
Active Shape Discrimination with Physical Reservoir Computers

Chris Johnson1, Andrew Philippides1 and Philip Husbands1

1Centre for Computational Neuroscience and Robotics

University of Sussex

cj82@sussex.ac.uk

Abstract

We present the first example of ‘minimally cognitive’ sen-
sorimotor behaviour arising from a body as physical reser-
voir. By revisiting an experiment introduced by Beer (1996)
and replacing the continuous-time recurrent neural network
(CTRNN) therein with networks of mass-spring-dampers we
demonstrate that bodies may be exploited for more than con-
trol and pattern generation and take over some tasks which
were previously thought to require a central nervous system.

Introduction

The importance of embodiment in both generating and un-

derstanding adaptive behaviour has been increasingly recog-

nised over recent years (Pfeifer and Bongard, 2007). This

has resulted in a renewed focus on the form and function of

the body. The exploitation of inherent, often passive, dy-

namics has demonstrated that there is much to be gained,

in terms of efficiency and simplification of control, when

body-brain-environment interactions are balanced and har-

monious (McGeer, 1990; Iida and Pfeifer, 2004; Shim and

Husbands, 2012; Zhao et al., 2013). Pfeifer and Iida (2005)

have coined the term morphological computation to refer

to the way in which a judiciously selected body morphol-

ogy can be shown to simplify the task of a controller and

might be considered to be ‘doing’ the computational work it

had rendered unnecessary. An interesting, and as yet under-

explored, extension of this line of thought is to consider how

much explicit and active information processing the body

might be capable of, further blurring the line between the

nervous system and the body. In fact it has already been

shown (Valero-Cuevas et al., 2007) that the tendon network

of a human finger performs joint torque mode selection in

response to varying ratios of tendon tensions: a biological

example of explicit morphological computation in action.

This paper describes research intended as a first step to-

wards exploring the information processing potential of net-

works of simplified muscle-like units acting within an em-

bodied agent engaged in adaptive behaviour. In this work we

follow Hauser et al. (2011, 2012), who have reframed mor-

phological computation in compliant bodies as a branch of

reservoir computing (Maass et al., 2004; Lukoševičius and

Jaeger, 2009). Hauser et al. (2011) presented networks of

mass-spring-damper elements, and showed that with the ad-

dition of a simple linear readout these spring networks can

perform complex computation requiring non-linear transfor-

mation and integration, such as the approximation of filters

and inverse kinematics for robot control. These particular

networks are of especial interest because they are physically

realisable and because of their similarity to various biome-

chanical muscle models (Hill, 1938; Seyfarth et al., 2002;

Baratta and Solomonow, 1990).

In Hauser et al. (2012) it was further shown that when the

model was extended to include a feedback loop the networks

could also be trained to perform pattern generation without

the need for external stimulation. Nakajima et al. (2013)

extended the spring network to a biologically-inspired 3D

structure and it was shown that this body could also approx-

imate filters and generate limit cycles. Finally, Zhao et al.

(2013) replaced the spring network with the body of a spine-

driven quadruped robot, referred to as ‘Kitty’, and used it to

generate both locomotion and its own control signals. This

robot stands out because the reservoir consists of force sen-

sors embedded within the spine, the element of the body

which is actuated, thereby negating any meaningful distinc-

tion between body and control.

In the above examples, morphological computation has

been demonstrated to make difficult problems such as loco-

motion both easier and cheaper. However, filtering, pattern

generation, and gait control have a character which is more

automatic than cognitive. For example, although different

gaits may be programmed into Kitty it is still essentially an

automaton - its gait may be robust to some variation in the

environment but it is incapable of responding to any stimuli

which do not reach its force sensors.

We present the first example of ‘minimally cognitive’

sensorimotor behaviour arising from a body as physical

reservoir. We revisited an experiment introduced by Beer

(1996) where an agent controlled by a continuous-time re-

current neural network (CTRNN) was shown to be capa-

ble of discriminating between objects of different shapes

178



through active perception. We replaced the CTRNN with

a pair of networks based on those introduced by Hauser

et al. (2011) and used an evolutionary algorithm to search

for valid controllers.

This section has given the theoretical background and in-

troduced the experiment reported upon here. The next sec-

tion will describe the experiment and the spring network im-

plementation. We will then describe the results obtained be-

fore closing with discussion of the results and some future

directions for the work.

Methods

Methods are described in three subsections. First the exper-

iment is described, in terms of the agent-environment inter-

action. Secondly the spring network, the agent’s computa-

tional core, is described. Finally details of the evolutionary

search for valid controllers are given.

The experiment

The simulated experiment is closely based on that described

by Beer (1996, 2003). The required behaviour is to dynami-

cally discriminate between a circular object and a diamond-

shaped object. Discrimination is manifested as catch and

avoidance behaviours for circles and diamonds, respectively.

The arena is an area of 400 x 275. Circular objects are of di-

ameter 30 and diamonds have side length 30.

Objects fall straight down from the top of the arena to-

wards the agent with speed 3. In theory both behaviours

are tested for at 24 equispaced points in the x-axis inter-

val [−50, 50]. However, the use of a symmetrical controller

means that only the left-hand 12 tests need be conducted as

behaviour on the right-hand side is identical to that on the

left. The agent has an antagonistic motor pair aligned to

the horizontal axis. The network outputs set the two motor

speeds, and the agent’s velocity along its axis is the sum of

the two opposing motor outputs. The transfer function for

the motor pair is given by:

5(σ(sr + θr)− σ(sl + θl)) (1)

σ(x) = 1/(1 + e−x) (2)

Due to the use of the logistic function σ, each motor satu-

rates at 0 for its minimum and 1 for its maximum. This and

the use of a multiplier of 5 for the result of the sum specifies

a horizontal velocity in the range of [−5, 5]. θ is a constant

value which biases the motor activation point.

The agent’s sensors are 7 rays uniformly spaced across an

angle of π/6 and centred about the vertical axis. The sensor

transfer function is an inverse linear one between the dis-

tances of 220 and 0, with its output in the range [0, 10].

Objects are not detected beyond distances of 220. To re-

duce evaluation time the sensor model was used to construct

lookup tables which were then used in the simulation. The

sensor neuron activations lag behind the values of the linear

function, as determined by the sensory layer function:

τiṡi = −si + Ii(x, y) i = 1, . . . , 7, (3)

where s is the sensor neuron activation, τ is the time constant

for the sensor response, I is the sensor function, and (x, y)
is the distance vector from sensor to object.

Network states, sensor activations and the position of the

agent are all integrated using the forward Euler integration.

As in Beer’s original experiment an interval of 0.1 is used

to integrate sensor activations and the agent’s position. In

their experiments Hauser et al. used an interval of 0.001

and made use of a solver function to integrate the spring

network activity. However the computational cost of such

an approach is problematic when evaluating large numbers

of candidate controllers in evolution, so a compromise was

made here. We found that an interval at least as small as 0.01

is required to achieve stability in the spring model with the

parameters used here, so the spring network is integrated 10

times for each 0.1 interval.

Spring networks

Although the elements in these networks are in fact mod-

elled mass-spring damper systems, for the sake of conve-

nience they will henceforth be referred to simply as springs.

Figure 1: A spring network. The nodes at the opposite ends

in the x-axis are fixed while the others are free to move.

Some or all of those nodes receive an input as a force in the

x-axis. Adapted from Hauser et al. (2011)

The spring networks used here are based upon those in

Hauser et al. (2011), illustrated in Fig. (1). The springs are

connected to each other in a 2-dimensional plane. Effects

such as gravity and friction are neglected in order to simplify

the model. The two outermost nodes in a selected axis are

fixed while the rest move freely. A subset of the free nodes

receive inputs in the form of applied forces. Input forces are

applied in a single axis, although this is also for simplifica-

tion and is by no means a requirement of the model. Reser-

voir elements were modelled as non-linear springs, defined

by the state equations:

ẋ1 = x2 (4)

179



p(x1) = k3x
3

1
+ k1x1 (5)

q(x2) = d3x
3

2
+ d1x2 (6)

ẋ2 = −p(x1)− q(x2) + u, (7)

where x1 is the spring extension, k1 and k3 represent lin-

ear and non-linear stiffness coefficients, respectively, d1 and

d3 represent the corresponding damping coefficients, and u

represents an input force unused in this experiment. In this

work we followed the network model of Hauser et al. (2011)

in all respects except that the above nonlinear spring model

was not used in all networks. In some networks a linear sec-

ond order spring model was used, with the state equations:

ẋ1 = x2 (8)

ẋ2 = −
k

m
x1 −

d

m
x2 +

1

m
u, (9)

where k is a stiffness coefficient, d is a damping coefficient,

m is the mass on the end of the spring, and, as in Eq. (7), u

is an unused input term. For convenience all nodes are given

m = 1kg. This means that, from Newton’s second law of

motion, F = ma, forces and accelerations may be treated

as equivalent in this network model and Eq. (9) is simplified

to a form similar to Eq. (7).

At the beginning of each simulation step the spring exten-

sions are obtained by calculating the distances between the

nodes they connect. The rates of change of spring extensions

are estimated by the difference between the current exten-

sions and those at the previous step. From these states the

instantaneous forces applied to the nodes by the springs can

be found, by the use of either Eq. (7) or Eq. (9). The spring

forces and input forces are then summed for each node, and

the node positions are updated by integration of the resultant

accelerations.

Inputs are applied to nodes as horizontal forces, as shown

in Fig. (1). In this experiment each network had a total of

nine nodes, with two fixed nodes and seven free nodes which

each received an input from one of the sensor neurons (see

Fig. (2)). An untreated input range of [0, 10] from the sensor

neurons was found to give poor results, and so the sensor

neuron outputs were scaled and shifted to be in the range

[−0.5, 0.5].
The spring network output is a weighted sum of the exten-

sions and extension rates of change of all springs in the net-

work. There is a small departure from Hauser et al. (2011)

here. We use the spring extension in the output sum where

they used the overall length. The outputs of the two net-

works are fed into the motor function Eq. (2) in the same

way as the CTRNN motor neuron outputs were in Beer

(1996).

The CTRNN controller in Beer (1996) was bilaterally

symmetric. In this case symmetry of control is achieved

by having two identical networks of springs, one of which

receives its inputs from the sensory neurons in the reverse

Figure 2: The symmetrical network pair. Two identical net-

works are connected to the sensor array in opposite orders.

The outputs of the two networks are linear sums of the spring

states, converted into agent velocity by the use of Eqn. (2).

Some nodes and springs are omitted from this diagram for

clarity.

order to the other. The CTRNN controller consisted of a

layer of five fully interconnected recurrent interneurons, and

two feedforward motor neurons. The spring network pair

replaces these seven neurons.

Searching for solutions

Some network parameters are generated randomly and oth-

ers are set by a search with a Macroevolutionary Algorithm

(MA) (Marin and Sole, 1999). The MA was selected over

a Genetic Algorithm (GA) because it was found to be less

prone to premature convergence to local optima in the search

space for this task. The algorithm was implemented as de-

scribed in (Marin and Sole, 1999), except for the setting of

the two dynamic constants, ρ and τ . The genetic radius for

reproduction, ρ, was set by the function ρ = 0.3(1− fmax),
subject to a minimum value of ρ = 0.1. The temperature pa-

rameter, τ was set by the function τ = (1−fmax), subject to

a minimum value of τ = 0.2. In addition, a constraint was

set such that at least one of each generational offspring was

randomly generated, in order to promote diversity in later

stages. For the same reason, a mutation operator was added

such that on average one gene per genotype would be mu-

tated. Mutated genes are moved by an amount in the range

of ±10% of the total genetic interval with a probability of

0.9, and replaced with a random value with a probability of

0.1.

A single network topology generated at random at the be-

ginning of each run of the MA is employed by all members

of the population. The node coordinates are generated ran-

domly in an area 10 x 10, and then connected with springs

by the use of a Delaunay triangulation (Lee and Schachter,

1980). The use of this triangulation method tends to max-

imise the triangle angles, but also leads to a variable number

of springs in the network. Parameters which may be de-

termined by the search are: spring coefficients for stiffness

180



and damping, weights on the sensory inputs to the networks,

weights on the spring states for the linear readout, feedback

gains, and the bias term for the motor function in Eqn. (2).

For the purpose of evaluation the horizontal distance, di,

between the agent and the object is clipped to a maximum

of 45 and then normalised between 0 and 1. For a catch

trial the controller scores 1 − di and for an avoid trial the

score is equal to di. The final score for a controller is the

mean of its individual trial scores. The horizontal distance is

clipped to prevent success in one behaviour from dominating

a controller’s score at the expense of the other.

The MATLAB IDE (The Mathworks, Inc., Natick, MA)

was used for all aspects of agent simulation, evolution, and

later analysis.

Results

Results are presented in the following order: first, details are

given of the performance of the evolutionary search for valid

controllers. Secondly, we show some of the inner workings

of the network and briefly examine its capacity for memory.

We end this section with analysis of two networks by view-

ing the impact on performance of various lesions.

Searching for solutions

A set of controller features may be enabled or disabled

at the beginning of each evolutionary run. These features

are: whether to use the linear or non-linear spring model,

whether to use spring velocity in the linear readout, whether

to evolve real-valued weights on the inputs, whether to use

a single random set of spring parameters across the popula-

tion or to evolve those parameters, whether to employ node

position feedback and whether to evolve or to use a con-

stant value for the motor bias in Eqn. (2). The ranges of all

evolved parameters are given in Table. (1).

Parameter Upper limit Lower limit

Position 10000 -10000

Velocity 10000 -10000

Input weights -2 2

Linear stiffness coefficients 1 100

Linear damping coefficients 1 100

Non-linear stiffness coefficients 100 200

Non-linear damping coefficients 100 200

Motor function bias -5 5

Feedback gains -1 1

Table 1: Limits placed on evolved values.

When node position feedback is employed it is applied

as an xy force vector based on a node’s displacement from

its resting position. Where the motor bias is not evolved a

constant value of 2.5640, taken from a successful CTRNN

controller which was found when developing the simulation,

was used. Where input weights are not evolved, one set of

weights is randomly drawn from the set {−1, 1}, and ap-

plied to the entire population. These unity weights are of

Figure 3: Performance of the MA for a configuration match-

ing controller A, over evolutionary runs of up to 700 gener-

ations with a population size of 400. Runs were cancelled

when they were either successful or effectively halted. Only

the first 400 generations are shown here.

both signs in order to avoid the entire network being pushed

in a single direction. When spring parameters were not

evolved they were randomised as reported in Hauser et al.

(2011). Non-linear spring coefficients are drawn from a uni-

form distribution in the interval [100, 200]. Linear spring

coefficients are drawn from a log-uniform distribution in the

interval [1, 100]. The use of the log-uniform distribution bi-

ases samples towards the lower end of the interval.

It was initially unclear which configuration of features

was most appropriate, so a set of 20 evolutionary runs,

each with a single randomly generated configuration applied

across the population, was executed. A population of size

400 was evolved over a short run of 100 generations. It

should be pointed out that the MA favours larger popula-

tions, but also that the number of the population replaced,

and therefore requiring evaluation, upon each generation is

variable and typically much less than the population size.

Controller A B C D E

Fitness(%) 99.6 98.9 99.5 98.4 97.8

Number of springs 20 18 18 18 18

Velocity 1 1 1 0 1

Weighted inputs 1 0 1 1 1

Evolve springs 1 0 0 0 1

Nonlinear springs 1 0 0 1 1

Bias motors 1 0 0 0 0

Feedback 0 1 0 1 1

Table 2: Winning combinations. The features of velocity in

the readout sum, weighted inputs, evolved springs, nonlin-

ear springs, evolved motor function bias and node position

feedback are all optional. 20 evolutionary runs of 100 gen-

erations with a population size of 400 were run with random

selection of optional features. 5 runs generated successful

controllers; each with a unique configuration.

A success threshold of ∼98% of the perfect score was

181



Figure 4: Agent trajectories throughout trials. Trajectories

from catch trials are shown on the left and those from dia-

mond trials on the right. Trajectories from three controllers

are shown. From top to bottom, controllers A, C and A1.

determined to be sufficient to ensure the correct behaviour,

and 5 out of 20 runs resulted in viable controllers. Table. (2)

shows the configurations of these 5 controllers. Although

this is a small set of results, the variety is striking - the con-

figurations of controllers A and E are similar, but otherwise

there is no evidence of a particular configuration which is

required for success. However it can be seen that the use of

velocity in the linear readout is favoured; being used in 4 out

of 5 controllers. Of the remaining features only whether or

not to evolve the motor bias stands out; selected in only one

result.

Following these results a further 20 evolutionary runs

were executed with the arbitrarily selected configuration of

controller A. In this case runs continued until the search

could be seen to either have succeeded or effectively halted

at a local optimum. In this case 4 runs succeeded although

others came close. Fig. (3) shows the progress of these runs

across the first 400 generations. As yet it is unclear as to

whether the difficulty of the problem or the character of the

MA is more responsible for the number of failures. How-

ever, since evolutionary search is merely being used as a

method to find a viable solution, and it readily finds sev-

eral in our batch runs, its efficiency is not a major concern at

present. One of this second set of results, referred to as A1,

appears in figures and analyses throughout this section.

Successful networks have proven to be diverse in their

topologies as well as their configurations. As shown in

Fig. (5) success does not seem to require any particular form

of network.

Finally, from a high-level point of view, it can also be seen

Figure 5: Network topologies of successful controllers.

Controllers A through to E are shown from left to right.

Figure 6: Plots of inputs, states and outputs of controller A

from a catch trial. All plots are over time. Plot A shows

the outputs of the sensory neurons. Plot B shows the shifted

and scaled sensory input to the networks. Plot C shows the

spring extensions of one network. Plot D shows the spring

velocities of the same network. Plot E shows the weighted

positions added to the weighted velocities. Plot F shows

the outputs of both networks. Plot G shows the velocity of

the agent. Plot H shows the distance between the agent and

object in the x-axis.

that various different strategies are possible. The trajecto-

ries of controller A, C and A1 for all 24 trials are shown

in Fig. (4). Controller A inches towards objects until it can

distinguish between them, controller C finds objects quickly

and then oscillates around their position until making a de-

cision, and controller A1 scans back and forth.

Network analyses

Fig. (6) illustrates some of the workings of controller A in

making a successful catch. As mentioned previously, the

sensory inputs are scaled and shifted to the range [−0.5, 0.5].

182



This has the effect of biasing the network to activity, with

the springs already in motion for the first 10s even though

the sensory neurons have zero output. The spring extensions

and velocities are combined in the readout in this controller.

Due to the very large weights used in the readout the network

outputs are similarly high. Given that the motor function in-

cludes the saturating logistic function, this leads to a motor

behaviour of rapidly switching the motors on and off, result-

ing in the agent creeping incrementally towards the position

of the falling circle.

An interesting observation is that as long as the sensory

neurons all have zero output, so do the networks. Given that

the spring positions are non-zero in this initial period, it is

clear that the linear readout is balanced to not respond to this

quiescent activity. This is perhaps appropriate to reactive be-

haviour, but the possibility remains for evolution to lead to a

more proactive search strategy by generating an imbalanced

readout.

We next turned to measuring the memory of the network

following a method based on that described by Maass et al.

(2004). Maass et al devised an input stream with zero mu-

tual information (and therefore also zero correlation) be-

tween different segments. Then, to obtain a measure of net-

work memory, readout neurons were trained to reproduce

segments of the input stream from earlier periods, and seg-

ments of the output signal were correlated against the input

segments they should have reproduced. A similar approach

is taken here, although we chose not to measure general

memory capacity but rather to see if these networks can re-

tain information of the inputs they are evolved to deal with.

For this reason the readout was trained to recover the sim-

plest combination of the input signals over the course of

a single trial, their sum into a single time series. In this

case many segments of the input stream have high correla-

tion with one another as, due to the tendency of agents to

position themselves under an object until it can be recog-

nised, the general trend is for sensory input to increase as

a ramp. Therefore, as a baseline, the same series of cor-

relations was performed for input segments against one an-

other. Where the readout shows no more correlation with

earlier input stream segments than its corresponding input

segment does, then there can be considered to be no mem-

ory. On the other hand, a stronger correlation between the

output of the readout and the delayed input it is trained to

reproduce than between input and delayed input is indica-

tive of memory in the network. The same test is performed

for readouts which receive only spring extensions as inputs,

readouts which receive only spring velocities, and readouts

which receive both.

The results of some of these tests are shown in Fig. (7). It

can be seen that, in general, spring extensions encode more

relevant information than spring velocities, but that the com-

bination of the two encodes more than either alone. Con-

troller A shows no convincing sign of memory. For the avoid

Figure 7: Measuring memory. The linear readout is trained

to recover inputs from 10s ago. Then the input stream and

the controller output are split into 10s segments and the cor-

relation of each output segment with the prior input segment

is calculated. Plots on the left are from a single catch trial

and those on the right are from an avoid trial. The results for

two controllers are shown. The top row is for controller A,

and the bottom row is for controller A1.

trial there is a period where the correlation of input segment

against input segment is of the opposite sign to that of read-

out segment against input segment, but the magnitudes are

roughly equal. This seems consistent with the behaviour of

this controller. As shown in Fig. (4) for both catch and avoid

behaviours, initially this controller gradually creeps towards

the object as it falls, suggestive of a purely reactive network.

The result for controller A1, however, does indicate a degree

of memory effect, with the network being able to recover

more information about earlier input segments than the in-

put stream itself. Once again, this is consistent with the gen-

eral strategy - unlike other results this controller drives away

from the object and then returns to it, a behaviour which

seems of a more proactive character and implies memory of

at least which side of the agent the object is on. It should be

pointed out that this controller does not make use of feed-

back. Any present memory is only transient, fading mem-

ory.

Analysis of a network with such complex dynamics in a

sensorimotor loop is far from trivial, but a certain amount

can be discovered by recording changes in behaviour as parts

of the network are disabled. Four experiments, illustrated in

Fig. (8) for two controllers, were conducted. In the first three

experiments changes were made to the springs, one at a time,

and the performance scores for the modified network for all

24 trials were recorded. In the fourth, one input at a time was

disabled and the performance scores were recorded. In or-

der, the modifications for springs were: to disconnect them

from the linear readout, to remove them from the network

completely, and to disable their non-linearity.

Various observations can be made from these plots. It

183



Figure 8: Lesion experiments. The top row of plots shows results for controller A and the bottom for controller A1. The rows

in plots show the performance on a trial by trial basis. The brightness of a grid element shows the effect of the lesion. Black

regions show unaffected performance and lighter regions show impaired performance. Trials 1 to 12 are catch trials and trials

13 to 24 are avoid trials. From left to right: one spring at a time is disconnected from the readout; one spring at a time is

removed from the network, one spring at a time is linearised; one input at a time is disconnected.

can be seen that adjustments to the network for controller A

tend to cause failure in catching circles far more often than

in avoiding diamonds, as though this controller is predis-

posed to avoidance. To support this conclusion, this agent

also shows low dependence on all but the outermost sen-

sors for avoidance. Complete removal of springs from the

network causes a lot of failure in both agents. This is no

surprise, given the tightly coupled nature of the network dy-

namics. Neither controller shows a strong dependence on

spring non-linearity,

The plots in Fig. (8) suggest that for both of these agents

the most difficult trial is the last where catching behaviour is

required. This is surprising as at the beginning of this trial

the object is only slightly offset from the agent’s position.

The reason for this has not yet been properly uncovered, but

it seems probable that it is connected to the large weights

in the linear sum as relatively small differences in sensory

input are amplified into high velocity, which could lead to a

sudden loss of the object’s position.

Discussion

Discussion of results

The CTRNN described by Beer (1996) was bilaterally sym-

metric and fully interconnected in the interneuron layer.

Symmetry is achieved here by the use of a pair of identical

networks, coupled only indirectly by their roles in the senso-

rimotor loop. The overall behaviour of the agent is therefore

the result of complementary activity in the two sides of the

simulated body.

Successful agents obtained by evolution pass the bar for

autonomous task-based behaviour, capable of both respond-

ing directly to stimuli and making use of short-term memory

to guide their motion. The behaviour of these agents goes

beyond the maintenance of locomotive gaits to the selec-

tion of an appropriate action based on active integration of

sensory information. This more complex behaviour is also

achieved with a relatively small number of springs. Hauser

et al. (2011) used a network of 78 springs; these controllers

contain approximately 40.

The morphological computation evident in the tendon net-

work of the human hand is a striking example of parsimony

in evolution. This work lends support to the hypothesis that

bodies can be and will be doing some of the computational

work which used to be considered the sole dominion of the

central nervous system.

The use of an evolutionary algorithm to obtain valid con-

trollers has led to strong indications that the domain of these

networks is rich in its variety of computational resources.

184



This potential for diversity may have been less apparent if a

learning algorithm was used.

Magg and Philippides (2006) have already shown that this

problem may be solved with a non-dynamical ANN, and, as

in controller A, it appears that most results seen so far em-

ploy little or no memory. However, controller A1 is an inter-

esting result which does seem to rely on memory and sug-

gests that behavioural tasks of a more challenging character

than this one may therefore also be addressed with similar

spring networks.

Further work

The very large weights used in the linear readout sum tend to

lead to the agent switching between extremes of velocity. In

a real-world system this would be inefficient and probably

lead to shortened motor life. At present we are examining

how far the scale of those weights may be reduced while still

achieving valid controllers. First results are encouraging,

with signs of smoother behaviour.

The results obtained so far indicate that due to the tight

coupling throughout the networks they will not fail grace-

fully when damaged, as indicated in Fig. (8). However, it

may be that a damaged network may be easily retrained to

recover its function. In future work we will examine the ef-

ficacy of retraining by submitting impaired controllers back

to evolution.

Although enough good and varied results were found to

convince that these paired networks may be used to effect re-

active behaviour, efforts are underway to both improve and

tune the evolutionary algorithm in use and to make the net-

works more evolvable. As far as the second point goes, one

feature of the problem which has not yet been placed un-

der evolutionary control is the network topology. We believe

that topological design by evolution will lead to an improved

success rate.

Later projects will explore the capability of spring net-

works to generate behaviour in compliant robots, and to deal

with real-world, noisy, situations.

References

Baratta, R. and Solomonow, M. (1990). The dynamic response
model of nine different skeletal muscles. Biomedical Engi-
neering, IEEE Transactions on, 37(3):243–251.

Beer, R. D. (1996). Toward the evolution of dynamical neural net-
works for minimally cognitive behavior. From animals to an-
imats, 4:421–429.

Beer, R. D. (2003). The dynamics of active categorical perception
in an evolved model agent. Adaptive Behavior, 11(4):209–
243.

Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R., and Maass,
W. (2011). Towards a theoretical foundation for morphologi-
cal computation with compliant bodies. Biological cybernet-
ics, 105(5-6):355–370.

Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R., and
Maass, W. (2012). The role of feedback in morphological
computation with compliant bodies. Biological cybernetics,
106(10):595–613.

Hill, A. (1938). The heat of shortening and the dynamic constants
of muscle. Proceedings of the Royal Society of London. Series
B, Biological Sciences, 126(843):136–195.

Iida, F. and Pfeifer, R. (2004). Cheap rapid locomotion of a
quadruped robot: Self-stabilization of bounding gait. In In-
telligent Autonomous Systems, volume 8, pages 642–649.

Lee, D.-T. and Schachter, B. J. (1980). Two algorithms for con-
structing a delaunay triangulation. International Journal of
Computer & Information Sciences, 9(3):219–242.

Lukoševičius, M. and Jaeger, H. (2009). Reservoir computing ap-
proaches to recurrent neural network training. Computer Sci-
ence Review, 3(3):127–149.

Maass, W., Natschläger, T., and Markram, H. (2004). Computa-
tional models for generic cortical microcircuits. Computa-
tional neuroscience: A comprehensive approach, pages 575–
605.

Magg, S. and Philippides, A. (2006). Gasnets and ctrnns–a com-
parison in terms of evolvability. In From Animals to Animats
9, pages 461–472. Springer.

Marin, J. and Sole, R. V. (1999). Macroevolutionary algorithms: a
new optimization method on fitness landscapes. Evolutionary
Computation, IEEE Transactions on, 3(4):272–286.

McGeer, T. (1990). Passive dynamic walking. the international
journal of robotics research, 9(2):62–82.

Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell,
D. G., and Pfeifer, R. (2013). A soft body as a reservoir: case
studies in a dynamic model of octopus-inspired soft robotic
arm. Frontiers in computational neuroscience, 7.

Pfeifer, R. and Bongard, J. (2007). How the body shapes the way
we think: a new view of intelligence. MIT press.

Pfeifer, R. and Iida, F. (2005). Morphological computation: Con-
necting body, brain and environment. Japanese Scientific
Monthly, 58(2):48–54.

Seyfarth, A., Geyer, H., Günther, M., and Blickhan, R. (2002). A
movement criterion for running. Journal of biomechanics,
35(5):649–655.

Shim, Y. and Husbands, P. (2012). Chaotic exploration and
learning of locomotion behaviors. Neural computation,
24(8):2185–2222.

Valero-Cuevas, F. J., Yi, J.-W., Brown, D., McNamara, R. V., Paul,
C., and Lipson, H. (2007). The tendon network of the fingers
performs anatomical computation at a macroscopic scale.
Biomedical Engineering, IEEE Transactions on, 54(6):1161–
1166.

Zhao, Q., Nakajima, K., Sumioka, H., Hauser, H., and Pfeifer, R.
(2013). Spine dynamics as a computational resource in spine-
driven quadruped locomotion. In Intelligent Robots and Sys-
tems (IROS), 2013 IEEE/RSJ International Conference on,
pages 1445–1451. IEEE.

185


	proc 190
	proc 191
	proc 192
	proc 193
	proc 194
	proc 195
	proc 196
	proc 197

