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Abstract

The Active Shape Model(ASM) is an iterative algorithm for image in-
terpretation based upon a Point Distribution Model. Each iteration of
the ASM has two steps: Image data interrogation followed by shape
approximation. Here we consider the shape approximation step in de-
tail. We present a new method of shape approximation which uses
directional constraints. We show how the error term for the shape
approximation problem can be extended to cope with directional con-
straints and present iterative solutions to the 2D and 3D problems.
We also show how the error term can be modified to allow a closed
solution in the 2D case.
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1 Introduction

We have previously described a generic approach to interpreting both 2D and
3D images [2-5]. The essential components of the system are a compact model
representing the shape of a set of variable objects - a Point Distribution Model
(PDM) - and an iterative method of image search. The combination is known
as an Active Shape Model (ASM). A PDM is a statistical shape model which
is generated from a set of annotated examples of the objects(s) to be modelled.
The ASM is an iterative procedure which locates an instance of a PDM in a given
image. Each iteration of the ASM has two steps: image data interrogation followed
by shape approximation. In the first step a new instance of the model in the image
is proposed. In the second step the proposed shape is approximated as closely as
possible whilst applying shape constraints captured by the PDM.

Here, we consider the shape approximation step of the ASM in detail. We
present a new approach to the problem which uses directional constraints to re-
duce the number of iterations required for the ASM to converge and increases the
accuracy of the interpretation. We show how the representation of the errors we
wish to minimise when approximating a given image shape can be expressed in a
more formal way than previously and can be extended to cope with the case of
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directional constraints. Iterative solutions for the most general case are presented
for both the 2D and 3D problems. We also show that, by modifying the error
term slightly, a closed, rather than iterative, solution to the shape approximation
problem can be achieved in 2D.

2 Background

We will briefly review how a PDM is generated and how the ASM image search
procedure locates an instance of the PDM within an image. For a detailed de-
scription the reader is referred to [2-4].

2.1 Point Distribution Models

A PDM is generated via a principal components analysis of a training set of N
object descriptions {yi,(l < i < N)}. An object description, y;, is simply a
labelled set of points {yi,j,(l < j < n)} which we will call landmarks. The
analysis involves; aligning the set of examples into a common frame of reference,
{x; = aligned(yj), (1 < i < N)}; calculating the mean of the aligned examples,
x, and the deviation from the mean of each aligned example Sxi = x* - x; cal-
culating the eigensystem of the the co-variance matrix of the deviations, C =
(1/N) J2i=1 6xi8xJ. The t principal eigenvectors of the eigensystem are then used
to generate examples of the modelled objects via the expression :

x = x + Pb (1)

where b is a ^-element vector of shape parameters and P is a (2n x t) in 2D or
(3n x t) in 3D matrix of t eigenvectors.

By selecting b from a pre-defined shape vector space, established from the set
of training examples, new instances of the modelled object(s) can be generated.
This enables the PDM to represent previously unseen examples and forms the
basis for locating examples of the modelled object (s) in unseen images via the
ASM.

2.2 Active Shape Models

The ASM uses an iterative algorithm for locating an instance of a PDM in a given
image assuming some initial guess of the shape, b, and pose, <2, of the object(s)
in the image is available. At each iteration the current instance of the PDM is
projected into the image via Q and the image data in the vicinity of the model
instance is interrogated, usually along profiles normal to the boundary/surface -
see figure 1. This leads to a new proposed set of landmarks within the image.
The ASM approximates this proposed model instance as closely as possible while
remaining within the shape vector space. This approximation then provides the
starting point for the ASM at the next iteration.
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Figure 1: Searching for New Landmarks Figure 2: Re-defining the Error Vector

3 The Shape Approximation Problem

The shape appriximation problem we consider is simply stated : find a set of
values, {<5,b}, which best approximate a set of landmarks defined in the image
frame, {x\, (1 < i < n)}. We use a least squares measure of the errors between
the landmarks proposed in the image and the landmarks represented by {Q,h} as
the criterion for the best approximation. In this section we show how to generate
the simplest form of the error term to be minimised. We then consider how the
introduction of directional constraints re-defines the error vectors and extend the
error term accordingly.

3.1 The Standard Error Term

The ith model point is defined by :

= Xi + P fb (2)

where Pi is formed from the appropriate rows of P in equation(l) associated with
the ith point. If b is a (t x 1) vector, then Pj is a (2 x t) matrix in 2D and a
(3 x t) matrix in 3D. The pose, Q, can be used to transform the image shape
into the model frame or vice versa. We must decide which frame the errors are to
be measured in. This is important because, as Horn[6] points out, if we find the
pose which minimises the errors resulting from transforming the image points into
the model frame, Qi say, and the corresponding pose which minimises the errors
resulting from transforming the model points into the image frame, Q2 say, then
Qi / Q^1- We wish to approximate the shape in the image frame as closely as
possible since the aim of the ASM is to locate the instance of the model in the
image. The error term we wish to minimise is thus :

(3)
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3.2 Directional Constraints

Consider the situation shown in figure 1. If we use a standard least-squares ap-
proach to minimise equation(3) we find that model points {1,2} are prevented
from moving closer to their target points because of the increased vertical error
in points {4,5}. Similarly, points {4,5} are prevented from moving closer to their
target points because of the increase in the horizontal error of points {1,2}. How-
ever, points {1,2} lie on a horizontal edge and points {4,5} lie on a vertical edge.
We would be willing, therefore, to allow points {l,2}/{4,5} to move freely in a
horizontal/vertical direction, as long as the distance to their target boundaries
were reduced. This is the so called aperture problem discussed in [1]. Below,
we describe a general framework for measuring the errors along pre-defined unit
vectors and weighting these modified errors in such a way that points are allowed
to move more freely around the boundary/surface of the modelled object (s).

3.2.1 Directional Constraints in 2D

For the i
th point we have an error between the current model point and its cor-

responding target point of e* and a pre-defined unit vector, u;, normal to the
boundary along which we want to measure the error i.e eUti = ufei (see fig-
ure 2). To measure the error along a direction tangential to the boundary we use
Cu.i — vfei where v̂  = [—Ui<y,UiiX] . The total weighted error term for the i

th

point is now given by :

= efWiei, where Wj = aiUjuf + ftvivf (4)

By varying on, (3i we can change the relative importance of the errors normal and
tangential to the boundary at the i

th point.

3.2.2 Directional Constraints in 3D

Here, we consider measuring the error along both a unit normal to the surface,
Uj, and in the plane tangential to the surface. The error measured along the unit
normal is eUj; = uf e*. The component of the error vector in the tangential plane
is given by :

ev,i = ej - (ufe^ u ; = V ^ where V* = (I - u,uf) (5)

The total weighted error term for the i
th point is given by :

a{e\{ + Pie^e^i = c^ef uiUf e* + ftef Vf V ^

= efW iei, where Wi = a iUiuf + ft (I - Uiuf )2 (6)

3.3 Generalised Error Term

In the previous section we showed that directional constraints result in a symmetric
weight matrix associated with each error vector. In both the 2D and 3D directional
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weighting schemes the weight matrices are derived from a set of unit normals.
These normals are defined by the current instance of the model which is itself
defined by the shape vector, b. We will use {W^,( l < i < n)} to denote the
weight matrices defined in the model frame. In order to measure the errors in the
image frame the unit normals must be rotated into the image frame. It can be
shown that, if R is the rotation matrix associated with the pose Q, then the weight
matrices defined in the image frame are given by {W| = R W " R r , (1 < i < n)}.

The error term we wish to minimise in the general case is now given by :

where xf is defined by equation(2) and <5(x) = sRx+t where s is the scale factor,
R is the rotation matrix and t is the translation.

4 A Two Stage Iterative Solution

We can minimise equation(7) using a two stage iterative scheme in which we first
assume we have a known approximation to b and solve for Q; then, given an
approximation for Q, solve for b and so on. This is the method used in the
shape approximation step of the ASM as described previously[3,4]. The difference
here is that we are going to solve for {<2,b} with respect to equation(7), thus
guaranteeing the minimisation of the errors in the image frame for a combined set
of {<5,b} values in the general case of full (2 x 2) or (3 x 3) weight matrices.

4.1 Solving for Q given b - the Alignment Problem

Here, we must solve :

Min E
2
 = Y^W - ( s R x f + t})TWt

7(xJ - {sRxf + t}) (8)

where x " is defined by equation(2). We consider the 2D and 3D cases separately.

4.1.1 Alignment in 2D

In 2D we use sR = , where c = scos(6),d = ssin(#) and 0 is the angle of
Y

a CJ
rotation. In order to minimise equation(8) we set the partial derivatives to zero :

flP2 « /f)n(vM\\
 T f (1 < j < 4)

i = c, v2 = d, (9)

The partial derivatives of Q are given by :

dv2 [ x?tt\' dv
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We can express equation (9) as follows :

Lv
" = 2_J i ^ ^ ^ ^ J

 W
M (1 < 3 < 4)

(11)

These 4 equations in the 4 unknowns {c,d,tx,ty} can be solved using standard
methods. For scalar weights, WJ = Wi, this solution can be shown to be the same
as that described for the original ASM method [4].

4.1.2 Alignment in 3D

To minimise equation(8) in 3D when using scalar weights, W | = Wi, we can
use Horn's method of alignment [6] which uses unit quaternions to represent the
rotation. Horn's method relies on being able to isolate the rotational element of the
alignment problem. The scale and translation are computed once the rotation is
known. By using quaternions the alignment of two 3D pointsets can be solved as a
linear problem via an eigenvector analysis. Here, the coupling of the components of
the error vectors, ej, via the weight matrices, W^, means that the rotation cannot
be isolated in this fashion. We have used an alternative, iterative approach.

We represent the rotation using quaternions but allow the quaternion to also
perform a scaling (i.e. we no longer consider unit quaternions). We will use Horn's
notation for quaternions : q = qo + qxi + qyj + qzk. The complex conjugate is

denned by q* = q0 - qxi - qyj - qzk and q • q* = q% + q\ + qy + q\ — ||q|| . For the

definition of multiplication etc. see Horn[6]. A 3D point, p, is represented by the

purely imaginary quaternion p = 0 +pxi +pyj +pzk and a rotation of p is defined

by qpq* with q • q* = 1. To enable q to perform a scaling as well as a rotation we

do not require a unit quaternion but set the scale using s = q • q*. We can write

equation (8) as :

n*l - t)
T
W(-x.' - °9-fnxMn*l - t) C\2)

where 3{q} is the imaginary part of the quaternion q.

To solve equation(12) we use an iterative approach as follows: Assume we have

some estimate of q available at the r
ih iteration, qrri say. We generate a new

o

estimate at the (r + l)
th iteration using q[r+1] = q[[r] + S. We can now write :

We assume that S is small with respect to qrri and approximate the previous
expression using :

9i,x 9i,0 9i,z ~9i,y

9i,y ~9i,z 9i,0 9i,x

9i,z 9i,y ~9i,x 9ifi
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where we have used 9{axb*} = 9{bxa*} for the purely imaginary quaternion x.

In equation(13) 5 is regarded as a 4-element vector in the term GjJ. Equation(12)
now becomes :

n

Min E
2
 = ^(zi - GiS - t)TW,'(zi - Grf - t), z{ = x\ - s[r]R[r]xf (15)

i= l

o

Equation(15) is linear with respect to 6,t and we can write :

g) (16)

with vi = #0,̂ 2 = &x,vz = Sy,Vi = 5Z,V5 — tx,v6 — ty,vr = tz and the partial
derivatives defined by :

del _ del __ del _ del _

C/^l OV2 OV3 OV\

f^ = [1,0, o]T, P^ = [o, 1, o]T, | ^ = [0,0,:
dv5 dv6

where gij is the j
t h column of Gj. We can set the partial differentials of E2 to

zero and obtain :

o

which gives 7 equations in the 7 unknowns. Once S has been determined the new
estimate of the quaternion defining the rotation and scaling is given by qrr+i] =

o o

q[r] + 5. The iterative scheme is deemed to have converged when ||(S||/i/i < e. We
have used e = 10~6.

4.2 Solving for b given Q

Here, we substitute equation(2) into equation(7) to give :

which can be written as :
n

E
2
 = Y, (x • - sRxi - t - sRPib)T W| (xl - sRxn - t -

i=l

We minimise as before, by setting the partial derivatives to zero :

dE
2
 "

 T
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This expression is rearranged to give :

J ^ T
 J2 ( f r , ) b = ^ j ^ P f R T W < I (xj - S R x , - t )

We can use the relationship W{ = R W ^ R to simplify the previous equation :
n n

 / j

V ̂

This equation can be expressed simply as :

where WM = diag{Wf}. For scalar weights, W f = wt, WM simplifies to a
diagonal matrix and equation(18) represents the same solution as that used in [3].

5 A Closed Solution for the 2D Problem

The non-linear relationship between {Q,b} in equation(7) can be handled using
the 2-stage scheme described above. To obtain a closed solution we linearise the
expression by measuring the errors in the model frame rather than the image
frame. In section 6 we will see that, for a real image interpretation problem,
the increased errors resulting from measuring the errors in the model frame are
statistically insignificant. We measure the errors in the model frame as follows :

e" = Q~
1
Cx') — (XJ + Pjb) (19)

The error term we wish to minimise becomes :
n

1 T
( ' - Y M f

1
-

i=l

j = l

where c = cos(-6)/s, d — sin(-9)/s, t' = - R T t / s . Equation(20) can be written
as :

T

where v\ = c,v2 = d,v3 = t'x,Vi = t'y,Vj+4 = bj (1 < j < t). The partial
derivatives in equation(21) are given by :

^L=^, ^ =[-<»], ^ L J
1

] , ^ ^
0

] , _̂ L = _Pij (22)
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Figure 3: Improved Search with Directional Constraints

where ptj is the j
t h column of Pj. To minimise E

2 in equation(21) we set the

partial derivatives to zero, dE
2
/dvk = 0, (1 < k < t + 4), and obtain :

which form (t + 4) equations in the (t + 4) unknowns. In the special case of unit
weights, W f = I, we note that the system of equations(23) takes the form :

which we can solve as

I q = yQ - B2y6

b = yf, - Bifq

6 Results

To see how using directional constraints improves the performance of the ASM we
used a set of images and accompanying PDM of lumbar vertebrae [5] - see figure 3.
We selected a subset of the training images on which to test the method, the correct
labelling of the landmarks being known for each image. The ASM was applied to
each of the 25 selected images 8 times. The initial set of shape parameters was
set to b = 0 (i.e. the mean shape). The initial pose was a random perturbation
of the pose required to align the mean shape with the known landmarks for the
given image. At each iteration of the ASM the average distance of each landmark
from its annotated position was computed for all landmarks and all images. The
consolidated results are shown in figure 3 for the ASM both with and without
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directional weights. For these experiments we used at = l,/?i = 0.09 V«. It can be
seen clearly that directional weighting improves both the rate of convergence and
the accuracy of the final interpretation.

In order to test how the modification of the error term used in section 5 to
achieve a closed form solution for {Q,b} affects the interpretation generated by
the ASM we have performed a similar set of experiments. In this case the ASM
using the standard 2-stage iterative algorithm for the errors defined in the image
frame was compared with the ASM using the closed solution for errors denned
in the model frame. For the vertebra location problem described above we found
the increased errors resulting from calculating the errors in the model frame were
statistically insignificant.

7 Conclusions

We have presented a detailed and extended analysis of the shape approximation
problem associated with the ASM algorithm. We have shown how to establish
error terms relevant to both the image and model frames for the general case of
symmetric weight matrices. This extension is necessary to support a new approach
to the shape approximation problem which uses directional constraints to allow
the points more freedom of movement in specified directions during ASM search.
We have presented iterative solutions for the most general case in both 2D and
3D. We have shown how directional weighting results in an ASM which requires
fewer image iterations than an un-weighted ASM and also generates more accurate
interpretations. We have also shown that it is possible to obtain a closed solution
to the shape approximation problem in 2D which, for a real image interpretation
problem, generates interpretations which are statistically no less accurate than
those generated by the corresponding 2-stage iterative solution.
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