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Abstract

We present a shape-based algorithm for detecting and

recognizing non-rigid objects from natural images. The ex-

isting literature in this domain often cannot model the ob-

jects very well. In this paper, we use the skeleton (medial

axis) information to capture the main structure of an ob-

ject, which has the particular advantage in modeling artic-

ulation and non-rigid deformation. Given a set of training

samples, a tree-union structure is learned on the extracted

skeletons to model the variation in configuration. Each

branch on the skeleton is associated with a few part-based

templates, modeling the object boundary information. We

then apply sum-and-max algorithm to perform rapid object

detection by matching the skeleton-based active template to

the edge map extracted from a test image. The algorithm

reports the detection result by a composition of the local

maximum responses. Compared with the alternatives on

this topic, our algorithm requires less training samples. It

is simple, yet efficient and effective. We show encouraging

results on two widely used benchmark image sets: the Weiz-

mann horse dataset [7] and the ETHZ dataset [16].

1. Introduction

Non-rigid object detection is a challenging problem in

computer vision, due to the large deformation and intra-

class variation of an object class. Recent approaches

in the literature can be roughly divided into: (1) image

appearance-based [9, 31]; (2) shape-driven [5, 16, 23, 4]; (3)

and mixture of shape and appearance models [22, 32, 33].

Our work is focused on shape-based representation, but

it performs object detection in real images. Moreover,

appearance-based features can also be added to our repre-

sentation.

Part of this work was done while the author was at University of Cali-

fornia, Los Angeles

Figure 1. Illustration of two horses in different poses but with the

same skeleton structure.

Objects under non-rigid deformation/articulation often

observe large variation globally. However, their local struc-

tures are somewhat more invariant to the changes. A suc-

cessful algorithm should be able to take advantage of the

local invariance, account for the deformation, and perform

effective and efficient detection. A recent benchmark study

[11] shows that we are still far from being able to produce a

practically useful system for detecting articulated objects,

such as pedestrians. Without a mechanism to explicitly

model the configuration and deformation (mostly through

generative models) of an object class, classic discriminative

models [9, 30] on a set of features are facing major bot-

tlenecks due to limitation in modeling objects of complex

configuration and high variation.

Blum [6] defined skeleton (medial axis) as a set of medial

loci of the maximal disks inside object boundary. Skeleton

captures certain degree of intrinsic shape information about

objects and has been successfully applied in shape matching

and classification on silhouettes [2, 36, 24]. Skeleton-based

shape matching algorithms are robust against articulation

since the skeleton topology is more-or-less stable (see the

example in Fig. (1)). However, medial axis representation

has been mostly used on already extracted shapes or binary

images, and its advantage has not been successfully trans-

lated into detecting objects in cluttered natural images. The

main obstacle is probably due to the difficulty of reliably

extracting object skeletons from cluttered images.

In this paper, we introduce a new approach, active skele-
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ton, for detecting non-rigid objects. We utilize the skele-

ton representation to capture non-rigid deformation of an

object; the configuration difference of various skeleton in-

stances is managed by a tree-union structure, similar to

[28, 27]; each branch on the skeleton is associated with a

few part-based templates, modeling the contour informa-

tion. In training, we use a few examples for learning the

skeleton tree-union structure whose branches are associated

with contour parts. The contour part level is exemplar-

based and the parts are connected and guided by the skele-

ton structure, allowing non-rigid deformation. In the detec-

tion stage, we first compute an edge map for an input image.

Similarities between object parts in the model and the edge

map are computed using Oriented Chamfer matching [23].

Inferring the overall object is then done by combining the

local responses to match with the model guided by skeleton

structure.

2. Related work

The idea of using skeleton (medial axis) to model the

object shape has been extensively studied in the literature

[6, 2, 36, 24, 19, 21, 18]. Most of the existing works, how-

ever, are focused on matching different shapes or silhou-

ettes, which are already extracted from the images. Since

extracting the skeletons for objects in cluttered background

is a very difficult task, it is not clear how these methods

could generalize to perform object detection in natural im-

ages.

Other shape matching algorithms such as Shape Con-

texts [5], Chamfer matching [26], Inner Distance [17], and

Data-driven EM [29], also have not been fully illustrated on

real images.

Early works for object detection through template

matching can be dated to early 90s, e.g., the deformable

template by Yuille et al. [32]. Shape-based approaches have

the advantage of being relatively robust against lighting and

appearance change. Recently, there has been a resurgence

of matching-based object detection algorithms [13, 33, 34].

These systems decompose a given contour of a shape into

a group of contour parts, and match the resulting contour

parts to edge segments in a given edge image. A hierarchi-

cal structure is often used to combine these parts and en-

force their compatibility. However, without a good mecha-

nism to explicitly account for the articulation of an object,

the modeling capability of the existing methods is rather

limited. For example, only two legs were assumed in [33]

and many horses bending the head were not successfully

matched. Our skeleton-based structure improves the capa-

bility of modeling non-rigid objects over these algorithms.

In Ferrari et al. [14], a shape codebook of contours is

learned, followed by edge linking methods named KAS

or TAS to obtain many salient segments before detection.

Shotton et al. [23] describes the shape of the entire object

using deformable contour fragments and their relative posi-

tions.

The tree-union structure is shown to be effective in mod-

eling the configuration variation [28, 27]. In this paper,

we use it to represent the skeleton configuration, which is

learned through a weakly supervised manner. We associate

object parts, learned from training samples, to the branches

in the skeleton. This is different from, e.g. [10], where

ellipses are assumed. The Active Basis algorithm [31] is

primarily focused on learning effective appearance models

for the object parts by slightly perturbing their locations and

orientations.

In the detection stage, we avoid the difficult steps of per-

forming segmentation, extracting skeletons and then match-

ing the candidates against the learned template. Instead, we

match the parts with the edge maps and use the sum-and-

max algorithm [20, 31] to perform rapid detection. This

makes the algorithm simpler and more computationally effi-

cient than other methods using dynamic programming [33],

belief propagation [13], or MCMC [35]. We illustrate our

algorithm on two widely adopted benchmark datasets: the

Weizmann horse dataset [7] and the ETHZ dataset [16], and

show very encouraging results with only a few training sam-

ples.

3. Active skeleton model

In this section, we give the active skeleton formulation,

which uses skeleton as the back-bone, giving explicit object

models. In this regard, our model is generative.

3.1. Skeleton-to-Contour Template

Skeleton, also named medial axis, is a set of points cen-

tered at the maximal disks of the object boundaries [6]. In

this paper, we call a skeleton point having only one adjacent

point an endpoint (the skeleton endpoint); a skeleton point

having more than two adjacent points a junction point; and

a skeleton segment between two skeleton points a skeleton

branch. Given a 2D contour, one can compute its skele-

ton; likewise, we can obtain the contour from the skele-

ton with the information about its corresponding maximal

disks. Therefore, contour and skeleton observe the duality

of a 2D shape, and we can always derive one from the other.

However, it is more effective to use the skeleton to repre-

sent the deformation; it is more direct to use the contour

(boundary) for image measurement since skeleton cannot

be directly observed. Therefore, our model has two main

variables, , where is a skeleton instance and

contains contour fragments based on .

Given a training sample of segmented object, we can au-

tomatically extract its skeleton, , using a technique in

[3]. In this paper, we represent it in a tree structure. Two

examples are shown in Fig. (1). Each has its corre-
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Figure 2. A skeleton structure with each of its branch associated

with a contour template. The corresponding contour templates and

skeleton branches are shown in the same color.

sponding end points, junction points, and skeleton branches.

An illustration is given in Fig. (2), where different skeleton

branches are shown in different colors, representing the vi-

sual parts of a horse. Therefore, we can denote a skeleton

as

where is a skeleton branch and is the total number of

branches. The statistical variation of an object class is rep-

resented by a tree-union structure, which will be discussed

in the next section. Contour is then dependent on skele-

ton with each skeleton branch, , associated with a

contour fragment (segment), .

Fig. (2) shows some examples of such contour fragments.

It is effective and computationally efficient to perform

matching-based object detection using our representation,

in which contour fragments are attached with a skeleton:

(1) skeleton branches represent meaningful parts of an ob-

ject and they observe consistency across different instances;

(2) the local symmetry of the contour fragments can be de-

tected and matched. This is demonstrated by a few recent

works [25, 1] on contour grouping based on symmetric seg-

ments. Notice that in Fig. (2) the positions of the junction

points adjacent to the corresponding skeleton branches are

also coded in the model, since these junction points will be

used for combining all the templates in the matching phase.

Having given the notation of skeleton and contour frag-

ment, we are ready to discuss our image model. An object

we want to detect is , where contains the de-

tailed parameters such as and . Given an

input image , we model it in a Bayesian framework by

(1)

where is the likelihood ap-

pearance model, is a prior on the skeleton tree, and

models the variation of different contour frag-

ments on . We assuem equal prior on the for sim-

plicity. Two key observations we make are: (1) appearance

model does not depend on ; and (2) contour

fragments are dependent on the skeleton . In this

paper, we directly work on the Canny edge map extracted

from image , and, therefore, the likelihood model is com-

puted on edges. However, our algorithm does not prevent

the direct use of appearance models (often requires a learn-

ing procedure such as the active basis work [31]). Thus,

where denotes the edge map of image , and

measures the similarity between trans-

formed and a portion of at a specific location and

at a certain scale. We use Chamfer distance measure in this

paper.

We use a tree-union structure to learn the prior

and the details are given in the next section. Once is

modeled, then

where we directly represent

using an exemplar-based mixture model,

since we only have a few training samples.

are the contour fragments in the training samples, and

measure the Chamfer distance between

and exemplar . Since the other measures in eqn. (1)

are standard, we focus on , the prior on the skeleton

configuration, in the next section.

Here we use oriented Chamfer matching (OCM) pro-

posed in [23] as the distance measure for .

A simple linear interpolation between the distance and ori-

entation terms is used for OCM. For each point on a tem-

plate, the OCM distance is:

. For the experiments in this paper, and

. The details about OCM can be found in [23].

3.2. Modeling skeleton instances using tree-union

The computer vision field has recently witnessed a resur-

gence of using grammar to represent objects of high vari-

ation and complexity [35, 33], which is a very promising

direction. In this paper, we focus on the practicality of rep-

resenting and learning the skeleton structure and perform-

ing efficient detection. Thus, we adopt a simpler scheme,

tree-union, for the representation. More sophisticated mod-

els may be needed with more complex structures and varia-

tions.

The junction points/endpoints can be looked at as the

critical points for the topology of a skeleton, since we

can build a graph/tree directly by using these critical points

as the nodes and the skeleton branches as the edges be-

tween them. As shown in Fig. (3.a), we select a junction

point on the skeleton of a horse as the root node, then
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a skeleton tree can be built easily. Given a skeleton tree

rooted in , we denote as the set of

nodes and as the set of edges.

Now we define a skeleton tree-union. Its actual construc-

tion is described in Section 3.3. We are given a group of

skeleton trees 1 2 that belong to the same

shape class. The tree-union can be looked as their com-

mon prototype or an abstraction of them. A tree-union

is defined as the largest common

tree of 1 2 such that there exists mappings

( ) that preserve the tree topol-

ogy. Consequently, for any edge , −1 can be

viewed as a union of all branches that map to . For ex-

ample, in Fig. (3.a,b), all three sample skeletons in (a) have

their skeleton branches ( ) and critical points ( ) corre-

sponding to the tree-union in (b), where the corresponding

components are in the same colors.

There have been some mature approaches [28, 10] for

unsupervised learning of the class structure of the sam-

ples. However, in our experiments, we build the tree-unions

in a simpler way introduced in Section 3.3. As the cor-

respondences between critical points and branches of dif-

ferent skeletons can be obtained by the existing skeleton

matching methods, we assume that the correspondences be-

tween the nodes of their skeleton trees 1 2

are known. Since skeleton matching approaches allow us

to match empty nodes, we allow adding empty branches

and endpoints during the process of construction of tree-

union. However, we do not allow matching junction points

to empty nodes in order to preserve topological tree struc-

ture.

As each skeleton branch has been mapped to an edge of

the tree-union, each contour template (reconstructed from

the skeleton branch) will also be mapped into the tree-

union. Imagine that we randomly take only one template

for each edge of the union-tree from the group of templates

mapped to that one, we can generate many different horses

shown in Fig. (3.c)) according to the structure of the tree-

union, which are all generated by the contours from the only

three horses in Fig. (3.a). Thus, using a tree-union to com-

bine the contour templates from each “part” according to

human perception and it is natural to represent the shape

deformations, which can be considered a large active tem-

plate with several moving or deformable parts.

3.3. Learning a tree-union

As pointed out by [28, 10] skeleton abstraction can be

learned by utilizing skeleton matching. First skeletons

are computed for binary (segmented) shape images. Then

skeleton abstraction is learned for a given set of shapes in

the same class. The learned tree-unions by Torsello and

Hancock [28] are very complicated to accommodate for all

possible skeleton variations in a given shape class. While

Figure 4. Skeleton matching using improved path similarity mea-

sure [2] for two horses in different poses.

this is shown to be beneficial when dealing with binary

shapes, it is too general to guide object detection and recog-

nition in edge images in that it will lead to large numbers of

false positive, i.e., the object detection will hallucinate the

target object in clutter.

The skeletal tree abstraction by Demirci et al. [10] ap-

pears to be more suitable for object detection in edge im-

ages. However, it still seems to over generalize in that the

obtained tree abstractions are not specific enough to prevent

hallucinating of target object in clutter. We stress again that

tree abstraction [10] as well as [28] were designed for deal-

ing with binary shapes, and we are focused on their usage

as models for object search in edge images, which often are

cluttered.

In the proposed approach we utilize the main idea of

skeleton matching to construct shape class models but, at

the same time, we ensure that our models are sufficiently

specific by restricting the learned union tree to having the

same topology. Thus, in our approach each tree union is

represented by a single tree. This does not mean that all

trees combined to form a given union-tree have the same

topology. This means that we can abstract their topology by

ignoring some junction points, and that after abstraction the

topology of all trees combined to a single tree union is iden-

tical. This fact is illustrated in Fig. (4), where two skeleton

junction points of the horse top right are ignored. At the

same time the junction point in the rear legs of the horse in

top left is ignored too.

To learn our tree-union, we start with one manually la-

beled skeleton, e.g., the first horse in Fig. (3). Then, we per-

form skeleton matching with skeleton paths [2]. We added a

constraint that junction points on the paths must match junc-

tion points. This allows us to abstract junction points. If a

matching score is below a given threshold, we extend our

tree union by adding the new tree. This simple incremen-

tal learning approach is guaranteed to persevere topology

due to the constraint that junction points on the paths must

match junction points. In the resulting tree-union, each edge

represents a set of contour parts including possibly an empty

part (it represents like a missing leg). Some edges do not al-
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Figure 3. Illustration of the skeleton tree-union structure. (a) shows a few training samples. (b) is a learned tree-union structure. (c) displays

some samples drawn from the learned model.

Figure 5. Illustration of the detection process using the sum-and-

max algorithm. An edge map is first extracted from an input im-

age. Starting from the root node of the tree-union, local contour

templates are matched against the edge map (SUM1). Maximum

responses of the candidate templates connecting to the current

node are kept (MAX1). The process moves to the next node in

the tree-union to match with other segments (MAX1). The over-

all detection is based on a composition of these local maximum

responses (SUM2).

low an empty part, e.g., the edge for horse head, which is

enforced by the requirement of good matching score.

4. Detection
The choice of the inference algorithm critically decides

the quality of an object detector. Object detection using

Markov chain Monte Carlo [35] is often slow, though it

guarantees to find the global optimal asymptotically. Lo-

cal pruning procedures are used in a bottom-up and top-

down process [33, 34], resulting in quite complex algo-

rithms. In this paper, we emphasize enhancing the repre-

sentation power of the underlying model. If the model is

powerful enough, its energy function may not have many

local minima. Thus, a simpler algorithm may be sufficient

to perform rapid object detection.

The sum-and-max algorithms are used in [20, 31]. They

are easy to implement, effective, and fast to compute. In

[20, 31], local evidences, e.g. Gabor function filtering re-

sults, are pooled together for some tests; the maximum

responses are then kept among promising locations; these

kept maximum responses are verified in composition. De-

pending upon the complexity of the model itself, one can

build multiple levels of sum-and-max to pool evidences hi-

erarchically. In this paper, we adopt the basic idea of the

sum-and-max algorithm. However, our algorithm differs

from [20, 31] due to the tree-union structure, which allows

us to perform sequential tests. Given an image, our goal is

to detect an object at a particular location and scale with a

low energy defined in eqn. (1). The outline of our detection

algorithm is the following.

1. For an input image , we compute its edge map us-

ing Canny operator (one can use other favorite algo-

rithms).

2. We start from the root node, which is now our cur-

rent node. All the skeleton branches connected by the

current node are matched independently. For example,

several horse heads ( exemplars learned in the train-

ing phase) are matched with the edge maps at different

locations and scales. We use Oriented Chamfer match-

ing (OCM) to compute the shape similarity, and this is

a “sum” operations since each contour fragment itself

contains a sequence of points.
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3. The exemplars with the maximal score are kept (this is

a “max” operation).

4. All the matched fragments are gathered together to

compute the local probability on the current node.

5. After the branches of the current node are all checked,

we then move to the child node in the tree-union struc-

ture, which is our new current node.

6. Once all the nodes are explored, the matched contour

segments decide the overall probability (eqn. (1)) in

composition. This is another “sum” operation to piece

the local evidences together.

Fig. (5) illustrates the detection procedure using our

sum-and-max algorithm. In the experiment part, we imple-

ment a coarse-to-fine strategy.

1. A coarse-level detection is performed. We have sample

locations on each edge map for detection as the root

node for a tree union is not very sensitive. The tem-

plates for detection was set in 5 scales for computing

a optimal coarse confidence for each location. (In our

experiments, we set a detection point every 10 pixels

on each image.)

2. Once the positive positions for the root node are com-

puted, we apply a mean-shift algorithm [8] to allow it

drift to a more promising place globally;

3. Based on the roughly detected root node, we perform

fine-level detection, whose procedure is slightly differ-

ent. We allow each template to rotate according to its

relative junction point in different at its optimal scale,

then we obtain a more robust position for each tem-

plate. Fig. (6) give an example for fine-level detection.

As shown in Fig. (6.a), the rotation of the templates

will generate a new shape that is still very similar to

the same class. Fig. (6.b) is the detected results at the

coarse-level, and Fig. (6.c) is the final detected result

based on Fig. (6.b) by rotation. The final average dis-

tance (using OCM) between the points on the detected

templates and the edge points will be returned as the

final confidence for the whole detection.

The detection algorithm finally keeps the solutions for an

image at the places that pass a certain thresh-

old.

5. Experiments

We provide experimental evaluation of the proposed ap-

proach on two datasets: the Weizmann horses [7] and the

ETHZ shapes [16]. The Weizmann horse dataset has 328

images viewed from the side, covering different poses, ar-

ticulations, deformations, and scales. We compare our

(a) (b) ( c)

Figure 6. Illustration of matching contour segments at the fine

level.

Figure 7. Detection results for two test images in the ETHZ

dataset.

method directly to one using matching-based detection al-

gorithm, Shotton et al. [23]. Same as in [23], 328 Caltech-

101 background images [12] were used for evaluation as

the negatives. In our work, only 15 horse images were used

for training, and the remaining 313 were used for testing,

whereas 50 training image were used in [23]. We applied

Canny edge detector to obtain the edge maps.

As in [23], a successful detection is measured as the fol-

lowing: the inferred bounding box (the smallest bound-

ing rectangle containing the detected templates) must agree

with the ground truth bounding box , based on an over-

lap criterion as
( in gt)
( in gt)

. We consider recall

against the average number of false positive per image (RF-

PPI), the saqme as in [23]. The area under curve (AUC)

measure of RP is reported in Table (1) for a comparison.

Our method approaches AUC of 80.32%, whereas it was

84.98% in [23]. However, their method used many more

training samples than ours and were consequently tested on

fewer test images. More importantly, our algorithm is gen-

erative and it explicitly explores the intrinsic variation of an

object due to non-rigid deformation. Our method also ap-

pears to be simpler and it points to a promising direction on

this topic.

The detection results of some examples are shown in

Fig. (8) in which matched segments are overlayed on top

of the original gray-scale images. The extracted Canny

edge maps are also shown on the left of Fig. (8). All ex-

amples were taken from the Weizamann dataset except for

one on the right of the fourth row. Both the detected con-

tour templates (in green) and their corresponding skeleton

branches (in red) are displayed. Even though the horses

in these images exhibit large appearance change and shape

deformation, the detection results are still quite stable. The
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Training Size Testing Size Detection RP AUC Time (per image) Platform

The method in [23] 50 228 84.98% 10 seconds C#

Our method 15 313 80.32% 2 seconds Matlab & C

Table 1. Performance comparison for the Weizmann horse images. [7]

Methods [15] [34] Ours

P/R 23.3%/93.9% 31.3%/93.9% 61.22%/93.9%

Table 2. Comparison of precision on the swan images of the ETHZ

dataset. [16]

fourth row demonstrates the effectiveness of our algorithm

on very cluttered backgrounds. The last row illustrates the

robustness of the proposed method against heavy occlu-

sions, which are created by hand (white rectangles).

We also tested our system on the ETHZ dataset [16],

which is widely used in the literature. It has 5 different

object categories of 255 images in total. All categories have

significant intra-class variation, scale change, and illumi-

nation difference. Moreover, many objects are surrounded

by extensive background clutter and have interior contours.

There are only two classes in the ETHZ dataset that ex-

hibit non-rigid deformation: swan and giraffe. We tested

our approach on the swan images, which are very dissim-

ilar with horses. Only one training sample is used in this

case, shown in Fig. (7.a). Point A is selected as the root

node. Then a simple tree-union at the bottom of Fig. (7.a))

is built, which allows the templates to roate the neck and the

body, as shown in Fig. (7.b). Fig. (7.c,d) show two results

of detected swans.

Precision vs recall (P/R) curve is used for quantitative

evaluation. There are 32 swan images in the ETHZ dataset,

thus the other 223 images are used as negative images. We

plot our PR curve in Fig. (9) with the comparison to two

recent methods [15, 34] which use contour fragments only.

We also compare the precision to [15] and [34] at the same

recall rates in Table (2). The precision / recall pairs of [15]

and [34] are quoted from [34]. The significant improvement

on the results demonstrate that our model is more flexible

than those using contour fragments only, which do not have

the guidance from skeleton information. With skeleton cap-

turing the main deformation field of an object, we end up

with using a more compact representation, but with signifi-

cantly improved results.

6. Conclusion
In this paper, we introduce a new representation, ac-

tive skeleton, for object detection and recognition. Using

skeleton has the particular modeling advantage of capturing

articulation and non-rigid deformation. As the traditional

classification-based approaches using generic features such

as Haar and HOG features are reaching the limits, model-

ing the object variation with explicit representations (gen-

Figure 9. RR curve showing the performance for the swan images

of the ETHZ dataset.

erative aspect) holds the special promises. Many of the

existing generative-based object detection/recognition algo-

rithms, unfortunately, are either very limited with the mod-

eling power, too complicated to learn, or too computation-

ally expensive to compute in practice. Most of the skeleton-

based shape algorithms are not addressing the important

problem of detecting objects in cluttered images. Our al-

gorithm is shown to be effective and efficient, with a sim-

ple representation. Adding more learning components to

account for large variations in configuration and the appear-

ance change might further improve our algorithm.
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