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Abstract— This paper deals with speaker localization in two
dimensions from a mobile binaural head. A bootstrap particle
filtering scheme is used to perform active localization, i.e. to
infer source location by fusing the binaural perception with
the sensor motor commands. It relies on an original pseudo-
likelihood of the source azimuth which captures both the inter-
aural level and phase differences. Since the pseudo-likelihood
is discrete, it is fitted with a mixture of circular distributions in
order to enhance its resolution. For the fitting task two mixtures
are compared and evalutated, namely the mixture of von Mises
and wrapped Cauchy distributions. Furthermore, a solution
is presented for calculating the von Mises curvefitting with
low uncertainty, since the direct implementation can quickly
surpass double precision floating number representation. The
performance of the filter is compared using both the raw
and fitted pseudo-likelihoods on experiments recorded in an
acoustically prepared room with ground-truth obtained from
a motion capture system. The results show that the proposed
algorithm successfully localizes the speaker with an advantage
in the direction of the fitted von Mises mixture likelihood.

I. INTRODUCTION

In the field of robotics, the subject of sound source

localization has been approached and studied from aspects of

many different fields, namely speech processing, estimation

theory, and sensor fusion to name but a few. From the

aspect of sensors, researchers have been using microphone

arrays featuring two to more than a hundred of microphones,

placing them on wheeled mobile robots, humanoid walking

robots, and even autonomous aerial vehicles. Furthermore,

when moving sensors are used, the seamless fusion of

their motor commands with the binaural perception—active

localization—has been acknowledged to overcome ambigui-

ties inherent to the use of static sensors

When considering tracking with bearing-only values, the

pertinent problem was tackled foremostly in naval warfare.

In [?] it was shown that tracking in modified polar co-

ordinates with an extended Kalman filter (EKF) provided
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better and more stable results that when tracking in Cartesian

coordinates. This brought higher complexity in the motion

model, but made the observation model linear and separated

observable and unobservable entries in the state vector. This

model was further developed in [?] where the tracking was

performed with a bank of range-parameterized EKFs in

modified polar coordinates. Although this problem has been

studied for few decades, it still receives attention due to

emerging new filtering methods. In [?] three different filters

were compared for the task, while in [?] various methods

for tracking and decentralized sensor fusion were studied,

including bearing-only scenarios. In [?], relative localization

is performed from a pair of moving microphones, based on a

multiple-hypothesis square-root unscented Kalman filter. The

filtering scheme uses time delays estimated from the sensed

audio signals, together with information on the sensor’s

velocities to perform a consistent source localization. Results

show that the strategy, together with a suitable sensor motion,

allows to break front-back ambiguity and get accurate range

information.

In the context of speaker localization, the bootstrap particle

filter has been utilized in [?] for multiple speaker bearing

and elevation estimation with an 8-channel microphone array

mounted on a mobile robot. In [?], the authors adress the

problem of localizing multiple sound sources in an outdoor

environment from a microphone array mounted on an arial

vehicle. An extension of the MUSIC algorithm is used, that

uses adaptive estimation of the—dynamically changing—

environment noise correlation matrix. The proposed method

is tested with a Parrot AR.Drone and a Kinect device. In [?]

the authors used a 4-channel array to localize narrow-band

emergency signals from a micro air vehicle, where the sensor

model was based on the cross-correlation and doppler shift in

frequency due to the motion of the vehicle. In [?] the particle

filter was used to estimate the bearing of a speaker from a von

Mises (VM) mixture with a 4-channel array mounted on a

mobile robot. In a non-robotic related context, in [?] particle

filtering was utilized to estimate a position of a speaker

in a room environment with 4 microphone pairs placed on

the room walls, where the generalized cross-correlation and

beamformer output power were used as pseudo-likelihood

functions. In [?] the authors analyzed strategies for sensor

motion in the context of speaker localization with PF in

both range and bearing and performed evaluations in a

simulated acoustic environment with single sources under

both anechoic and reverberant conditions. In [?] the authors

used a combination of direction-of-arrival estimates with

speaker’s fundamental frequencies (pitch) and gammatone



prefiltering to form a pseudo-likelihood function for a 24-

channel circular array in order to estimate the bearings of

multiple speakers.

In the present paper, active speaker localization is per-

formed with two microphones mounted on a spherical head

by bootstrap particle filtering [?]. The underlying state space

equation describing the evolution of the source position in the

head frame is defined in both cartesian and polar coordinates.

We propose a pseudo-likelihood function of the source

bearing (azimuth) as the measurement model, which captures

both the interaural phase difference (IPD) and interaural

level difference (ILD) between the binaural signals. Since

the pseudo-likelihood has no analytic expression and is only

given for a discrete set of candidate bearings, the fitting

of circular distributions to the discrete pseudo-likelihood is

discussed in order to enhance its resolution for the purpose

of estimation. Incidentally, this can give further ground

for possible analytical filtering schemes. Two distributions

are presented and compared for the task: namely the VM

distribution, for which we also present a method for evalua-

tion with a large concentration parameter, and the wrapped

Cauchy (WC) distribution. Furthermore, we compare two

bootstrap particle filtering schemes on experimental data—

one using the raw discrete pseudo-likelihood, and the other

based on the fitted circular distribution. As aforementioned,

both fuse the known head velocities with binaural data in

order to infer the speaker location.

The paper is organized as follows. First, the problem is

stated in § II, while § III presents and compares the proposed

fitting with the VM and WC distributions. In § IV the

proposed speaker localization with the bootstrap algorithm is

presented, § IV-B presents the experimental evaluation, and

in the end §V concludes the paper.

II. PROBLEM STATEMENT

A. Kinematics and state space equation

A pointwise sound emitter E and a binaural sensor move

independently on a common plane parallel to the ground.

The two receivers equipping the sensor are denoted by R1

and R2. A frame FR : (R,xR,yR, zR) is rigidly linked to

the sensor, with R the midpoint of the line segment [R1R2],
yR the vector RR1

|RR1|
and xR the downward vertical vector.

The frame FE : (E,xO,yO, zO) attached to the source is

parallel to the world reference frame FO : (O,xO,yO, zO),
with xO = xR (see Fig. 1). The source undergoes a transla-

tional motion (velocities vEy, vEz of FE w.r.t. FO expressed

along axes yO, zO), while the sensor is endowed with two

translational and one rotational degrees-of-freedom (veloci-

ties vRy, vRz of FR w.r.t. FO expressed along axes yR, zR;

rotation velocity ω of FR w.r.t. FO around xO = xR).

Assuming vRy, vRz, ω are known, the aim is to localize the

emitter (FE) w.r.t. the binaural sensor (FR) on the basis of

the sensed data at R1, R2. Importantly, the audio sensor is not

localized w.r.t. FO. The relative attitude of FR w.r.t. FE can

be described, when vRy, vRz, ω, vEy, vEz are zero-order held

at the sampling period Ts, by the discrete-time deterministic
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Fig. 1: The considered localization problem.

state space equation

xt+1 = Fxt +G1u1t +G2(xt)u2t, with

F=

[

cos(ωtTs) sin(ωtTs) 0
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G2(xt)=Ts

[

cos(λt−ωtTs) − sin(λt−ωtTs)
sin(λt−ωtTs) cos(λt−ωtTs)

0 0

]

. (1)

Therein, x, [ey, ez, λ]
′, the state vector, gathers the entries

ey , RE.yR and ez , RE.zR of RE in FR, and the

angle λ , ̂(zR, zO)xO
. The sensor velocities constituting

u1 , [vRy, vRz, ω]
′ are supposed known. In the case of a

static source—as it is the case in the scope of this paper—

u2 , [vEy, vEz]
′ is simply set to zero. When parametriz-

ing the problem in terms of polar coordinates rather than

cartesian, i.e. when using the variables θ , atan2(ey, ez),

r ,
√

e2y + e2z , the state space equation comes as

rt+1=
√

r2t+u′

tG
′Gut+2rt[sinθt,cosθt]G′ut (2)

θt+1=atan2(rtsin(θt+ωtTs)+g1ut,rtcos(θt+ωtTs)+g2ut)

λt+1=λt−ωtTs,

with u , [vRy
, vRz

]′, G the square matrix made up with

the first two rows and columns of G1, g1 (resp. g2) the first

(resp. second) row of G. To model uncertainty in the relative

motion, a random white Gaussian noise of known statistics

is added to (2).

B. Acoustic model, measurement vector, pseudo-likelihood

Consider first a static world where the sensor is motion-

less. We assume that the source lies in the farfield (i.e. the

source range r = |RE| is sufficiently high compared to the

microphones interspace 2a so that the source wavefronts can

be considered as planar in the vicinity of the microphone

pair). We model the signals y1, y2 monitored at R1, R2 in

the presence of additive noise as follows
{

y1(τ) = s(τ) + n1(τ)
y2(τ) = (s ∗ hθ)(τ) + n2(τ),

(3)

where the signal s (i.e. the contribution of the emitter at

R1) and the noises n1, n2 are real, band-limited, individually

and jointly stationary random processes, and ∗ denotes

convolution. The—deterministic—impulse response hθ be-

tween R1, R2, is parameterized by θ, and captures free-field

propagation of the emitted signal as well as head scattering.



Hθ, the Fourier transform of hθ, is supposed known for every

θ within a discrete set of values (say, it has been learnt

from calibration, or is known theoretically). The process

y(τ) , [y1(τ), y2(τ)]
′ is observed over N adjacent non-

overlapping rectangular T/N -width time windows. Denote

yn the observation of y over the nth window. A data vector

Z is made up by stacking the values of

Yn[k] =

√

N

T

∫

R

yn(τ)e
−2iπkN

T
τdτ, n = 1, ..., N (4)

at k=k1, ..., kB , the B frequency indexes within the band-

width of s. Z is hence defined as Z, [Y [k1]
′, ...,Y [kB ]

′]′,
with Y [k], [Y1[k]

′, ...,YN [k]′]′. Assume now that s, n1, n2
are zero-mean jointly Gaussian and that n1, n2 are identically

distributed, uncorrelated with each other and with s. Then,

under general mild conditions on the power spectra of

s, n1, n2 and on Hθ, the maximum likelihood estimate of θ
can be obtained, given a sample z of Z, by maximizing the

following criterion [?], hereafter referred to as the “pseudo

log-likelihood function”

J(z|θ)=c2−N
kB
∑

k=k1

(

ln|Pθ[k]Ĉ[k]Pθ[k]+σ̂
2
θ[k]P

⊥
θ [k]|

)

, (5)

with c2,−2NB(ln(π)+1), Ĉ[k], 1
N

∑

n yn[k]yn[k]
†,

Pθ[k],Vθ[k](Vθ[k]
†Vθ[k])

−1Vθ[k]
†, P⊥

θ [k],I2 − Pθ[k],

Vθ[k] , [1, Hθ[k]]
′, σ̂2

θ[k],tr(P⊥
θ [k]Ĉ[k]).

Therein, †, |.|, tr(.) stand respectively for the Hermitian

transpose, determinant and trace operators, yn[k] denotes a

sample of Yn[k], and the sample covariance matrix Ĉ is

assumed full rank.

Consider now a real world where the sensor moves and

where the source signal and environment noise are possibly

nonstationary. All the fundamental hypotheses leading to (3)–

(4)–(5) are consequently violated. Nevertheless, the problem

can still be handled if, at each process time index t, the data

vector zt is made up from audio data collected over a time

window matched to t, sufficiently short so that, along this

window, the sensor motion is negligible and the recorded

signals can be regarded as finite-time samples of stationary

processes. Hence, at each time index t, the pseudo likelihood

of θt w.r.t. zt, denoted p(zt|θt), can be output and will

henceforth be used in a Bayesian filtering scheme in §IV.

Importantly, p(zt|θt) has in the general case no analytic

expression. Its numerical values are just given for a discrete

set of tested azimuths. This precludes the use of Bayesian

filtering schemes requiring an analytic form of the pseudo

likelihood, e.g. Gaussian mixture filters, unless an analytic

function is fitted to the discrete values. Alternatively, with

particle filters, the pseudo likelihood in its discrete form

can be utilized as a sensor model. However, low azimuth

resolution can affect the particle filter performance and

consistency, and it may be useful to fit some distribution to

the discrete pseudo likelihood. §III is thus dedicated to the

fitting of Von Mises and wrapped Cauchy mixtures models

to the discrete pseudo likelihood.

III. FITTING CIRCULAR DISTRIBUTIONS TO THE

PSEUDO LIKELIHOOD FUNCTION

A. Circular distributions

In this section we present two solutions to fitting the

pseudo likelihood function, namely fitting with the VM

distribution and with the WC distribution. The motivation

behind using circular distributions lies in the fact that they

intrinsically take noneucledian properties of the angular data

into account. For an example, this property proves useful

in the optimization since a circular distribution close to π
continues contributing to points larger than −π. Furthermore,

in the present paper we do not require the component weights

to sum up to one, since the pseudo likelihood function itself

is not a valid probability distribution.

A probability distribution on the unit circle with density

function given by [?]

p(θ;µ, κ) =
1

2πI0(κ)
exp {κ cos(θ − µ)} , (6)

is called the von Mises distribution, where 0 ≤ x ≤ 2π, µ is

the mean direction, κ ≥ 0 is the concentration parameter, and

I0(κ) is the modified Bessel function of the first kind and

of order zero. The distribution is unimodal and symmetric

around the µ and is often referred to as the circular analogue

of the Gaussian distribution. When κ→ 0 the VM becomes

the uniform distribution, while if κ → ∞ it becomes

concentrated at θ = µ.

We used the VM distribution in the context of robot

audition in [?] where the sensor model was represented as

a mixture of VM distribution in particle filtering, while in

[?] we extended this approach to model the entire Bayesian

tracking procedure in the analytical domain of the distribu-

tion. However, both of the aforementioned works were only

concerned with tracking the bearing value of the speaker and

not its position in two dimensions which is one of the goals

of the present paper.

The second distribution that we analyze for the task is a

distribution wrapped on a circle. Given a distribution on the

line we can wrap it around the circumference of a circle

with unit radius. If a random variable θ is defined on a

line, then the corresponding random variable of the wrapped

distribution is θw = θ(mod 2π). Furthermore, if θ has a pdf

p, then the corresponding wrapped pdf pw is defined as [?]

pw(θ) =

k=∞
∑

k=−∞

p(θ + 2kπ). (7)

From (7) we can note practical issues when dealing with

the infinite number of terms in the summation. However, it

can be shown that the Cauchy distribution on the line has

an interesting property that its wrapped counterpart, due to

certain geometric series expansion property, reduces to [?]

p(θ;µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, (8)

where µ is the mean direction and ρ is called the mean

resultant length. When ρ → 0 the WC tends to uniform



distribution, while if ρ → ∞ the distributions becomes

concentrated at point µ.

Naturally, the pseudo likelihood function will suffer from

front-back ambiguity since in the present paper we utilize

a binaural setup. Hence, our sensor model will contain at

least two distinct modes on the interval 0 to 2π and for

this reason we chose to model the likelihood as a mixture

of distributions. If we denote with X a set of distributions

parameters, then an N component mixture can be defined as

p(θ;X ) =
N
∑

i=1

ωip(θ;Xi), (9)

where the set X consists of ∪i{µi, κi} for the VM distribu-

tion and ∪i{µi, ρi} for the WC distribution.

B. Computation of the von Mises distribution with large

concentration parameters

The direct form of the VM distribution suffers from

numerical issues when working with large concentration

parameter κ, i.e. with sharp distributions which may be

necessary to fit the pseudo likelihood in the vicinity of its

local modes. The main problem is that for large κ both

the exponent and the modified Bessel function of the first

kind quickly reach the maximum value that can be stored in

double precision floating point representation.

To solve this problem, we move the normalizer of the VM

distribution in the exponent as follows

p(θ;µ, κ) = exp {κ cos(θ − µ)− log(2πI0(κ))} , (10)

and approximate log(I0(κ)) as [?]

log(I0(x)) = log

∞
∑

k=0

exp{m(x)}
exp{m(x)} exp {tk(x)}

= m(x) +
∞
∑

k=0

exp {tk(x)−m(x)} ,
(11)

where tk(x) = 2k log x
2 − 2

∑k

r=0 log r and m(x) =
max{tk(x)}. The number of the terms in (11) required to

have an accurate approximation depends on the κ. For the

present application we have found that the maximal practical

value of the concentration parameter for fitting the pseudo

likelihood is κ = 2000, for which an accurate approximation

was empirically determined to be for k ≤ 1100. But for

smaller parameters, e.g. κ = 1000, the number of terms

k ≤ 600 was sufficient. We did not notice any increase in

the computational time when compared to Matlab’s imple-

mentation based on [?].

C. Evaluation of the fitting performance

The fitting of a mixture of distributions to the pseudo

likelihood function p̂(θ) comes down to solving the following

Fig. 2: Fitting the pseudo likelihood for a single frame with

VM and WC mixture

optimization problem

minimize
ω,X

(

N
∑

i=1

ωip(θ;Xi)− p̂(θ)

)2

s.t. 0 ≤ ωi ≤ 1, i = 1, . . . , N

0 ≤ Xi ≤ B, i = 1, . . . , N,

where the upper bound B depends on the parameter and the

distribution. For both distributions the upper bound of the

mean directions µ is B = 2π, while for the VM distribution

the upper bound was B = 2000 for the concentration

parameter, and for the WC distribution B = 1 for the mean

resultant length.

Concerning the number of the mixture components all the

results were obtained with N = 4. Initial conditions for the

mean directions were determined by searching recursively

for N most dominant peaks in the vein of [?] where the

authors searched for the number of active speakers. Once

the dominant peak is found, an area around it is removed

and the search continues until the predetermined number of

modes is found. Since in the pseudo likelihood function we

expect two peaks to be dominant we set the initial conditions

for the first two dominant peaks to be κ = 1500 or ρ = 0.9,

while for the rest we set κ = 10 or ρ = 0.1. The weights

are initially set to ωi = 0.5, ∀i.
In Fig. 2 we can see the result of fitting for a single

relatively difficult frame when the speaker was close to the

end-fire position of the array and the two dominant modes

started overlapping. Empirically we noticed that this is the

more difficult case for the WC distribution and that often the

two distinct nodes tend to be fitted with a single component

in between them. Overall, the whole dataset consisted of

four experiments with a talking speaker as the source. The

average root-mean-square-error (RMSE) of fitting for the

speaker scenario was 1.6 · 10−3 for the VM mixture and

3.7 · 10−3 for the WC mixture, respectively. Given that, for

the rest of the paper we have chosen to work with the VM

mixture since it provided better fitting in terms of the average

RMSE.

IV. SPEAKER LOCALIZATION IN 2D

A. Particle filtering

Particle filtering is a versatile method to recursive

Bayesian state estimation. It can handle nonlinear prior

dynamics and measurements models, as well as nonGaussian

noises. The posterior probability density function (pdf) of the

state at any time t conditioned on the sequence of observed

measurements up to t is estimated by means of a point-mass

probability distribution with stochastic support, or “weighted

particle set”. Let {xp, wp}Pp=1 depict the random measure

that characterizes the posterior state pdf p(xt|z1:t), where

each particle in the set {xp, p = 1, . . . , P} is associated to



the respective weight in {wp, p = 1, . . . , P}. The weights

satisfy
∑

p w
p = 1, so that p(xt|z1:t) can be approximated

as [?], [?]

p(xt|z1:t) ≈
P
∑

p=1

wp
t δ(xt − x

p
t ), (12)

with δ(.) the Dirac delta measure. In other words, sampling

from p(xt|z1:t) returns to sampling a particle with a proba-

bility equal to its associated weight.

The particles are drawn according to a so-called impor-

tance function, then weighted so that the consequent random

measure constitutes a sound approximation to the posterior

pdf. As, for any recursive particle filter, the significant

weights tend to concentrate on a limited set of particles after

few iterations, a resampling step is inserted, which consists in

turning {xp
t , w

p
t }Pp=1 into the equivalent evenly weighted set

{x′p
t ,

1
P
}Pp=1 by independently sampling (with replacement)

x
′p
t according to P (x′p

t = x
p
t ) = wp

t .

In the sequential importance resampling (SIR) scheme [?],

or bootstrap filter, the importance function matches the prior

dynamics p(xt|xt−1), calculated via (2), i.e. each particle x
p
t

at time t is drawn from its predecessor x
p
t−1 at time t − 1

according to the proposal density x
p
t ∼ p(xt|xp

t−1). Then,

its weight is updated by evaluating its likelihood p(zt|xp
t )

prior to setting

wp
t ∝ wp

t−1p(zt|xp
t ), (13)

where p(zt|xt) represents the sensor model, i.e. the fitted

VM mixture:

p(zt|xt) =
N
∑

i=1

ωi

1

2πI0(κi)
exp [κi cos(xt − zt,i)] . (14)

Then, all the particle weights are normalized so that they

sum up to unity.

Once the random measure approximating the posterior pdf

of the state is computed, the posterior mean and posterior

covariance can be estimated via

x̂t = E[xt|z1:t] ≈
P
∑

p=1

wp
tx

p
t , (15)

and

P̂t = E[(xt − E[xt|z1:t])(xt − E[xt|z1:t])T|z1:t]

≈
P
∑

p=1

wp
t (x

p
t − x̂t)(x

p
t − x̂t)

T.
(16)

To avoid a loss of diversity in the particle cloud, the

resampling step is applied only when the number of effective

weights Peff = 1/
∑

p(w
p)2 is less than a given threshold,

e.g. 33 % of the total number of particles P .

Consequently, particle filtering can be implemented even if

a closed-form measurement model is not available, in that the

particle likelihoods just need to be evaluated. In our case, the

sensor model comes as the pseudo likelihood digitized with

a resolution of 4◦. However, we assert that the fitting utilized

in the present paper constitutes a form of interpolation which

yields better resolution. So, we henceforth compare the

performance of the bootstrap particle filter which directly

utilizes the discrete pseudo likelihood against the particle

filter utilizing the fitted VM mixture. Importantly, fitting with

a VM mixture would be a prerequisite if the tracking was

performed in the vein of [?].

B. Experimental results

Experiments were conducted in an acoustically prepared

room, equipped with 3D pyramidal pattern studio foams

placed on the roof and on the walls. Two surface micro-

phones were mounted at the antipodes of a 8.9 cm radius

plastic rigid sphere, itself place on a tripod. The two micro-

phones outputs were synchronously acquired at 44.1 kHz.

The sphere tripod was moved manually with a wheeled cart

while the source, a loudspeaker placed at the same height as

the microphones, was emitting various types of signals. The

true source and sensor positions were acquired at 200Hz with

a motion capture system, providing a less than 1mm position

error. For that purpose, small infrared active markers were

placed on the sphere and the loudspeaker, and their signals

were beamed to three infrared camera units placed at the

corners of the room. The experimental setup is depicted in

Fig. 3.

For the considered case of a rigid sphere, Hθ is shown to

have the following analytic expression [?]

Hθ(f) =
ψπ

2 +θ(f)

ψ−π
2 −θ(f)

, with (17)

ψα(f) ,
1

(

2πfa
c

)2

∞
∑

m=1

(−i)m−1(2m+ 1)Pm(cosα)

h′m

(

2πfa
c

) .

Therein, ψβ is the normalized Head Related Transfer Func-

tion (HRTF) to the microphone at angle β—with respect

to boresight—on the sphere, where α stands for the angle

between the source bearing and the direction to the consid-

ered microphone, Pm is the Legendre polynomial of degree

m, hm is the mth-order spherical Hankel function and h′m
is its first derivative. This expression was thus used in the

pseudo likelihood computation. In practice, the infinite sum

Fig. 3: Experimental setup: plastic sphere and speaker tripods

in the acoustic room. Infrared cameras were measuring the

ground-true positions.
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Fig. 4: Mean value of range estimates and pertaining three standard deviations of 50 Monte-Carlo runs of the PF with

pseudo likelihood (blue), VM fitted pseudo likelihood (red) and true range (black)

in (18) is approximated by a finite sum, the minimum order

required to make the approximation reasonable depending on

the maximum frequency considered. To avoid cumbersome

computation during localization, Hθ was precomputed and

stored offline for a discrete set of bearings.

In order to assess the performance of the PFs, we ran

50 Monte-Carlo runs on the sensed binaural data using

either the discrete pseudo likelihood or the VM fitted pseudo

likelihood. The runs were performed on four scenarios with

different trajectories of the sensor, out of which one scenario

included an intermittent sound source. In Fig. 4 we can

see the results of range estimation for the four cases, while

Fig. 5 shows the estimation of the bearing. By analyzing the

results we can see that on average the PF with the VM fitted

likelihood gave smaller error in terms of the range estimation

although the performance in the bearing was similar for both

PFs. The explanation lies in the fact that estimating the range

from bearing-only measurements benefited from having an

analytical likelihood compared to the 4◦ resolution of the

discrete pseudo likelihood.

Then, for each entry of the posterior mean output by the

filter, a minimum-width confidence interval was then drawn

(from the posterior covariance matrix ouput by the filter)

which should enclose the corresponding entry of the genuine

hidden state vector with 99% probability. By analyzing the

obtained plots concerning the range estimation error, we

can see that the present implementation of the PF was not

consistent over all the runs, since the true range is outside

of the filter’s ±3σ interval calculated from the estimated

covariance matrix.

V. CONCLUSION

In the present paper we have studied and proposed a

solution for the problem of active speaker localization with a

head mounted binaural microphone sensor. The solution was

based on calculating a discrete pseudo likelihood function

in speaker bearing based on the geometrical properties of

the spherical head. The resulting likelihood was fitted with

a mixture of circular distributions, namely the VM and

wrapped Cauchy distributions, whose comparison showed

better results in the case of the VM distribution. A bootstrap

algorithm was utilized with the direct and VM fitted pseudo


