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Active sites of copper-complex catalytic materials
for electrochemical carbon dioxide reduction
Zhe Weng 1,2,3, Yueshen Wu2,3, Maoyu Wang4, Jianbing Jiang2,3, Ke Yang2,3, Shengjuan Huo2,3,5,

Xiao-Feng Wang6, Qing Ma7, Gary W. Brudvig2,3, Victor S. Batista2,3, Yongye Liang1,

Zhenxing Feng4 & Hailiang Wang 2,3

Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental impor-

tance to rational design of high-performance catalyst materials. We study three copper-

complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II)

phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic

efficiency of 66% and a partial current density of 13 mA cm−2 at the potential of – 1.06 V

versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption

spectroscopy, we find that under the working conditions copper(II) phthalocyanine under-

goes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clus-

ters, which catalyzes the carbon dioxide-to-methane conversion. Density functional

calculations rationalize the restructuring behavior and attribute the reversibility to the strong

divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure

and the small size of the generated copper clusters under the reaction conditions.
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E
lectrochemical conversion of CO2 using electricity gener-
ated from renewable energy sources could provide viable
solutions to the development of carbon-neutral fuels.

However, CO2 electroreduction is a kinetically slow and diverging
reaction that requires a significant magnitude of overpotential
and generates a myriad of products1–3. Among all the electro-
catalyst materials studied thus far for CO2 reduction metal
complexes are of distinct importance, because they possess well-
defined structures that can be tailored on the molecular level4–10.
Therefore, there is a significant interest in the development of
electrocatalytic materials by deposition of molecules with high
catalytic activity and selectivity for electrochemical CO2 reduc-
tion6,11–14. Cu-based metal organic frameworks (MOFs) have
been found to be electrocatalytically active for reducing CO2 to
alcohols14. Recently, we discovered a Cu porphyrin based het-
erogeneous electrocatalyst that can reduce CO2 to methane (CH4)
and ethylene (C2H4) in a neutral aqueous electrolyte15. Although
postmortem analysis reveals that the Cu porphyrin molecular
structure remains unchanged after electrolysis, the actual active
species responsible for catalyzing CO2 to hydrocarbon conversion
has yet to be established.

Many catalyst materials change their structures under reaction
conditions16–18. The restructuring can be induced by physical
conditions such as temperature, pressure, and electrical potential,
as well as chemical conditions such as adsorbates and reactants17–
25. The formed structures with reduced thermodynamic energy
under the reaction conditions are responsible for the observed
catalytic properties. Metal surfaces are known to alter their
atomic arrangements, compositions, and oxidation states under
the influences of gas atmosphere and temperature21. Numerous
studies have been reported on molecular complexes of earth-
abundant metals as pre-catalysts for water oxidation26. Recently,
transition metal sulfides, selenides, and phosphides have been
found to reconstruct themselves to the corresponding oxides or
(oxy)hydroxides and effectively catalyze electrochemical oxygen
evolution27,28. Examining the restructuring of catalyst materials is
crucial to understanding structure-reactivity correlations and to
designing better catalysts.

In situ and operando characterization techniques are highly
useful in uncovering catalyst restructuring phenomena, as they
can provide chemical and physical information under reaction
conditions29–33. Under certain circumstances where the recon-
structed catalysts are subject to further structural changes when
the reaction conditions are removed, operando characterization is
necessary to identify the real catalytically active species. In this
regard, in-situ and operando X-ray absorption spectroscopy
(XAS) is particularly powerful, as the X-ray absorption near edge
structure (XANES) can reveal the oxidation state of the element
of interest, and extended X-ray absorption fine structure (EXAFS)
is capable of probing the influence from the local coordination
environment. For example, sub-monolayer VOx anchored on an
α-Fe2O3 powder surface undergoes redox-induced dynamic
changes of atomic structure and oxidation state, as revealed step-
by-step with in-situ XAS34. In another study, XAS is used to
determine the cation occupation of the octahedral and tetrahedral
sites in spinel oxides35, which is then identified as a property
descriptor of the catalytic activity of these materials for the
oxygen reduction and evolution reactions36.

Here we report the restructuring of three molecularly struc-
tured Cu catalysts under electrochemical CO2 reduction condi-
tions as probed by in-situ and operando XAS, and the correlation
of the catalyst structures to the observed catalytic properties. The
three Cu-complex materials, namely copper(II) phthalocyanine
(CuPc), copper(II) benzene-1,3,5-tricarboxylate (btc) MOF
(HKUST-1), and copper(II) 1,4,8,11-tetraazacyclotetradecane
chloride ([Cu(cyclam)]Cl2), all show catalytic activity toward CO2

reduction to CH4, working as heterogeneous catalysts in 0.5 M
KHCO3 aqueous electrolyte. Among them, the CuPc catalyst
exhibits the highest activity and selectivity; the partial current
density and Faradaic efficiency of the CH4 product reach 13 mA
cm−2 and 66% at – 1.06 V vs the reversible hydrogen electrode
(RHE), respectively. Thus, CuPc represents one of the most
efficient catalysts for electrochemical reduction of CO2 to CH4. In
situ and operando XANES and EXAFS studies reveal that the
CuPc molecules restructure to metallic Cu clusters with a size of
~ 2 nm under the working conditions and the Cu nanoclusters
convert back to the original CuPc structure upon release of the
negative electrode potential. In contrast, HKUST-1 and
[Cu(cyclam)]Cl2 irreversibly decompose to form much larger Cu
nanostructures. These comparisons indicate that the good per-
formance of the CuPc catalyst originates from the reversible
formation of Cu nanoclusters. Further analysis provides deeper
understanding toward designing metal-complex molecular
structures for controllably generating active species under reac-
tion conditions to catalyze desirable chemistry.

Results
Electrocatalytic measurements. CuPc is a molecular complex
with the Cu2+ ion coordinated by the conjugated planar Pc2–

ligand (Fig. 1a). HKUST-1 is a MOF with Cu(II) nodes coordi-
nated by negatively charged btc linkers (Fig. 1b). [Cu(cyclam)]Cl2
features a Cu2+ ion coordinated by a non-conjugated charge-
neutral ligand (Fig. 1c). The three materials were each mixed with
mildly oxidized multi-wall carbon nanotubes (CNTs)20,37,38 to
form a catalyst layer on electrodes for electrocatalytic measure-
ments in CO2-saturated 0.5 M KHCO3 aqueous solution.
Controlled-potential electrolysis was performed with the working
electrode potential being varied in the range between – 0.76 and
– 1.36 V vs RHE at 0.1 V intervals. At relatively lower over-
potentials, the major CO2 reduction products over the CuPc
catalyst are formic acid (HCOOH), C2H4, and CO (Fig. 1d), with
the Faradaic efficiencies being 25, 13, and 6% at – 0.86 V,
respectively. As the electrode potential goes to – 0.96 V, CH4

becomes the dominant CO2 reduction product. At – 1.06 V, a
maximum Faradaic efficiency of 66% together with a partial
current density of 13 mA cm−2 is achieved for CO2 conversion to
CH4 (Fig. 1d, e), corresponding to a CH4 formation rate of 0.36
mmol s−1 gCuPc−1 and 0.86 µmol C−1. The HKUST-1 and
[Cu(cyclam)]Cl2 catalysts are also active for catalyzing CO2

electroreduction to CH4. However, the onset potentials are
100 ~ 200 mV more negative than that of the CuPc catalyst.
HKUST-1 reaches a maximum Faradaic efficiency of 27% at
– 1.16 V with a partial current density of 4.4 mA cm−2 (Supple-
mentary Fig. 1), whereas [Cu(cyclam)]Cl2 electrodes does so at
– 1.26 V with the Faradaic efficiency and partial current density
being 15% and 2.8 mA cm−2 (Supplementary Fig. 2). The Faradaic
efficiencies and partial current densities of the gas-phase products
over the three catalyst electrodes at – 1.06 V are compared in
Fig. 1f, g. It can be clearly discerned that CuPc is a much more
active and selective electrocatalyst than HKUST-1 and
[Cu(cyclam)]Cl2 for CO2 reduction to CH4.

In situ and operando XANES measurements. To probe the
structural and oxidation state changes of these Cu-complex
electrocatalysts as they perform CO2 reduction, we carried out in-
situ XAS measurements (Supplementary Fig. 3) under the same
electrochemical conditions. During the measurements, the
working electrode potential was first deceased in steps from the
open circuit voltage (OCV, ~ 0.8 V vs RHE) to – 1.06 V vs RHE,
and then increased back to 0.64 V. Each potential was held for at
least 1 h until the XAS spectra were recorded. Thus, the results
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reflect stable states under the electrochemical conditions. Under
the initial OCV conditions, all the three catalysts show a char-
acteristic Cu(II) peak (1 s → 3d transition) at ~ 8,985 eV in the
corresponding normalized Cu K-edge XANES spectrum (Fig. 2a,
d,g). As the potential applied to the CuPc electrode is decreased to
– 0.66 V, a small absorption peak appears at ~ 8,981 eV in the
spectrum (Fig. 2a), indicating the formation of Cu(I). Another
peak at ~ 8,980 eV starts to develop at – 0.86 V, which corre-
sponds to Cu(0). At – 1.06 V, where the highest Faradaic effi-
ciency for CO2 reduction to CH4 is reached, the XANES is
dominated by the Cu(0) feature. The spectral evolution and
absorption peaks can be discerned more clearly in the derivative
curves of the XANES spectra (Fig. 2b). It is worth noting that the
Cu(II) peak persists throughout all the applied potentials (Fig. 2a,
b), which means that not all the Cu(II) centers are converted to
lower oxidation states under the CO2 reduction conditions. Upon
switching the electrode potential back to 0.64 V, the Cu(0) peak
disappears and the XANES spectrum is almost restored to that
under the initial OCV conditions (Fig. 2a, b), suggesting that the
potential-induced oxidation state changes for the CuPc catalyst
are reversible. In contrast, neither the HKUST-1 nor the [Cu
(cyclam)]Cl2 exhibits such a reversibility, though both of them are
converted to Cu(0) at –1.06 V (Fig. 2d,e,g,sh). The cycled

HKUST-1 electrode mainly contains Cu(I) species while the [Cu
(cyclam)]Cl2 electrode is dominated by metallic Cu (Fig. 2d,e,g,h
and Supplementary Fig. 4).

In situ and operando EXAFS measurements. To examine the
local coordination environment changes, we performed in-situ
EXAFS measurements. At the working potential of – 1.06 V, all
the three catalysts exhibit a characteristic metallic Cu–Cu bond
peak at R = ~ 2.2 Å in the corresponding Fourier-transformed
EXAFS spectrum (Fig. 2c, f, i), which is consistent with the
appearance of Cu(0) observed in the XANES spectra. In parti-
cular, the EXAFS spectra of HKUST-1 and [Cu(cyclam)]Cl2 at
– 1.06 V are similar to that of the Cu metal standard in the entire
R and k ranges (Fig. 2f, i and Supplementary Figs 4, 5), suggesting
formation of bulk Cu metal. As the electrode potential returns to
0.64 V, the metallic Cu originated from HKUST-1 is oxidized to
Cu2O, which is supported by the similarity to the EXAFS spec-
trum of the Cu2O standard (Fig. 2f and Supplementary Fig. 5).
The Cu(0) species derived from [Cu(cyclam)]Cl2 form a reddish
metallic sheen on the electrode (Supplementary Fig. 6), which
results in reduced and noisy signals in the XAS spectrum recor-
ded at – 1.06 V (Supplementary Fig. 4). In contrast, the CuPc
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catalyst shows good structural reversibility upon potential cycling.
When the electrode potential is negatively polarized toward
– 1.06 V, the amplitude of the Cu–Cu peak in the EXAFS spec-
trum increases, indicating gradual formation of metallic Cu
species (Fig. 2c). At – 1.06 V, in addition to the Cu–Cu peak,
which has reached its maximum amplitude, there remain peak
features in the R = 1 ~ 2 Å range, which can be assigned to the
CuPc structure. This suggests that a possible combination of
metallic Cu and CuPc molecules exists at the working potential
and is consistent with the coexistence of Cu(0) and Cu(II)
observed in the XANES spectra. The EXAFS spectrum of the

CuPc catalyst at the final 0.64 V highly resembles that at the
initial OCV (Fig. 2c).

Ex situ XRD and SEM characterizations. The structural changes
are also reflected in ex-situ X-ray diffraction (XRD) and scanning
electron microscopy (SEM) characterizations. After the in-situ
XAS measurements, the HKUST-1 and [Cu(cyclam)]Cl2 catalyst
electrodes have lost the diffraction patterns of the original Cu-
complex materials, but exhibit diffraction peaks of Cu2O and Cu,
respectively (Fig. 3a, b). Concomitantly, SEM imaging reveals
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morphological changes from the original submicron-sized parti-
cles (Fig. 3d, e) to the final dendritic nanostructures (Fig. 3g, h).
Unlike HKUST-1 and [Cu(cyclam)]Cl2, the CuPc catalyst elec-
trode shows no existence of Cu2O or Cu (Fig. 3c), agreeing with
the in-situ XAS results that the CuPc structure is recovered after
the working electrode potential is returned to 0.64 V. The
remaining CuPc diffraction peaks are likely due to the remaining
CuPc crystals that have not experienced restructuring. It is
interesting to note that the cycled CuPc electrode features a
microstructure of ~ 10 nm-sized nanoparticles well dispersed on
the surface of CNTs (Fig. 3i), obviously different from that of the
original CuPc (Fig. 3f). The observed morphological changes are a
result of the restructuring processes taking place during the
potential cycle even though the original CuPc molecular structure
is recovered after the cycle.

EXAFS modeling and analysis. To gain further insights into the
restructuring of the CuPc catalyst under the electrochemical CO2

reduction reaction conditions, we performed model-based ana-
lysis to quantify the in-situ EXAFS results. The fitted spectra are
shown in Fig. 4a, b and Supplementary Fig. 7, and the fitting
parameters related to the major scattering paths (Supplementary
Fig. 8) are listed in Supplementary Table 1. Independent para-
meters of coordination number (CN) are assigned to every
scattering path for each spectrum separately. As shown in Sup-
plementary Table 1, the Cu–N and Cu–C (belonging to CuPc)
CNs decrease quickly while the Cu–Cu (belonging to metallic Cu)
CNs gradually increase with the decrease of the applied potential.

Negligible changes in the scattering path lengths are found. No
Cu metal components can be fitted into the EXAFS spectra
recorded at potentials of – 0.36 V or higher. At – 0.66 and
– 0.76 V, small Cu–Cu CNs are obtained. Much larger Cu–Cu
CNs are obtained as the potential is switched to – 0.86 V or lower.
As the potential is switched back to 0.64 V, the CuPc component
starts to dominate the spectrum again with the CNs recovered to
the values obtained under the initial OCV conditions. The
potential-dependent first-shell Cu–Cu CNs are plotted in Fig. 4c.
In combination with the above XANES analysis, the EXAFS fit-
ting results can be rationalized as follows. The CuPc structure is
predominant at OCV and – 0.36 V. At – 0.66 and – 0.76 V, the
CuPc structure starts to change with the Cu(II) partially reduced
to Cu(I) and thus the CuPc CNs decrease but almost no Cu(0)
component is observed. At – 0.86 V or lower potentials, Cu(II)
and Cu(I) are converted to Cu(0) and the metallic Cu phase
nucleates and grows as evidenced by the increasing Cu–Cu CNs.
The overall consistency between the XANES and EXAFS analysis
demonstrates the validity of our results on the restructuring of the
CuPc electrocatalyst under the CO2 reduction conditions.

We further determine the size of the metallic Cu species
reversibly generated by CuPc under the electrochemical condi-
tions. As CNs are sensitive to particle size in the nanometer
regime39,40, it is possible to estimate the size of the formed
metallic Cu species based on the Cu–Cu CNs. Following the
strategy in the previous reports39,40, we built a cuboctahedral
model (typically adopted for face-centered cubic metal nanopar-
ticles)41 to obtain the size-dependent Cu-Cu CNs (Supplementary
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Fig. 9, Supplementary Table 2). As metallic Cu and CuPc coexist
on the electrode, the compositional change would also affect the
nominal Cu–Cu CNs derived from the XAS analysis42. We thus
performed linear combination fitting for the XAS spectra at
– 1.06 V using the reference spectra of Cu foil and CuPc powder.
(Supplementary Fig. 10). It shows that there are approximately
20% of CuPc and 80% of metallic Cu in atomic ratio at – 1.06 V.
The measured CNs were then corrected using this ratio for the
compositional effect. By comparing the CNs of the cuboctahedral
model nanoparticles with the corrected CNs, we are able to
estimate the size of the metallic Cu species formed at – 1.06 V vs
RHE to be 2± 1 nm. Taken together, our results depict a clear
picture for the restructuring-induced electrocatalytic activity of
CuPc. At – 0.86 V, Cu nanoclusters start to form from CuPc
demetallation. At the optimum working potential of – 1.06 V
where the highest CO2-to-CH4 Faradaic efficiency is achieved, the
Cu nanoclusters reach an average size of ~ 2 nm. The corre-
sponding CH4 production rate and turnover frequency (TOF) are
3.2 mmol s−1 gCu−1 and 0.39 molecules s−1 site−1, respectively.
Given the known properties of metallic Cu for electrochemically
reducing CO2 to hydrocarbons, it is reasonable to believe that the
Cu nanoclusters generated from CuPc under the working
conditions are most likely the active species for the catalysis.
The small size of the Cu nanoclusters generated in-situ appears to
be a major contributor to the high current density and selectivity
of the CuPc catalyst for electrochemical CO2 conversion to CH4.
Although the size dependence of electrochemical CO2 reduction
catalyzed by Cu nanoparticles is still under some debate, more
studies appear to support the conclusion that smaller particle
sizes and more low-coordination surface sites favor CO2

reduction to CH4
43–45. Shape could be another structural factor

responsible for the observed catalytic properties44,46–50, although
at the current stage analyzing the shape of the 2 nm-sized Cu
clusters existing under electrochemical conditions is beyond our
capability.

Discussion
CuPc exhibits a different restructuring behavior and thus differ-
ent catalytic properties from HKUST-1 and [Cu(cyclam)]Cl2.
CuPc reversibly forms Cu nanoclusters under the reaction con-
ditions, whereas the latter two irreversibly decompose to form
dendritic Cu nanostructures with much larger sizes. Conse-
quently, the CuPc catalyst shows a lower overpotential, higher
selectivity, and larger current density for electrochemical CO2

conversion to CH4. We also find that our previously reported Cu
porphyrin catalyst operates following a similar reversible
restructuring scheme as the CuPc (Supplementary Fig. 11)15. To
understand more about the distinct restructuring behavior of
CuPc, we performed density functional theory (DFT) calculations
on the thermodynamics of the reductive demetallation and
recovery of the molecular CuPc structure. Plausible thermo-
dynamic pathways (Supplementary Note 1, 2) are constructed for
the two processes. The calculation results reveal that the standard
reduction potential of CuPc demetallation is 0.23 ~ 0.35 and 0.53
V more negative than those for [Cu(cyclam)]2+ and HKUST-1,
respectively (Supplementary Table 3), pointing to the higher
thermodynamic stability of the CuPc structure than the other Cu
complexes. The reversible Cu nanocluster formation in the CuPc
case is rationalized on the basis of the intrinsic instability of the
small nanoclusters. The critical diameter of a Cu nanocluster,
below which the reverse reaction of the CuPc demetallation
process can be spontaneous under OCV conditions, is calculated
to be 14 nm. These thermodynamic calculations suggest that the
metal ion-ligand binding affinity of a Cu complex influences the
threshold potential as well as the reversibility of the reductive
demetallation process. Although these results are qualitatively
consistent with our experimental observations, we note that the
restructuring process may involve other important factors such as
the solubility of the demetallated ligand and the electronic
structure of the complex. With the speculation that the deme-
tallated phthalocyanine ligands must be in the vicinity of the Cu
nanoclusters, we sketched a schematic model (Fig. 4c lower right
inset) to qualitatively illustrate a possible spatial configuration of
the active species derived from CuPc (Fig. 4c upper left inset)
under the working conditions. The presence of the ligands may be
an important contributor to the observed reversible restructuring
behavior and high catalytic activity for CO2 conversion to
CH4

51,52.
Restructuring of Cu complexes in electrocatalytic materials for

CO2 reduction to CH4 has been elucidated by in-situ and oper-
ando XAS characterization of representative Cu complex struc-
tures (CuPc, HKUST-1 and [Cu(cyclam)]Cl2) probed under
electrochemical reaction conditions. The highest activity and
selectivity of CuPc for catalyzing CO2-to-CH4 conversion among
the three structures has been explained by its reversible restruc-
turing to form ~ 2 nm metallic Cu nanoclusters, which are
identified as the active sites for the electrocatalysis. Our findings
suggest the possibility of controlling catalytic active sites through
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molecular structure design, providing insights into strategies for
developing high-performance electrocatalyst materials.

Methods
Materials. Nafion perfluorinated resin solution (5 wt% in lower aliphatic alcohols
and water), KHCO3 (ACS Reagent 99.7%), and H3PO4 (ACS Reagent ≥85%) were
purchased from Sigma Aldrich. Graphite rod (99.9995%) and Ti foil (0.127 mm,
99.99%) were purchased from Alfa Aesar. CuPc (dye content 99.13%) was pur-
chased from Acros Organics. HCl (ACS Reagent 36.5 ~ 38%) was purchased from
J.T. Baker. All materials were used as obtained without further purification.
Deionized water (Milli-Q Millipore 18.2 MΩ cm–1) was used throughout all the
experiments.

HKUST-1 synthesis. To synthesize HKUST-1, a solution of 0.252 g of H3btc (1.2
mmol) in 12 ml of water/ethanol (volume ratio = 2:1) was rapidly added into a
solution of Cu(NO3)2·3H2O (0.145 g, 0.6 mmol) in 12 ml of water under vigorous
magnetic stirring (1200 rpm). The mixture was kept under the stirring condition
for 120 min at room temperature. The product was collected by repeated ethanol
wash and centrifugation for more than five times until the supernatant was col-
orless. The final product was lyophilized. XRD pattern of HKUST-1 powder is
shown in Supplementary Fig. 12.

[Cu(cyclam)]Cl2 synthesis. The preparation of [Cu(cyclam)]Cl2 is shown in
Supplementary Note 3. The copper salt was used in slightly less amount (0.93 eq
relative to cyclam), to ensure the complete consumption of copper ion, thus to
ensure the absence of copper ion in the final product. The excess cyclam was
removed by recrystallization from isopropanol. To synthesize [Cu(cyclam)]Cl2, A
solution of 1,4,8,11-tetraazacyclotetradecane (cyclam, 150 mg, 0.75 mmol) in
ethanol (20 ml) was added CuCl2·2H2O (121 mg, 0.70 mmol, 0.93 eq) in one
portion. The color changed immediately from colorless to purple. The resulting
solution was stirred at 80 °C under nitrogen atmosphere. After 5 h, the solution was
cooled to room temperature and then filtered through a filter paper to remove the
insoluble material, whereupon ethanol was removed by rotary evaporation. Iso-
propanol (~ 40 ml) was then added to the purple residue and the mixture was
heated to reflux to completely dissolve the solid. The resulting purple solution was
placed in a freezer (– 20 °C) overnight, and the precipitated solid was collected by
centrifugation and dried under high vacuum to afford [Cu(cyclam)]Cl2 (228 mg,
90% yield) as a purple powder. The UV–Vis absorption spectrum of [Cu(cyclam)]
Cl2 in CH3OH is shown in Supplementary Fig. 13. High-resolution MS
(electrospray) m/z (M – 2Cl)2+ calcd for C12H28CuCl2N4 146.58, found 146.56;
λmax(CH3OH) 260, 528 nm.

Characterizations. SEM measurements were performed with a Hitach SU8230
cold field emission SEM microscope. XRD patterns were collected with a Rigaku
SmartLab X-ray Diffractometer equipped with a Cu-target X-ray tube
(λ = 0.154 nm) and operated at 40 mA and 44 kV. Absorption spectra were
recorded on a Varian Cary 50 Bio UV-visible spectrophotometer. The mass
spectral data were obtained from a Thermo Scientific LTQ Orbitrap ELITE mass
spectrometer. The sample was directly infused into the mass spectrometry via a
syringe pump at 5 μl min−1.

Electrochemical measurements. Electrochemical experiments were performed on
a Bio-Logic VMP3 Multi Potentiostat using a home-made gas-tight two-
compartment electrochemical cell. Two milligrams of catalyst materials and 2 mg
of mildly oxidized multi-wall CNTs were mixed with 12 µl of 5 wt% Nafion solu-
tion and 2 ml of methanol by sonication for more than 30 min to form homo-
geneous inks. The CNTs were prepared following a modified Hummers method as
described in our previous work20. For each material, 7.5 µl of the ink was dropped
onto a well-polished glassy carbon disk electrode (diameter: 4 mm) and allowed to
dry. The catalyst mass loading was 60 µg cm−2. A graphite rod and a Ag/AgCl
electrode were used as the counter and reference electrodes. The working electrode
compartment and the counter electrode compartment were separated by an anion
exchange membrane (Selemion DSV). Each compartment contained 12 ml of
electrolyte and ~ 18 ml of gas headspace. Pre-purified 0.5 M KHCO3 aqueous
solution was used as the electrolyte for all experiments. The electrolyte was purified
following a method described in our previous work15. Before measurement, the
electrolyte was pre-saturated with CO2 by bubbling the gas for 15 min. During
measurement, CO2 was continuously bubbled into the electrolyte at a flow rate of
10 s.c.c.m. Current densities were normalized to the geometric area of the glassy
carbon electrode. All potentials were referred to the RHE and were recorded with
iR compensation.

Product quantification. Gas products of electrocatalysis were analyzed by a GC
(SRI Multiple Gas Analyzer #5) equipped with molecular sieve 5A and HayeSep D
columns with N2 as the carrier gas. Hydrogen was analyzed by a thermal con-
ductivity detector, and carbon monoxide, methane, and ethylene were determined
using a flame ionization detector. The peak areas were converted to gas volumes
using calibration curves. Liquid products were quantified after electrocatalysis by

1H NMR (V600a Varian VNMRS 600MHz NMR). Electrolyte (700 µl) was mixed
with 35 µl of 10 mM dimethyl sulfoxide and 50 mM phenol as internal standards in
D2O for the 1H NMR analysis.

In-situ and operando XAS measurements. In-situ XANES and EXAFS experi-
ments were carried out at beamline 5BM-D of DND-CAT, Advanced Photon
Source, Argonne National Laboratory. The working electrodes were prepared by
depositing catalysts on ~ 100 μm-thick carbon fiber paper. For HKUST-1 and
CuPc, 6.4 mg of material and 1.6 mg of CNTs were mixed with 48 µl of 5 wt%
Nafion solution and 2 ml of methanol by sonication for more than 30 min to form
a homogeneous ink, and then 140 µl of the ink was drop-dried onto a 2.5 × 1.5 cm2

carbon fiber paper (Toray030–30%PTFE) to form a 0.5 × 1 cm2 active area (cor-
responding to a catalyst mass loading of 1.8 mg cm−2). For [Cu(cyclam)]Cl2, 140 µl
of a CNT ink (1.6 mg of CNTs mixed with 6.4 µl of 5 wt% Nafion solution and 2 ml
of methanol by sonication for more than 30 min) was drop-dried onto a 2.5 × 1.5
cm2 carbon fiber paper (GDS1120) to form a 0.5 × 1 cm2 area, and then 140 µl of
3.2 mg ml−1 methanol solution of [Cu(cyclam)]Cl2 was drop-dried onto the CNT
area (corresponding to a catalyst mass loading of 1.8 mg cm−2). The catalyst
electrode was mounted onto a custom-designed in-situ XAS fluorescence cell
(Supplementary Fig. 3), as described in our previous study5,35. The cell which can
contain up to 30 mL of electrolyte was set in a three-electrode configuration. A
graphite rod and a Ag/AgCl electrode were used as the counter and reference
electrodes, respectively. The same electrolyte was used as described in the Elec-
trochemical measurements session. During the in-situ and operando XAS mea-
surements, CO2 was constantly bubbled at a flow rate of 30 s.c.c.m. All data were
collected in a fluorescence mode under various applied potentials controlled by a
Gamry Reference-600 electrochemical workstation. A Vortex ME4 detector was
used to collect the Cu K fluorescence signal while a Si(111) monochromator
scanned the incident X-ray photon energy through the Cu K absorption edge. The
monochromator was detuned to 65% of the maximum intensity at the Cu K edge to
minimize the presence of higher harmonics. Each selected potential (iR compen-
sated) was held until enough data statistics of XAS were achieved. The X-ray beam
was calibrated using a Cu metal foil. Data reduction, data analysis, and EXAFS
fitting were performed with the Athena, Artemis, and IFEFFIT software packages.
Standard procedures were used to extract the EXAFS data from the measured
absorption spectra. The pre-edge background was linearly fitted and subtracted.
The post-edge background was determined using a cubic-spline-fit procedure and
then subtracted. Normalization was performed by dividing the data by the height of
the absorption edge at 50 eV. For quantitative analysis, phase shifts and back-
scattering amplitudes were generated by the FEFF calculations based on crystal
structures of Cu and CuPc, and were then calibrated through performing the
FEFFIT of the EXAFS data of the reference samples, mainly to obtain the ampli-
tude reduction factor (S02) values. With S02 known, the EXAFS data of the catalyst
materials were fitted with such generated phase shifts and amplitudes. Accuracies
of the obtained results presented here are as follows: ΔN (± 10%), ΔR (± 1%), Δσ2

(± 10%), and ΔE0 (± 10%)34,53,54.

EXAFS modeling and analysis. The EXAFS data of Cu foil and CuPc powder were
fitted (Supplementary Fig. 7) and the obtained S02 values were used as references to
calculate the CNs in the analysis of the in-situ EXAFS data. As the in-situ XANES
and EXAFS spectra of CuPc show coexistence of Cu(0) and Cu(II) at several
applied potentials, it is natural to use the scattering paths from Cu metal and CuPc
crystal structures to fit the in-situ EXAFS spectra. To reduce the number of fitting
parameters and to increase the information content, co-refinement of a total of 9
EXAFS data sets was performed. Many parameters such as mean-square disorder
(σ2), energy shift (E0), and scattering path length change (ΔR or α in α*R) are
shared across all the data sets, and only the CNs for each scattering path in each
data set are independent and separated. This results in 50 fitting parameters for a
total of 175 independent variables. For each data set, there is an average of less than
6 fitting parameters, much less than what is used in conventional EXAFS fitting. All
of these fitting parameters were used without any particular constraints. Fitting was
done through three shells by taking into account multiple-scattering paths but only
the major single scattering paths, namely Cu-N1, Cu-C1, and Cu-N2 for CuPc, as
well as Cu-Cu1, Cu-Cu2, and Cu-Cu3 for Cu, illustrated in Supplementary Fig. 8,
are listed in Supplementary Table 1.

Linear combination fit. Owing to the ensemble average nature of XAS measure-
ments, it is possible to perform a linear combination fit34 using the reference
spectra of Cu foil and CuPc powder to obtain the percentages of Cu nanoclusters
and remaining CuPc in the catalyst material. A fit of the XANES spectrum at –
1.06 V overestimates the content of CuPc as the characteristic Cu(II) peak of the
fitted spectrum is much higher in intensity than that of the measured spectrum
(Supplementary Fig. 10A). A fit of the EXAFS spectrum (Supplementary Fig. 10B)
gives 13% of CuPc and 87% of metallic Cu. This might have slightly overestimated
the metallic Cu content as in our case there are Cu nanoclusters which have smaller
average CNs compared with bulk Cu metal. Furthermore, the CNs of bulk mate-
rials in a mixture can reflect their concentrations42. The EXAFS analysis show that
at – 1.06 V the CN of Cu-N1 is 1.2± 0.5, which suggests that the CuPc content is
30% ± 12.5% as the theoretical first shell CN of CuPc is 4. Having taken all the
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results into consideration, we estimate that the CuPc catalyst material at – 1.06 V
contains approximately 20% of CuPc and 80% of metallic Cu by atomic ratio.

Estimation of Cu nanocluster size at – 1.06 V. Nearest-neighbor CNs of
nanoclusters are dependent on cluster sizes. The CNs are nonlinear functions of the
cluster diameter if the latter is smaller than 3–5 nm39. This property is widely used
in EXAFS analyses to determine nanocluster size39,40,55,56. Using the Cu cuboc-
tahedral model (Supplementary Fig. 9A) and the strategy reported before39, we
calculated the size-dependent CNs of several scattering paths, as shown in Sup-
plementary Fig. 9B and also listed in Supplementary Table 2. Considering the
compositional effect, we scaled the CNs obtained in our EXAFS fits to estimate the
nanocluster size42. For example, at – 1.06 V, the CNs of Cu-Cu1, Cu-Cu2, and Cu-
Cu3 are 6.5, 1.4, and 15.8, respectively. Considering that there are 80% of Cu
nanoclusters in the catalyst material, the true CNs of the Cu nanoclusters should be
8.1, 1.8 and 19.8, respectively. By checking Supplementary Table 2, these CN values
correspond to roughly 1, 0.5, and 4 nm. Considering the errors associated with the
obtained CN values, we estimate that the average size of the Cu nanoclusters
formed at – 1.06 V is 2± 1 nm.

TOF calculation. To calculate the TOF for the CuPc catalyst, the number of surface
sites was estimated based on the size and geometry of the metallic Cu clusters using
the equation below:

μ ¼ MN ¼ M
αmNA

MCuPc
ð1Þ

Where µ denotes the number of surface sites, M denotes the percentage of surface
Cu atoms in a Cu cluster, N denotes the total number of Cu atoms in all the Cu
clusters on the electrode, α denotes the percentage of CuPc molecules that have
restructured to Cu clusters, m denotes the original mass loading of CuPc
(60 µg cm−2), NA denotes the Avogadro constant (6.022 × 1023), and MCuPc denotes
the molecular mass of CuPc (576.07 g mol−1). Here, α = 80% based on the XAS
results. Consider that the Cu clusters are 2 nm cuboctahedra containing 162 surface
Cu atoms and a total of 309 Cu atoms, M = 0.524. Consequently, µ = 2.63 × 1016

sites per cm2. TOF was calculated using the equation below:

TOF ¼
j

neμ
ð2Þ

Where j is the partial current density for CH4 formation, n is the number of electrons
needed to reduce one CO2 molecule to CH4, and e is the elementary charge. j, n, and
e are 13mA cm−2, 8, and 1.602 × 10−19C, respectively. Therefore, the TOF of CH4

for the CuPc catalyst at –1.06 V vs RHE is 0.39 molecules site−1 s−1.

DFT calculations on the thermodynamics of Cu-complex demetallation and re-

metallation. DFT geometry optimization calculations were performed using the
hybrid functional B3LYP, which includes Becke’s three parameter exchange57 and
the Lee, Yang and Parr correlation58 as implemented in Gaussian 09 (Rev. D.01)59.
For optimizations and thermochemistry (T = 298.15 K), we used the basis set
6–31 G(d)60 for all atoms. The optimized molecular structures are shown in Sup-
plementary Fig. 14. For single point calculations, we used the basis set def2TZVP60

for Cu atoms and 6–311 + G(2df,p) for all other atoms61. Solvent correction was
implemented using the SMD model with water as the solvent62. A hypothetical
thermodynamic pathway (Supplementary Note 1) under standard conditions is
constructed for reductive demetallation which consists of: (1) dissociation and
protonation of the ligand and (2) reduction of the hexaaqua Cu(II) ion into bulk Cu
metal. Through the Nernst equation, the standard reduction potential of deme-
tallation can in turn be calculated as E0CuL/Cu = E0Cu2+/0 −ΔG0/4F, where L denotes
the ligand and ΔG0 refers to the free energy change of step (1) in the pathway and
E0Cu2+/0 refers to the standard reduction potential of Cu2+ to Cu(0)63. Supple-
mentary Table 3 lists the ΔG0 values and E0CuL/Cu for all of the three Cu-complex
structures investigated in the study. Re-metallation of the Pc2− ligand is considered
to be an oxidation of Cu nanoclusters by H2Pc, as illustrated by the hypothetical
thermodynamic pathway shown in Supplementary Note 2. The change of free
energy (ΔG) for re-metallation is dependent on the size of Cu nanoparticles and is
7.3 kcal mol−1 for bulk Cu metal. The size-dependent cohesive energy of Cu
nanoparticles is calculated through the following established equation:64

EcðDÞ

Ecb
¼ exp �

2Scb
3R

1
D
D0

� 1

 !

´ 1�
1

D
D0

� 1

 !

ð3Þ

where Ec(D) denotes the cohesive energy of a nanoparticle with diameter D; Ecb
denotes the cohesive energy of the bulk crystal; D0 denotes the atomic radius; R is
the ideal gas constant; Scb is defined as Ecb/Tcb where Tcb refers to the boiling point
of bulk Cu metal. D0 = 0.128 nm, Ecb = 336 kJ mol−1 and Tcb = 2840 K are taken
from the literature65,66. The critical diameter of Cu nanoparticles is defined as the
size at which ΔG of re-metallation is zero. The critical diameter in the case of CuPc
is calculated to be 14.2 nm.

Data availability. The data that support the findings of this study are available
within the paper and its Supplementary Information file or are available from the
corresponding authors upon reasonable request.
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