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Abstract

We describe a multi-resolution technique for locating for variable structures in images.
This is an extension of work on Active Shape Models (ASMs) - statistical models which
iteratively deform to match image data. An ASM consists of a shape model controlling a
set of landmark points, together with a statistical model of the grey-levels expected around
each landmark. Both the shape model and the grey-level models are trained on sets of
labelled example images. In order to apply a coarse-to-fine search strategy it is necessary
to train a set of grey-level models for each landmark, one for every level of a multi-resolu-
tion image pyramid. During image search the model is started on the coarsest resolution
image. As the search progresses it moves to finer and finer resolutions until no further
improvement can be made. We describe an automatic technique for deciding when to

:ss has converged. We demonstrate the
ntitative experiments which show a sig-

i speed and quality of fit compared to previous methods.

1 Introduction

Many applications of computer vision involve locating examples of known objects or
structures in new images. Often the structures to be located can vary in shape, either
because they are flexible or articulated, or because natural variation is present. Flex-
ible models have proved extremely useful in tackling such problems. Various ap-
proaches to modelling shape and shape variation have been described by Yuille et
al. [1], Kass et al. [2] Hinton, Williams and Revow [3], Staib and Duncan [4], Pent-
land and Sclaroff [5], Karaolani et al. [6], Nastar and Ayache [7], Grenander et al. [8]
and Mardia et al. [9]. Grenander and Miller [10] describe models which represent
both the shape and intensity information.

In earlier work (Cootes et al. [11]) we described 'Active Shape Models' (ASMs), stat-
istically based flexible models which iteratively move toward structures in images
similar to those on which they were trained. An ASM consists of a set of landmark
points, each representing the position of a particular part of the structure to be lo-
cated. The model is trained by marking landmark points on each of a set of training
images. Statistical analysis of the relative positions of the landmarks in different
examples allows both the average shape and shape variation to be modelled. The
grey-level landscape in the vicinity of each landmark is also modelled statistically.
For image interpretation an example of the model is placed in a previously unseen
image. A local search is performed around the current position of each landmark
to locate a new position at which there is a better match between the grey-level
model for that point and the image. The shape model parameters are iteratively up-
dated to move the landmarks toward these better matched points, with the constraint
that the overall shape cannot deform more than the examples seen in the training
set. ASMs have been used successfully in a wide range of applications, including lo-
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eating organs in medical images [11,12], face recognition and hand-written character
recognition [13].

Our recent work has aimed at improving both the speed and the accuracy of the ASM
method. In this paper we describe a multi-resolution approach to modelling the
grey-levels around each landmark, and a coarse-to-fine strategy for image search.
We show that this approach leads to faster and more accurate image interpretation.
We describe a method for detecting when the ASM has converged, and show how
this can be used to decide when to move to a finer resolution during multi-resolution
image search. We give examples of models locating image structures, and results of
quantitative experiments showing the improvements gained by using the multi-re-
solution technique.

2 Active Shape Models

2.1 Shape Models and Grey-Level Models

Cootes et al. [11] describe how to build flexible shape models called Point Distribu-
tion Models. These are generated from examples of shapes, where each shape is
represented by a set of labelled landmark points. The models can be used to generate
new shapes using the equation

x = x + Pb (1)

where x = (x0, y0, ... xn_h y^f

(xk>yic) is the k
th

 model point
x represents the mean shape
P is a 2nxt matrix oft unit column vectors

b = (bi...bt)
T
 is a set of shape parameters

The columns of P are orthogonal and span the space of shape variations observed
in the training set. If the shape parameters b are chosen inside suitable limits (de-
rived from the training set) then the shapes generated by (1) will be similar to those
in the training set. Examples of such models are given in [11 - 12].

In addition the local grey-level environment about each landmark point can be mo-
delled. Statistical information is gathered about the mean and covariances of the
values of the pixels in the vicinity of each landmark, typically on profiles normal to
the object boundary at that point. This data can be used to assess how well the grey-
levels in a particular area of an image match those expected around a given model
landmark point.

2.2 Image Search Using An Active Shape Model

Given a rough starting approximation an Active Shape Model can be iteratively fitted
to an image [11]. By choosing a set of shape parameters b for a Point Distribution
Model, we define the shape of a model object in an object centred co-ordinate frame.
We can create an instance, X, of the model in the image frame by defining the posi-
tion, orientation and scale:
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X = M(s,d)[x] + X, (2)

where X, = (xa Yo ..., xc, YC)
T

M(s, d)[.] performs a rotation by0 and a scaling by s.

(Xc, Yc) is the position of the centre of the model in the image frame.

An iterative approach to improving the fit of the instance, X, to an image proceeds
as follows:
i) Examine a region of the image around each point to calculate the

displacement of the point required to move it to a better location.
ii) From these displacements calculate adjustments to the pose and the

shape parameters.
iii) Update the model parameters; by enforcing limits on the shape para-

meters, global shape constraints can be applied ensuring the shape
of the model instance remains similar to those of the training set.

The procedure is repeated until no significant changes result. Because the models
deform to better fit the data, but only in ways which are consistent with the shapes
found in the training set they are called 'Active Shape Models' (ASMs).
To find a better location for each model point (step (i) above) we sample a profile
perpendicular to the boundary at the point, and run the grey-level model along it
to find the best match (Figures 1, 2). The suggested movement is then toward the
point on the sampled profile which gave the best match to the model. We denote the
set of such adjustments as a vector

dX = (dXn, dY0, ..., dXn.u dYn.,)
T
.

Model Boundary,

Area sampled
from image

Model Points

Sampled image
profile

Flexible model

for grey-levels
about point i

Fit of model to
sampled profile.

(Lowest wins)

Figure 1. Part of a model bound-
ary approximating to the edge of

an image object.

Figure 2. Suggested movement of point dXi is
along normal to boundary, in a direction to-
wards the point at which the profile model

best fits the profile sampled from the image.

Given such a set of suggested changes we can use a least squares approach to find

the best change in pose (dXc, dYc, ds, dd) and changes to the shape parameters
(db) to move the points from their current locations in the image frame, X, to be as
close as possible to the suggested new locations (X + dX). We can then update the
pose and shape parameters, apply limits to the shape parameters to ensure only
'legal' shapes are generated and repeat. (See [11] for details).
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3 Extension to Multi-Resolution Images
The above formulation works well for many different examples. However, there is
a problem with choosing the length of profile along which to search with the grey-
level model. If the search profile is too short, the model landmark points must be
close to their targets in the image before they can 'latch on' and pull the shape model
into place. If they are too long the search becomes computationally expensive and
the grey-level models are more likely to latch on to distracting structures in the
image away from the target object, preventing the ASM from converging to the cor-
rect shape.
Ideally the search should first look far from its current location and make large
jumps, then as it homes in on a target structure, it should restrict its examination of
the image to the immediate locality. This suggests a multi-resolution approach, with
the models applied first to a coarse, low resolution version of an image, then refined
on higher resolution versions. We can generate such images from an original using
gaussian smoothing and sub-sampling to produce a multi-resolution pyramid [14].
Level 0 in such a pyramid is the original image. Level 1 is an image with half the
number of pixels along each axis. In our implementation each pixel in a given level
is generated by smoothing the image at the level below with a 5 x 5 gaussian mask
(which is linearly decomposed into two 1-5-8-5-1 convolutions) and then sub-sam-
pling every other pixel.

In order to run an ASM at a particular level in the pyramid grey-level models trained
on the data at that level are required because gaussian smoothing and sub-sampling
significantly modify image structure. Instead of a single grey-level model for each
landmark point, we thus generate a set of models, one for each level of the pyramid
we wish to use. We let the models use the same number of pixels at each level, so
those at level l + l cover twice as much the image area as those at level / (Figure 3).
Thus each grey-level model at the coarser levels may cover large parts of the struc-
ture of interest, while at fine levels each model is much more localised. On a given
layer, we need only search along a short profile sampled from the image. At the
coarse resolutions this will allow large movements, at the fine resolutions only small
movements are allowed, and the grey-level models are less likely to be distracted by
image features away from the current target structure.

In order to perform local search, we start at the highest level of the pyramid and run
a number of iterations of the ASM using the models trained at that level. During
each iteration we look in the region around each point for a better position. We need
only examine the image data at a small number of nearby locations, for instance at
the current point and m pixels either side (Figure 4). Having run a number of iter-
ations at one resolution, we move to the next level down in the pyramid, and search
at a finer resolution. Again we only need look «/ pixels either side of each current
point. The process is repeated until a suitable number of iterations are run on the
original image at level 0 in the pyramid.
3.1 When to Change Levels

For maximum efficiency it is necessary to devise a method of deciding automatically
when to change to a finer resolution. The simplest approach is to run a fixed number
of iterations at each level. However, using this approach the model may not have
moved sufficiently close to the target image structure after the chosen number of
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Level 0

Level 1

Level 2

Profile sampled normal to
model boundary in image

at given level.

Search with grey-level

model ^

Locate best fit (lowest value)

of model to sampled profile.

Record number of times best

fit lies in central region.

Figure 3 : Grey-level models for a land- Figure 4: At each level and each land-
mark point at different levels of the gaus- mark the grey-level model fit at a small

sian pyramid. number of positions about the current

point is calculated, and number of best
fit's lying in a central region is recorded.

iterations or it may converge at a particular level after only a small number of iter-
ations, so any further processing at that level is wasted. An alternative approach is
therefore to assess whether the model has converged at a given level, and if so, move
to the next level.
A simple method of testing for convergence is as follows. At every point we assess
the fit of its grey-level model at«/ locations either side of the point, along a profile
perpendicular to the model boundary (Figure 4). We then calculate the proportion
of the points for which the best fit lies within the central 50% of the locations. When
this proportion rises above a limit, say 95%, we declare the model to have converged,
and move to the next level in the pyramid. The most appropriate choice for the pro-
portion limit should be ascertained by experiment. If it is too low, the model may
change resolution too soon, before it has settled at the current level. The model
may then be too far away from the target to converge correctly at the next level. If
the limit is too high, it may never be reached. To prevent getting stuck an upper limit
is applied to the number of iterations, after which the search is forced to the next
level. It is assumed that it has got as good as it is going to get at the current level.
In our experiments «/ = 2, we assess the fit at 5 locations, and we count the 'hits'
within the central 3 pixels.

4 Examples of Multi-Resolution Search
4.1 Face Model Example

We trained a face model using 169 landmark points planted by hand on 11 images
of a single person's face. We trained sets of grey-level models for each landmark,
one at each pyramid level. The grey-level models were 7 pixels long. Figure 5 shows
an example of one of the training images, and the mean model shape. Figure 6 shows
the face model iterating to fit to a new image (taken with different lighting conditions
and background). The search runs at most 10 iterations on each level of a gaussian
pyramid generated from the original image, starting with a level 5 image.
During the first iterations the ASM works on a coarse image (1/32 the size of the orig-
inal in each dimension). It thus makes large changes, when viewed at the original
scale. As the search progresses the ASM works on increasingly fine resolution
images, so makes only small adjustments. The search is stopped when it has run at
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Initial Position 2 Iterations 4 Iterations

10 Iterations 20 Iterations 45 Iterations
Figure 5 : Example of H 6 . Ex k of a face ASM iterating to fit a

face training tmage " ^

and mean model.

most 10 iterations on the level 0 image. Each iteration (at any level) takes less than
150ms on a Sun SparclO Workstation - the search is completed in under 7 seconds.
4.2 Vertebra Model Example
A flexible model of a single lumbar vertebra was trained using examples taken from
30 lpteral radiographs of the spine from different patients. An example is shown in
Figure 8. The model consisted of 204 landmark points, and a set of 7 pixel grey-level
models trained for each point. 10 modes of shape variation were sufficient to explain
95% of the variation in the training set. Figure 7 shows the first two modes of the
model. Figure 8 shows the ASM iterating to fit to a new radiograph. Again, the
search started on level 5 of the image pyramid, and no more than 10 iterations were
applied at each level. Each iteration takes less than 200ms, convergence is reached
within 8 seconds.

5 Quantitative Experiments
We wished to compare the performance of the new multi-resolution technique with
earlier methods, and determine the effects of varying various parameters used in the
search. We did this by running the ASM on a set of images, and comparing the ASM
landmark points with sets of points labelled manually on each image.

5.1 Method
The procedure for testing was as follows. Given an image containing an example of
the modelled object and the positions of the model points, ̂ knOwn, annotated man-
ually :

• Calculate the pose which maps the mean shape model points onto the
known image points - the base pose.
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b2 = - 3o 2 Z>2 = - 1.5CT2 Mean S/uzpe
Figure 7: The effects of varying the first two shape model parameters on the model of
a vertebra (setting the others to zero), oj is the standard deviation ofbt over the train-

ing set.

After 8 iterations After 15 iterations Convergence - 39 iterations
Figure 8: An ASM for a vertebra iterating to fit to a radiograph.

• Run the Active Shape Model search on the image, starting it with the pose
parameters perturbed from the base pose values and the shape parameters
set to zero (ie the mean model shape).

• After every iteration calculate the mean distance of the model points
from the known image points.

• For each image repeat with a variety of different perturbations of the in-
itial pose parameters and consolidate the results.

• Repeat for a number of images.

The resulting graphs of mean distance against iteration number allow comparison
between different techniques and parameter settings.
The experiments were conducted using the flexible model of a face described earlier.
The model was trained on image pyramids with five levels derived from 15 5122

images of one person (Figure 5), with 169 points being used to represent the shape.
Normalised, derivative grey-level profile models of length 7 pixels were used for
both the multi-resolution and single resolution experiments.
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5.2 Results

Results were obtained by attempting to locate the labelled points in the original
training images using an ASM, starting with a pose systematically displaced from the
correct pose. Miss-one-out experiments were performed, training a model on 14
images and testing it on the 15th. 8 runs were performed for each image, displacing
the centre by (± 30, ± 30) pixels, the orientation by ± 6 ° and the scale by -30%. Each
face was about 200 pixels across in the original image.

Figure 9 shows the effect of using different numbers of iterations at each level. The
more iterations used the better the final fit, but the longer it will take to achieve.
The graph demonstrates that good results can be achieved most quickly with 5 or
7 iterations. For the experiments in which a fixed number of iterations were run at
each level, the points at which the search changes level show clearly as steps in the
curves. These steps suggest that a more rapid improvement in fit would occur if the
'bottoming out' of the curves is used as a trigger for a move to a finer level. The auto-
matic approach gives a smoother, more rapid improvement in quality of fit, avoiding
these 'steps'. Figure 10 shows examples of the automatic approach and the effect
of varying the threshold for the proportion of 'hits' required for a change to a finer
resolution during the search. In this case a maximum of 7 iterations were run at each
iteration, with fewer running if the threshold was reached. The results suggest that
for this case a threshold of 90-95% gives the best convergence rate combined with
a good final fit.

•310

I
9

I*.

I
1
-

< 0

3 its/level
5 its/level
7 its/level
10 its/level

5'10' 15'20' 25'30'35'40T45' 50'
Number of iterations

Figure 9: Effects of varying number of
iterations run at each level.

5' 10' 157 20' 25' 30' 35' 40' 45' 501

Number of iterations
Figure 10: Effects of varying the threshold
({) for changing to a finer resolution. Max.

iterations per level = 7

Figure 11 compares the ASM run only on the original image resolution with results
from the new multi-resolution approach. In practice the results for the single resol-
ution method were obtained by only displacing the pose by less than the amount used
for the multi-resolution experiments (ie centre (± 10, ± 10) pixels, ±3° and using
the correct scale). This was because the single resolution experiment takes consider-
ably longer and becomes too prone to getting stuck in local minima when started with
large displacements. The results show that despite starting considerably further
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away, the multi-resolution approach converges on average more rapidly, and to a
better solution.

Figure 12 shows the effect of using different grey-model lengths. In each case the
automatic search process was used, running a maximum of 7 iterations at each level
and changing levels using a threshold of 95% of central hits. Longer grey-models
give improved convergence and final results. Using models longer than 7 pixels gave
no further gains.
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Figure 11: Results comparing running the Figure 12 : Experiment comparing different
ASM at a single resolution with the Multi- grey-model lengths. Error bars are 1.0
Res. approach. Error bars are 1.0 standard standard error

error

6 Discussion and Conclusions

We have described a simple method of extending Active Shape Model search to deal
with multi-resolution image pyramids. The new method can successfully locate
structures from further away, giving better results in fewer iterations than an ASM
run at a single resolution. In addition we have developed an automatic method of
detecting convergence, giving a way of terminating the iterative search.
The multi-resolution methods are less likely to be caught in nearby local minima.
This is partly because the search at coarser resolution avoids the model getting
caught on fine-grain clutter. In addition the use of shorter search profiles means
that the grey-level models at each point are less likely to be distracted from their
target structure by nearby image features. Each iteration can be considerably
quicker, since during search only a small number of neighbouring points about each
model point are considered. When run on a single resolution image it was necessary
to search long profiles with the grey-level models, if the model instance was thought
to be a long way from the image structure. Because the new methods also converge
after fewer iterations, this leads to multi-resolution search taking typically 10-20%
of the CPU time required by the original method.

The multi-resolution approach appears to be able to cope with occlusion as well as
the single scale ASM - the constraints of the shape model ensure that points in
occluded areas are estimated in a 'sensible' manner.
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In the current implementation the same model points are used at each level. At the
coarse resolutions this is inefficient, since the areas of the image covered by the grey-
level models about each landmark point will overlap. We intend examining ways in
which the number of model points can be systematically reduced at the coarse resol-
utions to further increase the speed of the search.
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