
Active Shape Model Search using Local
Grey-Level Models : A Quantitative

Evaluation
TF.Cootes, C.J.Taylor

Department of Medical Biophysics
University of Manchester

Oxford Road
Manchester M13 9PT

email: bim@wiau.mb.man.ac.uk

Abstract

We describe methods for locating known structures in images. We have previously de-
scribed statistical models of shape and shape variability which can be used for this pur-
pose (Active Shape Models). In this paper we show how statistical models of grey-level
appearance can be incorporated, leading to improved reliability and accuracy. We de-
scribe experiments designed to (i) test how well an ASM can locate an object in a new
image, (ii) to assess the effects on performance of varying the model parameters, and
(iii) to compare the results using grey-level models with those using a search for
strongest edges. The results demonstrate that the addition of grey-level models leads to
considerable improvement over earlier schemes.

1 Introduction
Recently there has been increasing interest in image interpretation using flexible
models or deformable templates. Different approaches have been described by
Yuille et al [2], Kass et al [1] Hinton, Williams and Revow [3], Staib and Duncan
[4], Pentland and Sclaroff [5], Karaolani et al [6], Nastar and Ayache [7], Grenander
et al [8] and Mardia et al. [9].

In previous papers [ 10,11] we have shown how one can build models of the shape
of deformable objects; we have also described a local search technique which allows
initial estimates of the pose and shape parameters to be iteratively refined. The
shape models rely on representing objects by sets of labelled points; each point is
placed on a particular part of the object. By examining the statistics of the positions
of the labelled points a 'Point Distribution Model' is derived. The model gives the
average positions of the points, and has a number of parameters which control the
main modes of variation found in the training set. Such models give compact and
specific descriptions of both object shape and the spatial relationships between ob-
jects.

Given a shape model and an image containing an example of the object modelled,
interpretation involves choosing values for each of the model parameters so as to
best fit the model to the image. We previously described a technique which allows
an initial guess for the best shape, orientation, scale and position to be refined by
comparing the hypothesised model example with image data and using differences
between model and image to deform the shape (Active Shape Models [11]).

This paper describes how it is possible to model the grey levels expected at each
point of the shape model, and how such grey-level models can be used in Active
Shape Model search [12,13]. We also present the results of systematic experiments
to assess how well an ASM can locate the model points on objects in unseen images.
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Experiments have been performed using different types of grey-level model and
using different weighting schemes in the search algorithms. We compare the per-
formances of the ASMs under these different regimes; we also show that the results
are significantly better than those obtained using the techniques described in our
earlier work [11], using only strong edges during search rather than explicit models
of the grey-level about each point.

2 Background

In [10] we describe how to build flexible shape models called Point Distribution Mo-
dels. These are generated from examples of shapes, where each shape is represented
by a set of labelled points. A given point corresponds to a particular location on each
shape or object to be modelled. The example shapes are all aligned into a standard
co-ordinate frame, and a principal component analysis is applied to the co-ordinates
of the points. This produces the mean position for each of the points and a descrip-
tion of the main ways in which the points tend to move together. The model can
be used to generate new shapes using the equation

x = x + Pb (1)

where x = (*„, yo> ... Xn_h yn_,y

(xk,yk) is the k
th model point

X" represents the mean shape
p is a 2n x t matrix of t unit eigenvectors

b = (bt.. .b,)
T
 - a set of shape parameters

If the shape parameters b are chosen inside suitable limits (derived from the train-
ing set) then the shapes generated by (1) will be similar to those given in the original
training set.

3 Modelling the Local Grey-Level Environment

We can also model the appearance of an object by examining the statistics of the grey
levels in regions around each of the labelled model points in the training images.
Since a given point corresponds to a particular part of the object, the grey-level pat-
terns about corresponding points in images of different examples will often be simi-
lar. As with the shape, the grey-level environment can be modelled by a mean and
a number of modes of allowed variation.

During image search we wish to locate the best position for each model point. This
can be done by finding the area near to the current position where the image best
matches the grey-level environment model for the point. In order to achieve this
we need to associate an orientation with each point of our shape model in order to
align the region correctly. A convenient way to do this is to define an orientation with
respect to nearby model points. For instance, if the points lie along a boundary, we
can choose to align the region with the normal to the boundary. Although in general
we can consider a region of any shape around each point, we concentrate here on
one-dimensional profiles normal to the arcs passing through each point.

For every shape model point in each training image,;' (j = 1. JVS), we can extract

a profile, gj, of length np pixels, centred at the point. If the profile runs from ps
to Pend and is of length np pixels, the k^ element of the profile is
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where y^ is the k^ point along the profile :

k - 1
y* = PsUut +

« 1

is the grey level in image j at that point.

For each model point we can calculate a mean profile, g , and an np x rip covariance

matrix, Sg, giving a second order statistical description of the expected profiles at the

point. Principal Component Analysis can be used to produce a compact model of

the allowable variation in the grey level profiles as it was for flexible shape models

[10]. The variation about the mean is described by Pg ,the eigenvectors of Sg, corre-

sponding to the tg (< np) largest eigenvalues. By analogy with (1) we can write

ft- = 8 + IVWr W

Where bgnew is a set of tg parameters describing the profile model.

Suppose we wish to measure how well a new profile, g, extracted from an image

fits a model for a point, represented by g, Pg and the tg largest eigenvalues A,,

j = l..tg. The parameters required to best fit the model to g are given by

b, = Pftg-g) (5)

The best fit of the model to g is then given by (4),

gtajk = g + P A (
6)

If all the eigenvectors were used in the model (tg = np ) then this would be exact-

ly equal to g. However, since typically the expansion is truncated (tg < np ), there

will be a difference between the two. The sum of squares of differences, R
2
, is given

by
R2 = (g-ftveajaffe

It can be shown that

Figure 1 demonstrates this for a simple model with a single mode of variation.

gbestjit Figure 1. A simple model consists of the
mean g and a single mode of variation
Pgl

' Sbestju is then the projection of g

onto the line ofpgi through the mean, and

the residual, R, is the difference between g

and gbestju.



642

If all the eigenvectors were used in the model (tg — np) then a measure of how

well the model fits the profile would be given by the Mahalanobis distance,
n
P L.2

where A,- is the eigenvalue corresponding to the the i
th eigenvector and

If tg < np we cannot calculate bgj forj>tg. We have A, < A^forj>tg. If we

make the approximation that A; = 0.5A,g for j >tg, then

'g L 2 *, "P

It can be shown (using (7)) that

Thus a measure of how well the model fits the profile is

where F approaches zero as the quality of fit improves.
If the distribution of the original profile data is assumed to be normal, the prob-

ability that g comes from the same population is approximately

p(g\model) a e'
F (12)

The method above can be applied either to the raw grey levels or the derivative
of the grey levels along the profile in the image. Also we can normalise the profiles
prior to training and evaluation using

The effects on performance of using each of the four types of profile model (grey/
derivative, normalised/unnormalised) are examined below.

4 Active Shape Models

We have previously described a method of fitting by local search given a starting ap-
proximation to the pose and shape parameters required to fit a model to an image
[11,12,13]. By choosing a set of shape parameters b for a Point Distribution Model,
we define the shape of a model object in an object centred co-ordinate frame. We
can create an instance, X, of the model in the image frame by defining the position,
orientation and scale:
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X = M(s,0)[x] + Xc (14)

where X, = (Xc, Yc, ..., Xc, Ycf

M(s, 0)[ ] performs a rotation by0 and a scaling by s.

and (Xc, Yc) is the position of the centre of the model in the image frame.

An iterative approach to improving the fit of the instance, X, to an image proceeds
as follows:
i) Examine a region of the image around each point to calculate the displace-

ment of the point required to move it to a better location,
ii) From these displacements calculate adjustments to the pose and the shape

parameters.
iii) Update the model parameters; by enforcing limits on the shape parameters,

global shape constraints can be applied ensuring the shape of the model in-
stance remains similar to those of the training set.

The procedure is repeated until no significant changes result. Because the models
deform to better fit the data, but only in ways which are consistent with the shapes
found in the training set we call them 'Active Shape Models' (ASMs).

To find a better location for each model point (step (i) above) we search in its cur-
rent locality for the region of grey-levels which best matches the grey-level model
for that point, using (11) (See [12,13]). We can generate a set of adjustments
(dXh dYi) to move each point to a better position. We denote such a set as a vector

dX = (dX0, dY0, ..., dXn.u dY^f.

4.1 Calculating the Adjustments to the Pose and Shape Para-
meters

We aim to adjust the pose and shape parameters to move the points from their cur-
rent locations in the image frame, X, to be as close to the suggested new locations
(X + dX) as can be arranged whilst still satisfying the shape constraints of the model.
The required pose adjustment is achieved by finding the translation (dXc, dYc), rota-
tion dO and scaling factor (1 + ds) which best maps the current set of points, X, onto
the set of points given by (X + dX). This can be done by a weighted least squares
fit [10]. The choice of possible weights and their effects on performance is discussed
below.

Having adjusted the pose variables there remain residual adjustments which can
only be achieved by deforming the shape of the model. We wish to calculate the ad-
justments, dx, to the original model points in the local co-ordinate frame required
to cause the scaled, rotated and translated points X to move by dX when combined
with the new scale, rotation and translation parameters.

In [11] we show that

dx = M((s(l + ds))-\-(6 + d9))[M(s,9)[x] + dX - dX,] - x (15)

The adjustments to the shape parameters, db, which will best match the model
to the suggested new positions are given by solving

(P
T
Ws)dx = (PrW,P>/b (16)
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This is a set of t linear equations in the t variables of db, and can be solved using
standard matrix algebra. In the special case in which all weights are set to unity, Ws

= I, Eq.(16) simplifies to

db = P
T
d\ (17)

4.2 Updating the Pose and Shape Parameters
The equations above allow us to calculate changes to the shape parameters db re-

quired to improve the match between an object model and image evidence. When
these changes are applied we can ensure that the model only deforms into shapes
consistent with the training set by placing limits on the values of bk- A new example
can be calculated, and new suggested movements derived for each point. See
[11,12,13] for examples.

5 Qualitative Assessment of ASM Search Performance
We wished to examine how accurately an ASM can locate examples of the modelled
object in images, and how varying different parameters of the model affected the per-
formance. This we did by running the ASM on a set of images, and comparing the
ASM points with sets of points labelled manually on each image.

5.1 Method
The process for testing the techniques is as follows. Given an image of a modelled
object and the positions of the model points, XknOwn> annotated manually :

• Calculate an approximation to the best model pose by calculating the
translation, rotation and scaling parameters which map the mean shape
model points onto the known image points.

• Run the Active Shape Model search on the image, initialising it with the
pose parameters perturbed from the best pose values and the shape para-
meters set to zero (ie the mean model shape).

• After every iteration calculate the mean distance of the model points from
the known image points.

• For each image repeat with a variety of different perturbations of the initial
pose parameters and consolidate the results.

• Repeat for a number of images.
The resulting graphs of mean distance vs iterations allow comparison between dif-

ferent techniques, parameter settings and grey models.
Experiments were run to determine the effects on performance of

• Using raw grey-level models compared to derivative models, with and
without normalisation.

• Varying the length of the grey-level profile model

• Using different weighting schemes during the calculation of pose and
shape parameters.

The methods were also compared with our earlier approach of searching for
strong edges in the correct direction [11] to determine what advantages were given
by using grey-level models for each point.

5.2 Data
The experiments were conducted using a flexible model of a face. The model was
trained on 11 5122 images of one person (Figure 2), with 169 points being used to
represent the shape.
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Figure 2 : Examples of image and

model used.

0 5 10 15 20 25 30 35 40 45 50

Number of iterations

Figure 3 : Average Performance of an

ASM using un-normalised grey level profile
models on 11 different images.

Results were obtained by attempting to locate the labelled points in the original
training images using an ASM, starting with a pose systematically displaced from the
correct pose. 16 runs were done on each image, displacing the centre by (± 10, ± 10)
pixels, the orientation by ± 0.05 radians and the scale by ± 5%. Each face was about
200 pixels across.

6 Results

6.1 Effects on Performance of Using Different Types of Profile
Model
We wished to assess the effects on the rate of convergence and final result of ASM
search produced by using different types of profile model: raw grey-level vs. deriva-
tive, normalised vs. unnormalised. Figure 3 shows a typical set of curves, one per
image, showing the mean distance of the model points from the known labelled
points as the iterations progress. These were produced using un-normalised grey
level profiles 7 pixels long. Figure 4 compares the average results for the four combi-
nations of profile model, raw grey-level/derivative, un-normalised/normalised.
Each profile was 7 pixels long.

This suggests that normalised derivative profile models give the best results, close-
ly followed by un-normalised grey-level profile models. The un-normalised deriva-
tive models and the normalised grey-level models both give significantly poorer re-
sults. This order agrees with the results of Bailes & Taylor [14] in their work on
modelling the grey levels along symmetry chords.

6.2 Effects on Performance of Varying the Length of Profile Model
and Comparison with Searching for Strongest Edge.
The experiments were repeated using normalised derivative profile models of
lengths np = 2,3,5 and 7 pixels. (The number of modes used in each model, tg = np-l
or np-2). Figure 5 shows the results. This clearly indicates that the longer the profile
the better the performance. In addition the experiments were performed replacing
the grey-level model matching with a search for the strongest edge in the correct
direction (the technique used in earlier work [11]). The results are shown in Figure
5. The addition of the grey-level models, particularly the longer ones, gives consider-
able improvements in final fit.
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63 Effects on Performance of Using Different Weighting Schemes

Weights can be introduced at two stages in the ASM calculations (see section 4.1).
Weights on each point can be used during the calculation of changes to the pose para-
meters and during calculation of changes to the shape parameters (Eq. 16).

We have experimented with two weighting schemes. In the first the weight on each
point, WJ, is chosen to penalise against large suggested movements of the point:

(a) Wi = (1 + (dXf + dYf))-
1 (18)

where (dXi, dY{) is the suggested movement of the point, the difference between
its current position and the position of the area of nearby image which best fits the
profile model for the point.

In the second the weight is proportional to the probability that the grey-levels in
the area toward which the point is moving are in the class represented by the model:

(b) Wi = e-
F
- (19)

where -JFJ is the fit of the model to the best fitting area of image given by Eq. 11.
Figure 6 shows the effects of applying weighting (a) to an ASM searching for

strong edges (rather than using a grey-level model). This suggests that although the
weighting can slow convergence it can lead to a better final fit. Figure 7 compares
the performance of the different schemes on ASMs using normalised derivative pro-
files of 7 pixels, both using weights only during the pose calculation and using weights
during pose and shape calculation. In this case weighting method (a) slows the rate
of convergence considerably. Method (b) (using the probability of fit) gives no sig-
nificant difference to the no weights case. However, such a scheme may prove useful
in overcoming some occlusion. Model points in occluded regions will give poor fit
values, thus low weights, and will be ignored during model fitting; the shape will be
dominated by those points found with good fits. Early experiments confirm this.
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Figure 6 : Performance of edge based

ASMs using different weighting schemes.
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Figure 7 Performance of grey-model based

ASMs using different weighting schemes.
(Profile model length 7 pixels)

Error bars are 1.0 s.ds.

7 Discussion and Conclusions
The method of locating points by finding the best fit of a flexible grey-level model
to an area of image is a useful improvement on both edge based and standard correla-
tion techniques. At present we simply find the patch in the search area whose grey-
levels best match the model. Better results may be obtained by building a back-
ground model for every shape model point, and applying a Baysian classifier to
determine the patch most likely to contain the point and least likely to be back-
ground. The area modelled need not just be a line, it can be a rectangle or any shaped
patch.

We found that using normalised derivative profile models produces the best re-
sults. Such models are insensitive to scaling of the grey-levels and addition of a con-
stant (caused by changes in illumination) so a good result would be expected. Why
normalised grey models and unnormalised derivative models should perform so rela-
tively poorly is less clear.

The rate of convergence and quality of final result improved as the length of the
profile models increased. The longer the model the more likely it is to locate the
correct section of the area sampled, and the less it is confused by noise or clutter.
The use of the grey-level models gives considerable improvements in final fit over
earlier methods of searching for the strongest edge in a given direction.

The experiments above suggest that using the weighting scheme (a) (Eq.18) slows
convergence but can give improvements in overall fit when only edge strength is used
in the search. This may be because it penalises against points being pulled away from
the average position by occasional outlying matches to nearby edges. The weighting
gives little or no improvement when the more specific grey-level models are used,
perhaps because they produce fewer spurious matches. Weighting scheme (b) ap-
pears to have no significant effect compared to using no weights, but may make the
system more robust to occlusion.
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Including weighting in the pose calculation requires very little extra computation
(only the calculation of the weights themselves) so can be done 'for free'. Including
weights in the calculation of shape parameters requires solving Eq. 16 rather than
using the much simpler Eq. 17, though the increase in computation is small compared
to that required to assess the quality of fit of each grey-level model.
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