . . ,

α(L,M)

M − 1
,1 − α(L,M)

]
.(34)

Next we show that G(ρ) ≤ min{1 + mina∈AM
(TaG)(ρ),minj∈�M

(1 − ρj )L} for
all ρ ∈ P(�M). For any ρ such that G(ρ) = 0, the inequality holds trivially. For
G(ρ) > 0 and for any action a ∈ AM , we have

(
T

aG
)
(ρ) =

∫
H(�a(ρ, z))qa

ρ (z) dz − H(ν)

Imax(M)
+ α(L,M)L

= H(ρ) − I (ρ;qa
ρ ) − H(ν)

Imax(M)
+ α(L,M)L

(35)

= G(ρ) − I (ρ;qa
ρ )

Imax(M)

≥ G(ρ) − 1,

where the last inequality follows from the fact that

I
(
ρ;qa

ρ

) ≤ max
â∈AM

max
ρ̂∈P(�M)

I
(
ρ̂;qâ

ρ̂

) = Imax(M).

Therefore,

G(ρ) ≤ 1 + min
a∈AM

(
T

aG
)
(ρ).

What remains is to show that G(ρ) ≤ minj∈�M
(1 − ρj )L. Rewriting G as

G(ρ) =
[∑M−1

i=1 ρi log(1/ρi) + (1 − ∑M−1
i=1 ρi) log(1/(1 − ∑M−1

i=1 ρi)) − H(ν)

Imax(M)

+ α(L,M)L

]+
,

we can compute the gradient at ν. For all i = 1,2, . . . ,M − 1,

∂G

∂ρi

(ν) =
(

log
1

ρi

− log e − log
1

1 − ∑M−1
i=1 ρi

+ log e

)/
Imax(M)

∣∣∣∣
ρ=ν

=
(

log
ρM

ρi

)/
Imax(M)

∣∣∣
ρ=ν

=
(

log
1 − α(L,M)

α(L,M)/(M − 1)

)/
Imax(M) = L.

Furthermore, G(ν) = α(L,M)L = (1 − νM)L. Without loss of generality and
since both functions G(ρ) and minj∈�M

(1 − ρj )L are symmetric, let us fo-
cus on PM(�M) := {ρ ∈ P(�M) :ρM ≥ ρi, ∀i ∈ �M − {M}}. In this case,
minj∈�M

(1 − ρj )L = (1 − ρM)L = ∑M−1
i=1 ρiL and, hence, minj∈�M

(1 − ρj )L
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is the tangent hyperplane to G(ρ) at ν. This along with concavity of function G

implies G(ρ) ≤ minj∈�M
(1 − ρj )L. Using Lemma 1, we have the assertion of the

theorem.
Next we need to show that

V ∗(ρ) ≥ V2(ρ) =
[
H(ρ) − H([δ,1 − δ]) − δ log(M − 1)

Imax(M)

+ log((1 − L−1)/L−1) − log((1 − δ)/δ) − ξM

Dmax(M)
(36)

× 1{maxi∈�M
ρi≤1−δ} − K ′

2

]+
.

We show this in two steps. First we consider the following function:

J ′(ρ) :=
[

M∑
i=1

ρi

log((1 − L−1)/L−1) − log(ρi/(1 − ρi))

Dmax(M)
− K ′

2

]+
.(37)

We use Jensen’s inequality to show that

J ′(ρ) ≤ 1 + min
a∈AM

(
T

aJ ′)(ρ) ∀ρ ∈ P(�M).(38)

For any ρ such that J ′(ρ) = 0, inequality (38) holds trivially. For any ρ such that
J ′(ρ) > 0 and for any a ∈ AM , we have(

T
aJ ′)(ρ)

≥
M∑
i=1

∫
ρiq

a
i (z)

log((1 − L−1)/L−1) − log(ρiq
a
i (z)/

∑
j �=i ρj q

a
j (z))

Dmax(M)
dz

− K ′
2

= J ′(ρ) −
M∑
i=1

ρi

∫
qa
i (z) log(qa

i (z)/
∑

j �=i (ρj /(1 − ρi))q
a
j (z)) dz

Dmax(M)

≥ J ′(ρ) −
M∑
i=1

ρi

∑
j �=i(ρj /(1 − ρi))D(qa

i ‖qa
j )

Dmax(M)

≥ J ′(ρ) − 1.

Next we define J (ρ) = max{J ′(ρ), J ′′(ρ)}, where J ′′(ρ) is the right-hand side
of (36), that is,

J ′′(ρ) =
[
H(ρ) − H([δ,1 − δ]) − δ log(M − 1)

Imax(M)

+ log((1 − L−1)/L−1) − log((1 − δ)/δ) − ξM

Dmax(M)
(39)

× 1{maxi∈�M
ρi≤1−δ} − K ′

2

]+
.
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• Case 1: For all ρ such that J (ρ) = 0 or J (ρ) = J ′(ρ), it is trivial from (38) that

J (ρ) = J ′(ρ) ≤ 1 + min
a∈AM

(
T

aJ ′)(ρ) ≤ 1 + min
a∈AM

(
T

aJ
)
(ρ).(40)

• Case 2: For all ρ such that J (ρ) = J ′′(ρ) > 0, and for any action a ∈ AM , we
have(

T
aJ

)
(ρ) =

∫
J

(
�a(ρ, z)

)
qa
ρ (z) dz

(a)≥
∫

H(�a(ρ, z))qa
ρ (z) dz − H([δ,1 − δ]) − δ log(M − 1)

Imax(M)

+ log((1 − L−1)/L−1) − log((1 − δ)/δ) − ξM

Dmax(M)

× 1{maxi∈�M
ρi≤1−δ} − K ′

2(41)

= J ′′(ρ) − I (ρ;qa
ρ )

Imax(M)

≥ J ′′(ρ) − 1

(b)= J (ρ) − 1,

where (a) follows from Claim 2 below and (b) holds since ρ is such that J (ρ) =
J ′′(ρ).

CLAIM 2 (In Section 9.2 of the supplemental article [44]). Let ρ be such that
J (ρ) = J ′′(ρ) > 0. If Assumption 2 holds, then for all actions a ∈ AM and obser-
vations z ∈ Z ,

J
(
�a(ρ, z)

) ≥ H(�a(ρ, z)) − H([δ,1 − δ]) − δ log(M − 1)

Imax(M)

+ log((1 − L−1)/L−1) − log((1 − δ)/δ) − ξM

Dmax(M)
(42)

× 1{maxi∈�M
ρi≤1−δ} − K ′

2.

Combining (40) and (41), we have that

J (ρ) ≤ 1 + min
a∈AM

(
T

aJ
)
(ρ).(43)

We also have the following:

CLAIM 3 (In Section 9.3 of the supplemental article [44]). For L >
logM

Imax(M)
,

constant K ′
2 can be selected independent of δ and L such that J (ρ) ≤

minj∈�M
(1 − ρj )L. Furthermore, if supM ξM < ∞, then K ′

2 can be selected inde-
pendent of M as well.
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Lemma 1, together with (43) and Claim 3, implies that V ∗ ≥ J = max{J ′, J ′′} ≥
J ′′ = V2. This is a slightly stronger result than (36).

A.3. Proof of Theorem 3. Recall that ρi(n) denotes the posterior belief about
hypothesis Hi after n observations. Let τ , τi , i ∈ �M , be Markov stopping times
defined as follows:

τ := min
{
n : max

j∈�M

ρj (n) ≥ 1 − L−1
}
,(44)

τi := min
{
n :ρi(n) ≥ 1 − L−1}

.(45)

From (1), the expected total cost under policy π̃2 is upper bounded as

Vπ̃2(ρ) = Eπ̃2

[
τ + min

j∈�M

(
1 − ρj (τ )

)
L

]
≤ Eπ̃2[τ ] + 1(46)

≤
M∑
i=1

ρiEπ̃2[τi |θ = i] + 1,

where ρ = [ρ1, ρ2, . . . , ρM ] = [ρ1(0), ρ2(0), . . . , ρM(0)] and the last inequality
follows from the fact that τ ≤ τi , ∀i ∈ �M . For notational simplicity, subscript π̃2
is dropped for the rest of the proof.

Next we find an upper bound for E[τi |θ = i], i ∈ �M . Let

Un := log
ρi(n)

1 − ρi(n)
− log

ρ̃

1 − ρ̃
(47)

and let Fn denote the history of previous actions and observations up to time n,
that is, Fn := σ {ρ(0),A(0),Z(0), . . . ,A(n − 1),Z(n − 1)}. Under policy π̃2, the
sequence {Un}, n = 0,1, . . . , forms a submartingale with respect to the filtration
{Fn} with the following properties:

(C1) If Un < 0 and ρj (n) < ρ̃ for all j ∈ �M (⇒ P(A(n) = a) = η0a):

E[Un+1 − Un|Fn, θ = i]
= ∑

a∈AM

P
(
A(n) = a

)
E

[
Un+1 − Un|Fn, θ = i,A(n) = a

]

= ∑
a∈AM

η0aE
[
Un+1 − Un|Fn, θ = i,A(n) = a

]

= ∑
a∈AM

η0aE

[
log

ρi(n)qa
i (Z)∑

j �=i ρj (n)qa
j (Z)

− log
ρi(n)

1 − ρi(n)

∣∣∣∣Fn, θ = i

]

= ∑
a∈AM

η0a

∫
qa
i (z) log

qa
i (z)∑

j �=i(ρj (n)/(1 − ρi(n)))qa
j (z)

dz
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≥ max
λ∈P(AM)

min
i∈�M

min
ρ̂∈PL(�M)

∑
a∈AM

λaD

(
qa
i

∥∥∥∥∑
j �=i

ρ̂j

1 − ρ̂i

qa
j

)

= Iη0(M).

If Un < 0 and ρk(n) ≥ ρ̃ for some k �= i (⇒ P(A(n) = a) = ηka):

E[Un+1 − Un|Fn, θ = i]
= ∑

a∈AM

ηkaE
[
Un+1 − Un|Fn, θ = i,A(n) = a

]

= ∑
a∈AM

ηka

∫
qa
i (z) log

qa
i (z)∑

j �=i (ρj (n)/(1 − ρi(n)))qa
j (z)

dz

≥ min
i∈�M

min
k �=i

min
ρ̂ : ρ̂k≥ρ̃

∑
a∈AM

ηkaD

(
qa
i

∥∥∥∥∑
j �=i

ρ̂j

1 − ρ̂i

qa
j

)

= Iη,ρ̃(M);
(C2) If Un ≥ 0 (ρi(n) ≥ ρ̃ ⇒ P(A(n) = a) = ηia):

E[Un+1 − Un|Fn, θ = i]
= ∑

a∈AM

ηiaE
[
Un+1 − Un|Fn, θ = i,A(n) = a

]

= ∑
a∈AM

ηia

∫
qa
i (z) log

qa
i (z)∑

j �=i (ρj (n)/(1 − ρi(n)))qa
j (z)

dz

≥ max
λ∈P(AM)

min
ρ̂∈PL(�M)

∑
a∈AM

λaD

(
qa
i

∥∥∥∥∑
j �=i

ρ̂j

1 − ρ̂i

qa
j

)

= Dηi
(M);

(C3) |Un − Un−1| ≤ maxi,j∈�M
maxa∈AM

supz∈Z log
qa
i (z)

qa
j (z)

≤ ξM .

Stopping time τi defined in (45) can be rewritten as

τi = min
{
n :ρi(n) ≥ 1 − L−1}

= min
{
n :

ρi(n)

1 − ρi(n)
≥ 1 − L−1

L−1

}

= min
{
n : log

ρi(n)

1 − ρi(n)
− log

ρ̃

1 − ρ̃
≥ log

1 − L−1

L−1 − log
ρ̃

1 − ρ̃

}
(48)

= min
{
n :Un ≥ log

1 − L−1

L−1 − log
ρ̃

1 − ρ̃

}

≤ min{n :Un ≥ logL}.
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The assertion of the theorem follows from (48) and the following lemma.

LEMMA 4. Consider the sequence {Un}, n = 0,1, . . . defined in (47), and as-
sume there exist positive constants K1 ≤ K2 ≤ K3 such that

E[Un+1|Fn, θ = i] ≥ Un + K1 if Un < 0,

E[Un+1|Fn, θ = i] ≥ Un + K2 if Un ≥ 0,

|Un+1 − Un| ≤ K3.

Consider the stopping time υ = min{n :Un ≥ B}, B > [U0]+. Then we have

E[υ|θ = i] ≤ B − U0

K2
+ U01{U0<0}

(
1

K2
− 1

K1

)
+ K3 + log e

K1
.

The proof of Lemma 4 is provided in the supplemental article [44], Section 6.
In particular, from (C1)–(C3) and Lemma 4, we have

ρiE[τi |θ = i]

≤ ρi

(
logL − [log(ρi/(1 − ρi)) − log(ρ̃/(1 − ρ̃))]+

Dηi
(M)

+ [log((1 − ρi)/ρi) + log(ρ̃/(1 − ρ̃))]+ + ξM + log e

I2(M)

)

≤ ρi

logL

Dηi
(M)

+ ρi

log(1/ρi) + log(ρ̃/(1 − ρ̃)) + ξM + log e

I2(M)
.

This inequality together with (46) and the fact that
∑M

i=1 ρi log 1
ρi

= H(ρ) implies
the assertion of the theorem:

V ∗(ρ) ≤ Vπ̃2(ρ)
(49)

≤ H(ρ) + log(ρ̃/(1 − ρ̃)) + ξM + log e

I2(M)
+

M∑
i=1

ρi

logL

Dηi
(M)

+ 1.

REMARK 7. For large values of H(ρ) and ρ̃ and when Iη0(M) > Iη,ρ̃ (M), the
upper bound (49) can be tightened as follows (see Section 7 in [44] for the proof):

Vπ̃2(ρ) ≤ H(ρ) + log(ρ̃/(1 − ρ̃)) + ξM

Iη0(M)
+

M∑
i=1

ρi

logL

Dηi
(M)

(50)

+ (1 − ρ̃) logM + (2 − ρ̃)ξM + 4 + log e

Iη,ρ̃ (M)
+ 1.
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Technical proofs (DOI: 10.1214/13-AOS1144SUPP; .pdf). For the interest of
space, we only provided the proofs of the theorems in this paper. Proofs of the
propositions, lemmas, corollaries and technical claims are provided in the supple-
mental article.
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