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Active Sonar Detection in Shallow Water
Using the Page Test
Douglas A. Abraham and Peter K. Willett

Abstract—The use of active sonar in shallow water results in
received echoes that may be considerably spread in time com-
pared to the resolution of the transmitted waveform. The duration
and structure of the spreading and the time of occurrence of
the received echo are unknown without accurate knowledge of
the environment and a priori information on the location and
reflection properties of the target. A sequential detector based on
the Page test is proposed for the detection of time-spread active
sonar echoes. The detector also provides estimates of the starting
and stopping times of the received echo. This signal segmentation
is crucial to allow further processing such as more accurate range
and bearing localization, depth localization, or classification.
The detector is designed to exploit the time spreading of the
received echo and is tuned as a function of range to the expected
signal-to-noise ratio (SNR) as determined by the transmitted
signal power, transmission loss, approximate target strength, and
the estimated noise background level. The theoretical false alarm
and detection performance of the proposed detector, the standard
Page test, and the conventional thresholded matched filter detector
are compared as a function of range, echo duration, SNR, and the
mismatch between the actual and assumed SNR. The proposed
detector and the standard Page test are seen to perform better
than the conventional thresholded matched filter detector as soon
as the received echo is minimally spread in time. The use of the
proposed detector and the standard Page test in active sonar is
illustrated with reverberation data containing target-like echoes
from geological features, where it was seen that the proposed
detector was able to suppress reverberation generated false alarms
that were detected by the standard Page test.

Index Terms—Detection, false alarm performance, Page test,
shallow water.

I. INTRODUCTION

N SHALLOW-WATER environments, propagation to the
target, reflection off the target, and propagation to the receiver
spread an active sonar transmit signal in time and frequency
[1]. Traditionally, detection and subsequent range estimation
has been performed by thresholding a normalized matched
filter output for each of several beams pointing in directions
of interest. This is only justifiable as a generalized likelihood
ratio test when the received echo is simply a time-shifted scaled
version of the transmitted waveform plus white noise, obviously
not a realistic scenario in the shallow-water active problem.
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The primary objective of the detector is to determine if there
is a target echo present in the received time series. Subsidiary
to detection is the estimation of the starting and stopping times
of the echo to be used for subsequent signal processing such
as more accurate range and bearing estimation, depth estima-
tion, or classification. Traditionally, signal segmentation is per-
formed by clustering matched filter threshold crossings.

Without exact knowledge of the environment anda priori
information on the target location and reflection properties,
the starting time, duration, and shape of the received echo are
unknown, thus hinderingdesign of anoptimal receiver. It is, how-
ever, desirable to exploit available environmental information
to the extent that it can feasibly improve detection performance.
Were the optimal detector implementable, it would coherently
combine the standard matched filter output according to the mul-
tipath structure and the target reflection properties. Baggenstoss
[2] has shown that integrating the magnitude-squared matched
filter output (i.e., incoherent combination) can improve detec-
tion performance in time-spread channels. This paper proposes
the use of a sequential detector based on the Page test [3] for
active sonar signal detection and segmentation in shallow-water
environments. Applied to active sonar detection, the Page
test essentially integrates the normalized magnitude-squared
matched filter output until it determines that no signal is present,
whereupon the process is repeated. A signal-present declaration
is made if the integrated sequence exceeds a threshold.

The Page test was originally designed for the detection of a
change; for instance, the change from a signal-absent state (hy-
pothesis ) to a signal-present state (hypothesis). It may
be modified to first look for a change from signal-absence to
signal-presence and then to look for a change from signal-pres-
ence to signal-absence. This natural extension of the Page test
to the detection of multiple finite-duration signals has been de-
scribed as having alternating hypotheses by Streit [4] and is ap-
propriate for use in the active sonar application. Such a detector
will be called an AH-Page test.

Ideally, the log-likelihood ratio (LLR) would be used as the
optimal1 detector nonlinearity in the Page test; that is, the LLR
is the optimal transformation of the received data. However,
implementation of the LLR requires exact knowledge of the
probability density function (PDF) of the normalized matched
filter output under and . A simpler structure is often found
in the locally optimal detector nonlinearity, though when using
this nonlinearity the Page tests require a false alarm inhibiting
bias that is chosen as a function of a design signal-to-noise ratio

1Optimal in this case implies minimizing the worst-case average delay before
detection when the average time between false alarms is bounded below by some
specified value [5], [6].
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(SNR). In these situations, the performance of the Page test is
often insensitive to mismatch between the actual and assumed
SNR, particularly if the actual level exceeds the assumed level.
Thus, the SNR may be approximated as a function of range
from the transmitter source level, estimates of the transmission
loss from acoustic propagation models, estimates of the target
strength, and estimates of the reverberation and background
noise power level. Thistunesthe detector to look for high SNR
signals initially (i.e., short ranges) and low SNR signals later on
in the time series (i.e., long ranges). The tuning is accomplished
by varying the bias used to hinder false alarms in the Page test.
This detector will be called a Page test with signal-strength
tuning (SST) to distinguish it from the standard and AH-Page
tests where the detector nonlinearity and bias are held constant.

The performance of a detector is usually quantified by the
probability of detection and probability of false alarm. These
measures are adequate when the detector operates on a fixed
amount of data as opposed to sequentially processing an infinite
amount of data where, for most detectors, both decisions will
occur with probability one. In processing a single ping in an ac-
tive sonar detection scenario, the fixed amount of data should be
chosen to include signal echoes from the maximum range of in-
terest. These data, called a full ping of data, are at most the data
between consecutive nonorthogonal waveform transmissions.
Additionally, there are opportunities for multiple signal-present
declarations (false or otherwise) to be made while processing a
full ping of data. Thus, it is proposed that the false alarm per-
formance measure for active sonar signal detectors be the prob-
ability of one or more false alarms occurring while processing
a full ping of data. This false alarm performance measure pro-
vides a measure of how often further action will be required on
a per-ping/per-beam basis when no target is present. Though the
actual number of false alarms that occur (more specifically, the
probability of observing one false alarm, two false alarms, etc.)
while processing a full ping of data is also a relevant false alarm
performance measure, the above measure is equally meaningful
and more tractable analytically.

The Page test has traditionally been analyzed in terms of
the average time (or, equivalently, the average number of sam-
ples) required before a correct signal-present declaration and
between consecutive false signal-present declarations [7]. How-
ever, methods exist for determining the probability mass func-
tion (PMF)2 of the stopping time of the Page test [8]–[11]. It
will be shown that the probability of one or more false alarms
occurring in a full ping of data may be determined from the PMF
of the stopping time. The method involving quantization of the
Page test statistic update [8], [11] is applied here for determining
the PMF of the stopping time and also the probability of de-
tecting a finite duration signal for the proposed SST-Page test.
The false alarm performance of the thresholded matched filter,
the standard Page test, and the SST-Page test is then compared
as a function of range. The detection performance is compared
as a function of the signal duration, range, SNR, and the mis-
match between the actual SNR and the assumed SNR.

This paper is organized as follows. In Section II, the post-
beamformer signal processing, including the normalization

2The PMF is the equivalent of a probability distribution function for discrete
random variables.

Fig. 1. Flow diagram of processing of array data prior to automatic detection
algorithm.

scheme, is discussed and the statistical assumptions for the
data are described. In Section III. the Page test is introduced
and illustrated with a simple example and the SST-Page test
is described in detail. In Section IV, the theoretical false alarm
and detection performance are evaluated for the proposed
detector using the method described in [11]. Finally, as found
in Section V, the AH-Page and SST-Page tests are applied to
real reverberation data.

II. PRELIMINARIES

A. Data Preprocessing

Array sensor data are beamformed to a particular direc-
tion to increase SNR and attenuate the effects of directional
interferences. Active sonar data are typically then matched
filtered using the transmitted waveform as a replica. As de-
picted in Fig. 1, automatic detectors are implemented after the
matched filter output has been normalized by estimates of the
time-varying reverberation and background noise power.

Let the shape of the transmitted signal be where is a
time index and has been scaled to have unit energy

(1)

When an echo is present in the received signal, the beamformer
output time series may be modeled by

(2)

where is the echo amplitude assuming the bulk time delay
before the echo arrives in samples, is the time-varying
reverberation and noise power level, and is a unit-power
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Fig. 2. Flow diagram of the normalization scheme depicting how the reverberation and background noise power is estimated from leading and lagging windows
of auxiliary data. A conventional matched filter detector would compare the normalized data to a threshold to declare detection.

Gaussian discrete-time stochastic process. The Gaussianity of
comes from assuming that the reverberation is the result of

multiple point scatterers. It is also assumed that the spreading ef-
fects of reflection off the target and propagation through shallow
water are adequately modeled by a sum overdiscrete paths
with delays and amplitudes where

(3)

The echo parameters ( , , , , and ) are dependent
on the target position and reflection properties, the receiving
array position, and the ocean environment.

Prior to or in conjunction with matched filtering, the beam-
former output time series is basebanded by the center frequency
of the transmit signal, low-pass filtered, and decimated to a sam-
pling frequency equal to the bandwidth of the transmitted signal.
The matched filter output may then be described by

(4)

where is the autocorrelation sequence of the basebanded,
filtered, and decimated transmit signal,is the decimated bulk
delay of the echo, are the decimated path delays, and
is now assumed to be a unit-power, white, complex Gaussian
discrete-time stochastic processes. Under reverberation limited
conditions, the whiteness of the noise may not be a reason-
able assumption. The optimal filter, as described by Van Trees
[12], involves deconvolving the transmitted signal and requires

knowledge of the scattering function. These assumptions should
not be too detrimental except perhaps when the reverberation
spectrum is distinctly nonwhite or if the reverberation is not sub-
stantially due to multiple point scatterers. In the latter situation,
if the statistical distribution of the reverberation is known or can
be estimated, transformation of the data by an LLR or locally
optimal nonlinearity may improve performance.

B. Normalization

Automatic detection algorithms require normalization to pro-
duce test statistics that follow a known probability distribution
when no echo is present, allowing the detector thresholds to be
chosen according to a desired false alarm performance specifi-
cation. As shown in Fig. 2, normalization is accomplished by
estimating the reverberation and background noise power from
auxiliary data adjacent in time to the cell being normalized. The
conventional thresholded matched filter detector declares that a
target is present when the normalized data exceeds a threshold.

As the normalizer slides through the matched filter output in
time, the auxiliary data will be corrupted by data containing
signal. Guardbands are used to help isolate the auxiliary data
from contamination by the signal when spreading in time is ex-
pected. There exist several methods for forming robust estimates
of the reverberation and background noise power from contam-
inated auxiliary data [13], [14]. The trimmed-mean (TM) nor-
malizer described by Gandhi and Kassam [13] is used in pro-
cessing the data presented in this paper.

The TM-normalizer estimates the reverberation and back-
ground noise power by forming the mean after discarding
some of the largest and some of the smallest samples of the
magnitude squared auxiliary data. Suppose the leading and



38 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 27, NO. 1, JANUARY 2002

lagging windows of auxiliary data are each samples long
and together provide the magnitude squared data .
These samples are then ordered by their magnitude to produce
the data . The estimate of the rever-
beration and background noise power using the TM-normalizer
has the form

(5)

The indices and describe the
TM-normalizer. The scale factor is chosen so that the estimator
is unbiased. If the magnitude squared auxiliary data are expo-
nentially distributed with mean , as will be the case under the
Rayleigh reverberation assumption, this results in

(6)
The matched filter output for the test cell is then normalized

according to

(7)

The normalization process alters the statistical distribution of
the data by introducing correlation in time and increasing the tail
of the distribution. The theoretical analyses in this paper assume
ideal normalization, which results in a noncentrally chi-squared
distribution

(8)

with two degrees of freedom and noncentrality parameter

(9)

III. T HE PAGE TESTAPPLIED TOACTIVE SONAR DETECTION

The basic Page test [3] was designed to detect a change in the
distribution of a sequence of data. The Page test declares signal
presence when the statistic

(10)

crosses a threshold where and the detector nonlinearity
is ideally the LLR of the observed data .

In active sonar, the detector must search for multiple limited-
duration changes in the distribution of the normalized matched
filter output. This may be accomplished with the Page test
by consecutively searching for the onset of a signal and then
searching for its termination. Streit [4] has termed such an im-
plementation of the Page test as having alternating hypotheses,
that is, the AH-Page test.

An example of the test statistic (i.e., ) for an AH-Page
test is found in Fig. 3. For this example, constant level signals
were added to zero-mean, unit-variance, Gaussian noise at time
samples 100 and 200, respectively, with durations of 10 and 50
samples and levels of 2 and 1. The detection of the onset and

Fig. 3. Example of the operation of the AH-Page test in detecting signals of
varying duration in noise: the test statistic is shown as a function of time sample.

termination of the first signal is indicated on the figure at the ap-
propriate threshold crossing. The second signal is detected, but
suffers a long delay prior to detection owing to its weaker level.
This is typical of the Page test in that, on average, it takes more
samples to detect weaker signals than it does stronger ones. As
described in [15] and noted on the figure, the starting and stop-
ping time of the signal may be estimated from the test statistic.
As one would expect, the quality of the estimates improves with
SNR. The example seen in Fig. 3 illustrates this point in that the
starting and stopping time estimates for the stronger signal are
accurate and the starting time estimate of the weaker signal has
significant error.

A. Detector Nonlinearity

In the Page test, the LLR is the optimal detector nonlinearity
in the sense of minimizing the worst-case average delay be-
fore detection while constraining the average time between false
alarms. However, it does not necessarily maximize the proba-
bility of detecting a finite duration signal.

Implementation of the LLR requires knowledge of the PDF
of the data under both the signal-present and signal-absent
hypotheses. To avoid requiring explicit knowledge about
the signal, the locally optimal detector nonlinearity is often
used, providing near optimality for weak signals and usually
a simpler structure. For a noncentral chi-squared distributed
signal, the locally optimal nonlinearity is simply the data itself

(11)

where is a false alarm inhibiting bias required by the Page
test. The bias may be chosen to maximize the asymptotic per-
formance [16]

(12)

or in a simpler fashion using Dyson’s method [16]

(13)
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where is the number of degrees of freedom of the chi-squared
distribution and is a design noncentrality parameter.

As seen in (9), the noncentrality parameter of the chi-squared
distribution is twice the SNR. The design noncentrality param-
eter should be chosen using as accurate an estimate of the SNR
as possible. The sonar equation [1] provides a method for ap-
proximating the SNR of an echo

dB dB dB dB

dB dB (14)

where dB is the source level, dB is the target strength,

dB is the range-dependent reverberation level at the
output of the matched filter, and dB and dB
represent the range-dependent transmission loss from trans-
mitter to target and target to receiver.

The transmission loss may be estimated from empirical
models such as Marsh and Schulkin’s (described by Urick
[1, pp. 177–179]) or by using more complicated models such
as the SACLANT Centre normal-mode acoustic propagation
model (SNAP) [17]. The target strength should be chosen
according to the minimum level expected to be observed. The
reverberation power level may be obtained from the estimate
used to normalize the data. Thus, the design noncentrality
parameter used to tune the Page test to the strength of the target
echo has the form

dB (15)

with the parameters of the sonar equation estimated as de-
scribed.

It is prudent to require that SNRdB be greater than a min-
imum level so the detector does not search for vanishingly small
signals as range increases, thus producing false alarms.

B. Detection and Segmentation Algorithm

The following describes the SST-Page test, essentially an ex-
tension of an AH-Page test. Included in the description are es-
timators for the starting and stopping times of the
signal as described in [15]. The threshold and detector non-
linearity for the Page test searching for the onset of a
signal are different from those ( and ) for the Page test
searching for the termination of the signal. This allows indepen-
dent control of the probability of falsely declaring that a signal
has started and falsely declaring that a signal has ended. The de-
tector nonlinearities are described as being time-variable. This
allows incorporation of the time-varying design noncentrality
parameter, resulting in the SST-Page test:

(1) Set , , .
(2) If ,

• Set .
• If , set .
• If , set and goto (2)
Else (i.e., if ),

— The leading edge of a signal has
been detected.

— An estimate of the starting time
index is .

— Set , , , and
goto (3)

(3) If ,

• Set .
• If , set .
• If , set and goto (3)

Else (i.e., if ),

— The lagging edge of a signal has
been detected.

— An estimate of the stopping time
index is .

— Set , , and goto
(2)

IV. THEORETICAL PERFORMANCEANALYSIS

Signal detectors are typically compared by first designing
them to have equivalent false alarm performance and subse-
quently comparing their detection performance. The detection
performance is commonly and appropriately defined as the
probability of a detection occurring due to the presence of a
signal. In processing a full ping of active sonar data where the
signal only occupies a portion of the data being processed, this
is interpreted to mean the probability of a detection when the
test statistic exceeding the threshold is formed from data that
includes some part of the signal.

The false alarm performance may be quantified in a variety
of ways. As there is opportunity for multiple false alarms within
one ping of active sonar data, the probability of one or more
false alarms is adopted as the false alarm performance measure.
This measure is nearly equivalent to the probability of one false
alarm occurring when that probability is very small and more
appropriately represents the occurrence of false alarms in active
sonar signal processing.

A. False Alarm Performance

Define the integer-valued random variableas the first stop-
ping time of an active sonar echo detector, that is, the time
index of the first signal-present declaration while processing
a full ping of data. The PMF of , , provides a com-
plete description of the false alarm performance of a detector
given a specific threshold. Most false alarm performance mea-
sures attempt to describe a pertinent univariate characteristic of
the complete description provided by . Unfortunately, it
is often difficult to obtain analytical forms for and simu-
lation may be prohibitive for more than a single threshold value
[10]. However, analytical or computational solutions do exist
for certain detector structures.

The above false alarm performance measure can be described
in terms of both the PMF of and its cumulative distribution
function (CDF)

(16)
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Let be the probability of one or more false alarms
occurring while processing a ping of data samples long.
Clearly is also equal to one minus the probability of
no false alarms occurring in samples, which is related to
the PMF and CDF of as follows:

No false alarms in samples

(17)

1) Thresholded Matched Filter:Consider the detector
implemented by comparing the matched filter output normal-
ized by the reverberation and background noise power to a
threshold. Assume that the normalized matched filter output,

, consists of independent and identically distributed
(i.i.d) random variables when no signal is present. This as-
sumption is not realistic when the reverberation and noise
background power level is estimated from auxiliary data nearby
in the matched filter time series and only approximately true,
as previously mentioned, in reverberation limited conditions.
However, it provides an approximate analysis.

Let the CDF of be when no
signal is present. The stopping time is the first time that a
sample crosses the threshold

and (18)

The probability that for is equal to the probability
that the first samples are below the threshold and that the

th sample is above the threshold

(19)

where . Equation (19) may
be recognized as the PDF of a geometric random variable. The
geometric random variable is a special case of the negative bi-
nomial distribution [18] which is derived from the number of
trials before a specific event occurs.

The CDF of is, in this case,

(20)

and the probability of one or more false alarms while processing
a ping of data is

(21)

Assuming that the normalized matched filter output is cen-
trally chi-squared distributed with two degrees of freedom (i.e.,
ideal normalization), the CDF is for .
Substitution of this assumption into (21) followed by functional
inversion results in the following relationship between the de-
tector threshold and the false alarm performance:

(22)

Fig. 4. Matched filter threshold as a function of false alarm performance
measures for chi-squared (solid lines) andF (dashed lines) distributions.

Cell averaging constant false alarm rate (CA-CFAR) sys-
tems normalize the matched filter output cell being tested by
the mean of auxiliary data taken from leading and lagging
windows. Under , this results in a central distribution
with 2 and degrees of freedom where is the total
number of auxiliary data samples in the leading and lagging
windows. Multiplying this statistic by 2 creates one that tends
to a chi-squared distribution with two degrees of freedom
as the amount of auxiliary data increases to infinity. The
CDF of this scaled and normalized matched filter output is

for . The resulting
relationship between the false alarm performance and the
detector threshold is

(23)

By letting , (23) goes to (22), as seen in Fig. 4 where
the detector threshold is shown as a function of the false alarm
performance for and for various values
of . From this figure, it is also seen that choosing the threshold
so that is equivalent to choosing .
More complicated normalization algorithms such as those uti-
lizing order statistics can improve the robustness of the normal-
ization to signal presence or outliers at the expense of a more
difficult, although not impossible, analysis.

2) Page Tests:Traditionally, the false alarm performance of
the Page test has been described by the average time between
false alarms. However, methods exist for determining the PMF
and CDF of the stopping time [8]–[11]. The method described in
[8] and [11] is of particular interest because it may be applied to
the Page test with signal-strength-tuning for determining false
alarm and detection performance and is accurate to within the
error introduced by quantization of the update statistic.

The SST-Page test differs from the standard Page test in
two respects: a time-varying detector nonlinearity and an
alternating-hypothesis implementation. The false alarm per-
formance of the AH-Page test, as quantified by the probability
of one or more false alarms in samples, is equivalent to
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that of the standard Page test. This results from the dependence
of the false alarm performance solely on the PMF of thefirst
stopping time of the AH-Page test,

and (24)

This statement holds with or without the time-varying detector
nonlinearity.

As described in [11], calculation of the CDF of the stopping
time requires quantization of the update to the Page test
and formation of a probability transition matrix. The derivation,
which is a straightforward extension of [11] simply accounting
for the time-varying nature of the detector nonlinearity, is found
in Appendix I and results in

(25)

where is the probability transition matrix, is a vector of
ones, is a vector composed of the initial probabilities of ob-
serving the continuing states, and the superscriptrepresents
the transpose operation. In the active sonar problem, the detector
will start from the zero state so is a vector with a one in the
first position and zeros elsewhere (say).

When the detector nonlinearity does not change with time,
(25) may be simplified [11] to a function involving the eigen-
values and eigenvectors of the now constant probability transi-
tion matrix, say . Let have eigendecomposition

where is a diagonal matrix of the eigenvalues
. Let the vector be the Schur product (i.e., element

by element multiplication) of the vectors and .
Then, as shown in [11], the CDF of the stopping timeis

(26)

and the false alarm performance is

(27)

Equations (26) and (27) describe the false alarm performance
of the standard Page test and the AH-Page test. They may be
used as an upper bound on the performance of the SST-Page
test if the matrix is chosen when the detector nonlinearity
assumes the weakest signal, that is, when it is easiest for the
detector to produce a false alarm. It is recommended that the
thresholds required for implementation of the detector (and

) be chosen using this bound—to do otherwise requires exor-
bitant computation.

The threshold required to implement the Page test is shown
in Fig. 5 as a function of for
when the bias is chosen according to a design SNR of 10 dB
and ideal normalization is assumed. Here it is observed that
choosing is approximately equivalent to
choosing .

3) Comparison: Suppose that a full ping of data consists of
10 time samples. If the sampling rate were 500 Hz, this would
include targets out to approximately 15 km in range assuming a
750-m/s two-way propagation speed. The thresholds required to
implement the thresholded matched filter and the Page tests are
set so the probability of at least one false alarm in 10samples is

Fig. 5. Page test threshold as a function of� (n) for various values ofn.

Fig. 6. PMF and CDF of stopping time as a function of sample number for
thresholded matched filter, standard Page test, and SST-Page test.

. The threshold obtained for the standard Page
test with a detector nonlinearity assuming the weakest signal is
used for the Page test with signal-strength tuning. The PMF and
CDF of the stopping time as a function of time sample are found
in Fig. 6.

The semi-empirical transmission loss approximation of
Marsh and Schulkin, as described by Urick [1], was used to
tune the SST-Page test with the asymptotically optimal bias
and dB and dB chosen so dB dB.
Beyond 500 samples, the bias for the SST-Page test was
chosen according to an SNR of 10 dB. The improved false
alarm suppression capability (i.e., lower PMF and CDF) of
the SST-Page test over the standard Page test and thresholded
matched filter is evident at short ranges.

B. Detection Performance

As previously mentioned, the detection performance is quan-
tified by the probability of detecting a signal when the deci-
sion occurs due to signal presence. Ideally, detailed acoustic and
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target models would be used to determine the time spreading
and shape of a received target signal in specific shallow-water
environments (i.e., the function ) from which the de-
tection performance of the thresholded matched filter and Page
tests may be determined. However, to provide an idea of how
the detectors perform in a less specific scenario, a simple model
is considered where a signal with constant SNR starts at time
sample and ends after time sample . The detection per-
formance of the aforementioned more realistic target echoes
would be similar, though not identical, to that observed in Sec-
tions IV-B1–IV-B3 were they quantified by their duration and
average SNR.

1) Thresholded Matched Filter:An echo is considered de-
tected by the thresholded matched filter if at least one threshold
crossing occurs throughout the extent of the signal. This is
equivalent to one minus the probability that no threshold cross-
ings occur. Suppose that the CDF of the normalized matched
filter output is where is the noncentrality
parameter of (9). The detection probability is then

(28)

where is the duration of the signal. When the
noncentrality parameter is constant throughout the duration
of the signal, the probability of detection simplifies to

(29)

As previously mentioned, the normalized matched filter
output is noncentrally chi-squared distributed under the perfect
normalization assumption. CA-CFAR processing results in a
noncentral distribution with noncentrality parameter
and, as before, 2 and degrees of freedom. The CDFs for
these distributions are most easily determined by approxima-
tion; of note are the two- and three-moment approximations
described by Johnson and Kotz [19], [20] which are easily
implemented and perform well.

2) Page Tests:If the detector nonlinearity and false alarm in-
hibiting bias remain approximately constant throughout the du-
ration of the signal, the probability of detecting a finite duration
signal using the SST-Page test will be very close to the proba-
bility of detection using the standard Page test. As described in
[11], the probability of detecting a finite duration signal using
the Page test is bounded below by the CDF of the stopping time
evaluated at the duration of the signal. The CDF of the stopping
time is a bound because it does not account for latent detections,
which are detections that occur after the signal has ended but
prior to a reset of the Page test statistic to zero. As mentioned
in [11], the probability of a latent detection may be determined
using the quantization-based solution to the CDF of the stopping
time. The reader is referred to Appendix II for the derivation and
presentation of the probability of detection using the Page test
including latent detections.

Fig. 7. P versus signal duration for various SNRs and a 10-dB design SNR.

3) Comparison: In the following analyses, the thresh-
olds were chosen so that assuming perfect nor-
malization. The performance of the detectors is described as a
function of the SNR at the matched filter output which is half of
the noncentrality parameter of the noncentral chi-squared or
distributions.

The expected increase in as the signal duration increases
is observed for the Page test in Fig. 7 for several SNRs when
the asymptotically optimal bias is chosen according to a design
SNR of 10 dB. When the actual SNR is less than the assumed
SNR (all the solid curves with 10 dB), detection per-
formance is reduced, particularly for short duration signals. The

for the thresholded matched filter is shown in Fig. 7 only for
the 10-dB SNR case (dashed line). Comparing this curve with
the 10-dB SNR case of the Page test, it is seen that the Page
test has better performance except for extremely short duration
signals. This highlights the fact that, when the signal only ex-
ists for a very short time (e.g., one or two samples), there is
not much gained by the integration inherent in the Page test and
thus the thresholded matched filter performs better. However, in
most shallow-water environments, the acoustic propagation will
induce enough spreading of the target echo to be in the region
where the Page test outperforms the thresholded matched filter.

The increase in as a function of SNR for the Page test with
various design SNRs is shown in Fig. 8 for a signal five samples
long. Here it is seen that when the design SNR is large, detection
is hindered for weaker signals. This implies that early on in the
matched filter time series (i.e., short ranges), where the design
SNR is large, the SST-Page test may not produce false alarms
due to signal-like reverberation where the thresholded matched
filter would.

Fig. 9 illustrates how changes with range for various SNRs
when the signal duration is five samples and the bias is chosen
according to the estimated noncentrality parameter as described
in Section IV-A3 for the false alarm performance comparison.
The for the thresholded matched filter, which is constant with
range, is shown on each curve where it is seen that the SST-Page
test automatically inhibits detection for short ranges, except for
strong signals, and encourages detection for longer ranges.
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Fig. 8. P of a signal five samples long versus SNR for various design SNRs.

Fig. 9. P of a signal five samples long versus range for various SNRs.
Conventional matched filterP , which is constant with range, is shown on
each curve for the same SNRs.

V. REAL DATA EXAMPLE

To demonstrate the effectiveness of the SST-Page test, a
sample of reverberation data has been processed. The data are
known to contain reflections from a subseafloor geological
feature [21]. The matched filter output before and after nor-
malization is shown in Fig. 10 where the subseafloor reflector
is seen to provide a very strong return just prior to 22 s.
Additionally, there are several peaks earlier in the time series
that do not have any known geological features associated with
them and are considered to be clutter-generated false alarms.

For the purpose of estimating the transmission loss, the envi-
ronment was assumed to be a range-independent acoustic wave-
guide with a uniform depth of 130 m, a 40-m sediment layer,
and a semi-infinite subbottom. The water column, sediment,
and subbottom layer sound-speed profiles, densities, and atten-
uations are found in Fig. 11. The subbottom shear attenuation
was assumed to be 1.5 decibels per wavelengthdB and the
subbottom shear speed was assumed to be 450 m/s. SACLANT

Fig. 10. Matched filter output before and after normalization.

Fig. 11. Description of environment.

Centre’s normal mode acoustic propagation model (SNAP) [17]
was used to determine the transmission loss. As the depth of the
target is unknown, the transmission loss is approximated by av-
eraging over depth with equal weighting for each depth point. It
may be more appropriate to apply a higher weighting to depths
the target is expected to frequent. The depth averaged transmis-
sion loss curves from SNAP for the source to target and target
to receiver legs are shown in Fig. 12. The difference between
the curves is due to the differing depths of the transmitter (78
m) and the receiver (65 m).

Utilizing a source level of 230 dB//1 P m, a target
strength of 10 dB, the depth averaged transmission loss
estimates from SNAP, and the reverberation power level as
estimated by the normalizer, (14) is used to form the design
SNR for the SST-Page test. The result is displayed in Fig. 13
and seen to vary from almost 22 dB down to the minimum
allowable value of 10 dB.

An AH-Page test with a design SNR of 10 dB, Dyson’s bias,
and thresholds was applied to the data. This com-
bination results in a false alarm performance of
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Fig. 12. Depth averaged transmission loss from SNAP at 650 Hz.

Fig. 13. Design SNR as estimated from source level, assumed target strength
of 10 dB, depth averaged transmission loss estimates, and estimates of
reverberation power from normalizer. A minimum value of 10 dB was enforced
on the design SNR.

when the reverberation is Rayleigh and the normalization is per-
fect. The resulting Page test statistic and detector state are dis-
played in Fig. 14. The detector state displays the results of esti-
mating the starting and stopping times of the signals detected by
the Page test. As seen on the figure, two of the spikes observed
in the normalized matched filter data have been detected along
with the subseafloor reflector just before 22 s.

The SST-Page test with the design SNR shown in Fig. 13
is applied to the same data. The results displayed in Fig. 15
show that the spikes early on in the time series are suppressed
while the subseafloor reflector just before 22 s is still detected.
Figs. 16 and 17 contain an enlargement of the region around
the subseafloor reflector—illustrating the performance of the
SST-Page test in detecting and segmenting the echoes.

Fig. 14. Results of AH-Page test with a 10-dB design SNR.

Fig. 15. Results of SST-Page test with design SNR estimated from sonar
equation.

Fig. 16. Matched filter output before and after normalization.
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Fig. 17. Results of SST-Page test with design SNR estimated from sonar
equation.

VI. CONCLUSION

A sequential detector based on the Page test, called the
SST-Page test, has been proposed for the detection of active
sonar echoes in shallow-water environments where propagation
through the water and reflection off the target spread the
transmitted signal in time. The proposed detector is tuned as
a function of range to the estimated SNR to help suppress
signal-like reverberation.

The probability of one or more false alarms while processing
a full ping of data was introduced as an appropriate false alarm
performance measure for active sonar systems. This false alarm
performance measure was related to the PMF of the stopping
time of an active sonar detector. The PMF of the stopping time of
the proposed SST-Page test and the thresholded matched filter
were determined. The theoretical false alarm performance of
the SST-Page test, the standard Page test, and the thresholded
matched filter were compared as a function of range where the
false alarm suppression capability of the SST-Page test at short
ranges was illustrated.

The theoretical detection performance of a finite duration
signal for the Page test was derived when it was assumed that the
Page test was initially in the steady state under the signal-absent
hypothesis and when accounting for latent detections. The the-
oretical detection performance of the Page test was investigated
as a function of signal duration, SNR, and for the SST-Page test
as a function of range. It was observed that the Page test outper-
forms the thresholded matched filter except when the signal is
extremely short.

An AH-Page test and the SST-Page test were used to process
reverberation data known to contain reflections from a sub-
seabottom geological feature. The SST-Page test was seen to
suppress reverberation generated detections in the AH-Page test
while still detecting the target-like geological feature.

APPENDIX I
PAGE TEST FALSE ALARM PERFORMANCE

Evaluation of the false alarm performance for the Page test
requires computation of the cumulative distribution function of

the stopping time. As shown in [11], this may be accomplished
by quantizing the update of the Page test,, to equally spaced
levels, say at intervals of width . Arbitrarily, let the levels be

for . Define the probability of ob-
serving each state at time(i.e., the Page test statistic takes on
level at time ) as under and as under .

As described in [11], a probability transition matrix under
including regulation at zero is formed as

...
...

...
...

(30)
where is the integer satisfying .

If is a vector composed of the initial probabilities of ob-
serving the continuing states , then the proba-
bility of observing the continuing states at timeis

(31)

The CDF of the stopping time is simply the probability that the
test has stopped prior to or during the current time sample

observing a continuing state at time

(32)

Premultiplying (31) by a row vector of ones provides the prob-
ability of observing a continuing state at time. Thus, the CDF
of the stopping time under is

(33)

where is a vector of ones and the superscriptrepresents
the transpose operation. In most applications, the detector will
start from the zero state so is a vector with a one in the first
position and zeros elsewhere.

APPENDIX II
PAGE TEST PROBABILITY OF DETECTION

Assuming a constant bias in the Page test throughout the du-
ration of the signal (and afterward for latent detections) and a
signal with constant noncentrality parameter and duration, the
probability of detection is

(34)

where the subscripts on the probabilities indicate that they are
taken when signal is present (1) or absent (0). Here, is
the event that a threshold crossing occurs before a reset to zero
when the probabilities of being in the nonzero continuing states

are the elements of the vector. The vector
is the probability of being in the nonzero continuing states

after processing samples containing signal

(35)

where is a by matrix that isolates the
probabilities of observing the nonzero continuing states,is
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a vector of the steady-state probabilities of observing the con-
tinuing states under , and is the constant
probability transition matrix including regulation at zero formed
under (cf. (31) with rather than ).

Similar to the development found in [15], the probability of
a straight climb to the threshold from the nonzero continuing
states may be shown to be the probability of a threshold crossing
for each future time sample assuming the zero state is never
entered

(36)

where is a transition probability matrix for the nonzero con-
tinuing states formed under

...
...

. . .
...

(37)

and is a vector of the probabilities of crossing the threshold
at the next update from each of the nonzero continuing states
under

...
(38)

Combining (34)–(36) and (33) with a constant transition
probability matrix results in

(39)

where

(40)

Equation (39) may be interpreted as one minus the probability
of not crossing the threshold before a reset to zero (the vector)
given the detector is in a continuing state at the end of the signal

. As noted in [11], inclusion of latent detections and
allowing the Page test to be in the steady state underprior
to the start of the signal is important for predicting the detection
performance of weak and short to moderate duration signals.
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