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ABSTRACT

Spectral clustering is a widely used method for organizing
data that only relies on pairwise similarity measurements.
This makes its application to non-vectorial data straight-
forward in principle, as long as all pairwise similarities are
available. However, in recent years, numerous examples have
emerged in which the cost of assessing similarities is sub-
stantial or prohibitive. We propose an active learning al-
gorithm for spectral clustering that incrementally measures
only those similarities that are most likely to remove uncer-
tainty in an intermediate clustering solution. In many ap-
plications, similarities are not only costly to compute, but
also noisy. We extend our algorithm to maintain running
estimates of the true similarities, as well as estimates of
their accuracy. Using this information, the algorithm up-
dates only those estimates which are relatively inaccurate
and whose update would most likely remove clustering un-
certainty. We compare our methods on several datasets,
including a realistic example where similarities are expen-
sive and noisy. The results show a significant improvement
in performance compared to the alternatives.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval; I.5.3 [Pattern Recognition]: Clus-
tering

General Terms

Algorithms

Keywords

Spectral Clustering, Active Learning

1. INTRODUCTION
Clustering is a fundamental problem involving summariz-

ing, indexing and classifying various types of data. As data
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sets become larger and more complex, algorithms that de-
pend on pairwise similarities—rather than fixed length fea-
ture vector representations—are growing increasingly pop-
ular. An important example is spectral clustering, which
partitions data through a spectral analysis of the Laplacian
matrix induced by the similarity graph.

Although methods based on pairwise similarities are grow-
ing in popularity, a practical difficulty is that pairwise sim-
ilarities can be expensive to acquire, be it due to computa-
tional requirements, need for human input, or lack of observ-
ability. In protein clustering, for example, a computation-
ally expensive alignment process may be necessary before
two proteins can be compared. Other examples in computa-
tional biology require a combinatorial search for each pair-
wise similarity, even when the datapoint can be represented
in a compact form (a protein sequence is usually less than
1000 letters long). A counterpart to these computational is-
sues is that often the only practical way to obtain similarities
is to query human annotators. Here, measurements are not
only expensive, but frequently also noisy. In this paper we
consider the task of organizing a stream of snapshots taken
by a wearable camera at a rate of about one photo per 20
seconds [12]. Clustering these snapshots is beyond the ca-
pabilities of existing computer vision algorithms, so human
guidance is necessary to either cluster the images, or learn
improved models to do the clustering for us. As the human
subject (e.g., an Alzheimer’s patient), wears the camera dur-
ing an open-ended observation period, it is not clear a priori
what the clusters should be. A way to tackle this problem is
to ask human annotators to rate how similar any two photos
are and then to cluster using this data. (For example, photos
may be deemed similar if they were taken in similar loca-
tions.) This is one of many examples where crowdsourcing,
albeit expensive, can be used to collect pairwise similarity
measurements. As a final example, in some situations the
objects that are being compared can disappear over time,
making retrospective comparisons difficult. Consider viral
strains, which, if not preserved in a laboratory, may disap-
pear, leaving behind only indirect assessments with other
viruses. While similarities among preserved viruses can be
acquired at a relatively high cost in the lab (e.g., crossre-
activity of the immune responses), similarities involving the
extinct strain are not available at any cost. In addition to
this time barrier, geographic, legal and policy barriers can
also make certain pairwise similarities inaccessible. All these
examples illustrate that similarities may be noisy and arbi-
trarily expensive to compute, to the extreme where certain
similarities are completely unavailable.
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Figure 1: Two incomplete similarity matrices. The
left was constructed from median image similarities,
measured using Amazon Mechanical Turk (see Sec-
tion 6.3). We permuted the rows and columns so
that any clusters would become visible as diagonal
blocks. Then we set 82% of the similarities to 0
(black regions). The right matrix was constructed
similarly, but starting from similarities sampled uni-
formly in [0, 1]. The left matrix still shows clustering
structure, which is also visible in the sign vector of
the second Laplacian eigenvector, plotted below (see
Sections 3 and 4 for details). The right matrix had
almost no structure to start with, so no structure is
visible in the corresponding eigenvector.

The potentially significant cost of obtaining pairwise sim-
ilarities motivates the search for tradeoffs between desired
clustering quality and the required amount of data. In this
paper, we study this question in the setting of the spec-
tral clustering of n objects when we do not have access to
all pairwise measurements initially, but we can iteratively
query the similarities from an external black-box procedure
(which may impose restrictions on which of the subset of all
n(n− 1)/2 similarities can be queried). In this active learn-
ing formulation the goal is to find a good approximation to
the true clustering based on as few similarity evaluations as
possible, thus reducing the overall cost (i.e. compute cycles,
human tasks performed, laboratory material and other data
collection expenses).

A recent contribution in this direction has been made by
Shamir and Tishby [18]. Their approach was designed for
querying arbitrary similarity matrices, including those where
no clustering structure is apparent. This paper significantly
improves on their method by exploiting the fact that most
realistic pairwise similarity matrices, even if incomplete, do
exhibit clustering structure. Consider Figure 1, where on
the left we show an incomplete matrix that we might re-
alistically encounter and on the right a matrix constructed
from random similarities. Shamir and Tishby assume no
structure in the matrix (such as in the matrix on the right)
and query measurements that maximally change the overall
clustering solution. In contrast, we tailor our active learning
algorithm to work well with realistic matrices (such as the
one on the left) where information about the true clustering
emerges quickly and can be leveraged to guide an improved
query selection strategy.

An aspect of spectral clustering that is commonly ignored
is that similarity measurements are generally noisy. Active
spectral clustering methods have so far not taken these un-
certainties into account. We extend our algorithm in this
direction to allow repeat measurements of noisy similarities,
and use those to compute running estimates of the true sim-
ilarities, as well as estimates of their accuracy. Using this
information, we extend our algorithm to measure that simi-
larity which is relatively inaccurate and whose update would
most likely remove clustering uncertainty.

The paper is organized as follows. In Section 2 we review
related research. Section 3 presents some background on
spectral clustering. Next, we describe our active learning
algorithm in Section 4. In Section 5 we extend the algo-
rithm to take measurement noise into account. We present
experiments on synthetic and real datasets in Section 6 and
conclude with final remarks in Section 7.

2. RELATED RESEARCH

Spectral Clustering.
Spectral clustering was popularized in the machine learn-

ing community by Shi and Malik [20] and shortly afterwards
revisited by Ng, Jordan and Weiss [14]. Since then, it has
permeated the literature and become a firm part of the prac-
titioner’s toolbox. Over the years, numerous connections to
other research fields have been made, a comprehensive re-
view of which can be found in [24]. However, very little
work in the spectral clustering literature has explicitly in-
vestigated situations when only a subset of all similarities is
known, possibly contaminated by noise.

Matrix Completion.
One simple approach to adapting spectral clustering to

the case of missing similarities is to exploit the burgeoning
literature on matrix completion methods. A particularly
straightforward approach is to impute a constant value (e.g.,
zero) for the missing similarities. Such approaches are of-
ten used in practice, and some of its properties have been
analyzed theoretically [18].

More sophisticated methods can be deployed under the
assumption that entire rows or columns of the similarity
matrix can be measured. The driving assumption behind
these methods is that the true matrix is of low rank, so
that a small subset of elements approximately captures the
global matrix structure. Among these approaches, the Nys-
tröm method [6, 26] is perhaps the most well known. Other
algorithms that use row/column sampling include for in-
stance [4, 5, 9]. Applications of some of these methods to
spectral clustering are given in [7, 17]. In less controlled
situations, we do not have access to entire rows/columns
of measurements, but only an arbitrary subset; in this set-
ting it is still possible to exploit a low-rank assumption for
matrix completion [1, 22]. There is debate about the value
of these methods in the spectral clustering setting; in par-
ticular, Shamir and Tishby [18] argued that the low rank
assumptions can be unrealistic in many spectral clustering
applications and demonstrated that the Nyström method of-
ten performs poorly. Additionally, most of the row/column
sampling methods require that the sampling distribution de-
pends on the entire similarity matrix [4, 5, 6, 9]. Because
this matrix is unknown, these methods are of limited appli-



cability in our setting. Finally, we highlight that with the
exception of Huang et al. [11], relatively little work has been
done on analyzing the influence of incomplete or perturbed
similarity matrices on the spectral clustering solution.

Active Learning.
Until recently, the study of active learning for spectral

clustering was restricted to settings where the entire simi-
larity matrix is known (perhaps approximately) and an ex-
ternal oracle can be repeatedly queried for additional link-
age constraints between objects (of the form must-link or
cannot-link). When the similarity matrix only approximately
captures the desired clustering, adding such constraints it-
eratively can help resolve ambiguous boundary cases. Rele-
vant examples include [2, 13, 25, 27]. We note in particular
the work of Xu et al. [27], in which the constraints are ab-
sorbed by modifying the similarity matrix in a way that is
akin to measuring similarities of higher quality. The focus
in active learning for spectral clustering has only recently
shifted to scenarios in which explicit costs are imposed on
the measurement of similarities. This focus is exemplified by
Shamir and Tishby [18], who propose and analyze an active
learning method based on matrix perturbation theory [21].

3. SPECTRAL CLUSTERING
We begin by presenting our notation and summarizing

the key ideas of spectral clustering. For further details and
various interpretations of spectral clustering we refer the
reader to von Luxburg [24]. Given n objects, denote by W
the n × n symmetric matrix of pairwise similarities among
these objects. Typically, 0 ≤ wij ≤ 1, i, j = 1, . . . , n and
wii = 1, i = 1, . . . , n. Let D = diag(W1) be the diago-
nal matrix of row sums of W . The unnormalized Laplacian
matrix is then given by

L = D −W. (1)

Spectral clustering partitions the n objects into two groups
by thresholding the second eigenvector v2 of L. Specifi-
cally, if we let the partition be encoded by variables ci ∈
{−1,+1}, i = 1, . . . , n, then

ci = 2 [v2(i) > 0]− 1. (2)

Here, we use the notation v2(i) to indicate the ith compo-
nent of the vector v2. Because the partitioning is trivial
to compute from the second eigenvector, we will occasion-
ally refer to the eigenvector itself as the spectral clustering
solution, rather than the partitioning.

Spectral clustering only sees the data as filtered through
the matrix W . Thus it is possible to adapt the spectral ap-
proach to the clustering of non-vectorial data such as graphs,
sequences and sets; it suffices that similarity scores can be
computed for these objects. This is generally accomplished
via a kernel function, and computationally efficient kernels
are available for certain kinds of structured objects [10, 19].
Unfortunately, however, kernel formulations are often too
rigid to be adapted to specific needs, and often lack inter-
pretability. As we move to more complex datasets, the no-
tion of similarity a practitioner is interested in may not be
captured by a kernel. Indeed, as highlighted in the Intro-
duction, in many practical examples the similarities cannot
be evaluated by a computer at all, but must be provided by
an experiment or human annotator.

4. ACTIVE LEARNING
In this section we propose an active learning strategy that

attempts to alleviate the above issues. Our work is based
on a matrix perturbation argument for an intermediate es-
timate of the Laplacian matrix. Given incomplete measure-
ments, we estimate the true Laplacian matrix as

L̂ = D̂ − Ŵ , (3)

where Ŵ is the matrix of all pairwise measurements with
zero imputed for unknown entries, and D̂ = diag(Ŵ1). The
motivation for imputation with zero can be seen by rewriting
the spectral clustering problem. The second eigenvector of
the Laplacian L̂ can be found as

v̂2 = argminvv
⊤L̂v = argminv

∑

ij

ŵij(v(i)− v(j))2 (4)

s.t. v⊤v = 1 (5)

v⊤1 = 0. (6)

Thus, similarities act as weights on soft constraints between
eigenvector components. By imputing zero for missing sim-
ilarities we merely ignore those constraints which are not
supported by a measurement.

For any set of similarities Ŵ , the second eigenvector v̂2
gives the best guess for an embedding of the objects on
the line. The embedding is such that two groups of simi-
lar objects are embedded away from zero, on the negative
or positive orthant, respectively. Any objects that are ap-
proximately equally similar to all remaining objects are em-
bedded near zero. This is intuitive, for these are the ob-
jects that cannot clearly be assigned to either of the two
groups. Indeed, since a mean can be found by minimizing
a mean squared error, we see from Eq. (4) that an object
i with approximately constant similarities ŵij to remain-
ing objects j should be embedded near the average of their
embedding locations v̂2(j). On the other hand, if the data
actually clusters well and is reasonably balanced, then we
expect the second eigenvector v2 of the true Laplacian L to
have elements with magnitude on the order of 1/

√
n, since

v⊤2 v2 = 1. In this way, the elements of most realistic em-
beddings v2 should be expected to be bounded away from
zero. Spectral clustering based on incomplete data Ŵ par-
titions the objects by looking at the signs of the embedding
v̂2 (Eq. (2), with threshold at zero). Consequently, objects
which are embedded near zero are the objects about whose
cluster label we should be most “uncertain” about.

In many practical cases, a relatively small amount of data
suffices so that v̂2 already indicates a useful clustering. The
left sign vector shown in Figure 1 demonstrates this on a real
dataset. We use such partial information as a guide towards
measurements that more quickly reveal the true nature of
the clustering. In this approach, our earlier intuition about
the magnitude of v̂2 components plays a crucial role. More
specifically, our active learning strategy uses matrix pertur-
bation theory to reveal that entry of Ŵ for which a constant
perturbation would change theminimum magnitude element
of v̂2 the most. The rationale is that by focussing on small
magnitude components, we more quickly move them away
from the cluster boundary (i.e. 0), and thus reduce uncer-
tainty in the partial clustering. In effect, we try to choose
measurements that help us push the embedding clusters fur-
ther apart. If the data actually clusters well, this should
quickly guide us to the clean clustering we expect to find.



Algorithm 1: IU-RED

S = {(i, j) : i, j ∈ {1, . . . , n}, i < j}
Ŵ = I
for t = 1, . . . , n(n− 1)/2

L̂ = diag(Ŵ1)− Ŵ =
∑n

p=1 λ̂pv̂pv̂
⊤
p

kmin = argmink|v̂2(k)| (1)

(i∗, j∗) = argmax(i,j)∈S

∣

∣

∣

dv̂2(kmin)
dŵij

∣

∣

∣
(2)

= argmax(i,j)∈S

∣

∣

∣

∣

∑n
p>2

v̂⊤

2 [∂L̂/∂ŵij ]v̂p
λ̂2−λ̂p

v̂p(kmin)

∣

∣

∣

∣

(3)

S = S \ {(i∗, j∗)}
ŵi∗j∗ = wi∗j∗ , ŵj∗i∗ = wj∗i∗

return Second eigenvector of L̂ = diag(Ŵ1)− Ŵ

Suppose we have the Laplacian eigenvector decomposition
L̂ =

∑n
p=1 λ̂pv̂pv̂

⊤
p and that λ̂1 ≤ λ̂2 . . . ≤ λ̂n. For spectral

clustering, λ̂1 = 0 and v1 = 1/
√
n. Matrix perturbation

theory (e.g. Stewart and Sun [21], Chapter V, Section 2.3)
gives the first order change of the second eigenvector as

dv̂2
dŵij

=
n
∑

p>2

v̂⊤2

[

∂L̂/∂ŵij

]

v̂p

λ̂2 − λ̂p

v̂p, (7)

provided λ̂2 has multiplicity 1. Note that ∂L̂/∂ŵij = (ei −
ej)(ei−ej)

⊤, where ei is the indicator vector of i. If kmin =
argmink|v̂2(k)|, the change to the smallest magnitude ele-
ment of v̂2 is dv̂2(kmin)/dŵij . Our proposed active learning
algorithm, IU-RED, is given in Algorithm 1.

A recent algorithm due to Shamir and Tishby [18] has
a similar structure. The main steps are shown in Algo-
rithm 2, which we refer to as S&T throughout.1 The algo-
rithm chooses measurements that maximize the global change
to v̂2 by maximizing the norm on line 2. The reasoning is
the following: As more measurements are acquired, the esti-
mate v̂2 will necessarily converge to the true eigenvector v2,
regardless of the query ordering, since only a finite number
of measurements can be made. Since constant perturbations
to elements of Ŵ can have varying effects on v̂2, we should
choose to update that element where the effect is largest.

If the similarity matrices were random, we would not ex-
pect to see partial clusterings emerge in v̂2, even with fairly
large amounts of data. Figure 1 has highlighted this. In this
unstructured setting, Shamir and Tishby’s method may well
be the best we can do, for it targets the global change in the
clustering solution. Our algorithm exploits that practical
similarity matrices are highly structured even when severely
subsampled and uses this partial information as a guide for
query selection. Our experiments emphasize that the empir-
ical improvements of our method are significant, even though
the algorithmic differences may at first appear minor.

1The full algorithm requires a “budget” parameter b which
specifies the maximum number of measurements that can
be requested from an oracle. For this paper, we set b =
n(n − 1)/2. Another version of their algorithm interleaves
active selection with random selection, which we consider in
our experiments.

Algorithm 2: S&T [18]

S = {(i, j) : i, j ∈ {1, . . . , n}, i < j}
Ŵ = I
for t = 1, . . . , n(n− 1)/2

L̂ = diag(Ŵ1)− Ŵ =
∑n

p=1 λ̂pv̂pv̂
⊤
p (1)

(i∗, j∗) = argmax(i,j)∈S

∣

∣

∣

∣

∣

∣

dv̂2
dŵij

∣

∣

∣

∣

∣

∣

2

2
(2)

= argmax(i,j)∈S

∣

∣

∣

∣

∣

∣

∣

∣

∑n
p>2

v̂⊤

2 [∂L̂/∂ŵij ]v̂p
λ̂2−λ̂p

v̂p

∣

∣

∣

∣

∣

∣

∣

∣

2

2

(3)

S = S \ {(i∗, j∗)}
ŵi∗j∗ = wi∗j∗ , ŵj∗i∗ = wj∗i∗

return Second eigenvector of L̂ = diag(Ŵ1)− Ŵ

5. MEASUREMENT NOISE
In many settings, only noisy similarities can be measured.

In the Section 6, for example, we consider a crowdsourc-
ing application where similarities are manually assigned by
human labelers. A significant factor there is that even co-
operative workers may disagree on similarity scores. Noisy
similarities can be a fundamental problem, yet their impact
on spectral clustering has not been thoroughly understood.
Huang et al. [11] are among the few to investigate the ef-
fects of perturbations when all similarities are known. To
our knowledge, active spectral clustering with costly and
noisy measurements has not been considered.

The simplest way to deal with noise is to take the mean or
median of multiple repeated measurements. However, given
m repeated measurements of normally distributed similari-
ties, both the mean and median have a standard deviation
that is only a factor of O(1/

√
m) smaller than that of a sin-

gle measurement. Thus, to halve the standard deviation we
need about four times as many measurements. Thus, mea-
suring every similarity multiple times is a fairly expensive
way to reduce the effects of noise. It is especially wasteful
since it is likely that only similarities of objects close to the
cluster boundaries need to be known accurately to resolve
the decision boundary. This section gives an active learning
algorithm that asks for repeat measurements only when the
measurement can significantly change the current solution
and when our uncertainty in the true similarity is large.

We have extended IU-RED to maintain a “running me-
dian” estimate for each similarity. At any time, the true
similarity is estimated as the median of any repeat mea-
surements. Additionally, we maintain for each similarity es-
timate ŵij an estimate of its standard deviation, σ̂ij . When
no measurements were made, we let the standard deviation
be that of a uniform on [0, 1]; i.e., σ̂ij =

√

1/12 ≈ 0.2887.
After a single measurement we set σ̂ij = s, an estimate of
the population standard deviation, and we let σ̂ij = s/

√
m

for m repeat measurements.2 IU-RED was then modified
to choose that measurement (possibly a repeat) where the
product σ̂ij |dv̂2(kmin)/dŵij | is maximal. This amounts to

2Several variations of this theme could be considered. Given
enough samples, frequentist confidence intervals of the me-
dian could be estimated using the bootstrap. Alternatively,
given prior information one could use Bayesian techniques
to estimate posterior means and variances.
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Figure 2: Results on synthetic datasets. For each dataset we sampled a total of 200 points from two Gaussians
of increasing separation. Methods are evaluated on the average misclustering error rate, relative to a spectral
clustering solution with complete data. Our proposed methods are “IU-RED” and “IU-RED, interleave”.

choosing that measurement where our current estimate is
uncertain and where the uncertainty matters. The S&T al-
gorithm can be similarly modified and is considered in that
form during our experiments.

6. RESULTS
We begin this section by evaluating the basic IU-RED al-

gorithm of Section 4 on synthetic and real datasets. Subsec-
tion 6.3 then considers the extension to noisy measurements.

Our methods include IU-RED and a version of IU-RED
where active selection is interleaved with random selection.
We compared against three alternatives: S&T, S&T with
interleaved random selection, and random selection only.
The last three methods have been previously evaluated in
Shamir and Tishby [18] using a similar evaluation method-
ology and on similar datasets as we consider here. In par-
ticular, we consider binary classification, which can be ex-
tended to more than two clusters by recursive splitting or by
expanding the reasoning outlined here to more eigenvectors.

Shamir and Tishby also evaluated an algorithm based on
the Nyström method [7], but often found performance to be
poor if the low rank assumption was not met. We evaluate
all methods on the misclustering error, relative to a spec-
tral clustering solution with complete dat and give average
results over 20 runs.

6.1 Synthetic Datasets
We first present results on a simple clustering task in

which the data is drawn from mixtures of Gaussians with
two components. The data and results are shown in Fig-
ure 2. For each dataset we sampled a total of 200 points
from two Gaussians of increasing separation. We normal-
ized the data to lie in the unit hypercube and used a stan-
dard radial basis function kernel to compute similarities. As
expected, random selection usually performs worst, except
when the cluster separation is minimal. Compared to our
two algorithms, S&T does poorly even on easy problems.
As reported in [18], interleaving with random selection sig-
nificantly boosts performance. IU-RED outperforms both
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Figure 3: Results on several real datasets. Methods are evaluated on the average misclustering error rate,
relative to a spectral clustering solution with complete data. Our proposed methods are “IU-RED” and
“IU-RED, interleave”. Note that the scaling of the x-axis changes between plots.

versions of S&T early on, but ties with them towards the
end. Interestingly, while interleaving IU-RED appears to
eventually stabilize the error rates, it slightly hurts perfor-
mance early on.

6.2 Real Datasets
We have also evaluated our algorithm on a variety of real

datasets. Five of the sets in this subsection are from the
UCI repository [8] (iris, wine, pendigits, waveform, segmen-
tation). An additional dataset concerning the similarity of
faces is available from the University of Washington [15]. We
followed [11, 18] and normalized the data to lie in the unit
hypercube and used the Gaussian kernel to compute similar-
ities.3 Figures 3(a)–(e) show the results on the UCI datasets.
Figure 3(f) shows results on the face dataset. Note that the
scaling of the x-axis changes between plots. The difference

3Although the UCI datasets were previously analyzed
in [18], the results are not directly comparable, since their
evaluations used different kernel parameters. Also, since
each of these datasets contains more than two classes, it
is possible that we chose two different classes for evaluating
the spectral clustering.

between methods is amplified on these datasets. Except
for the iris dataset in Figure 3(a), S&T performs relatively
poorly, and is eventually outperformed by random selection.
On three of five UCI datasets IU-RED outperforms all other
methods early on. Interleaving usually increases the error
initially, but eventually leads to a more stable algorithm
with marginally lower error. The exception is the waveform
dataset in Figure 3(d) where interleaving helps significantly.
Lastly, on the face dataset IU-RED also outperforms S&T
early on, with slight gains for interleaving.

We conducted a further experiment to assess whether the
superior performance of IU-RED over S&T can be seen after
a single active learning step, or only emerges after many such
steps. In this experiment, we sampled a subset of similari-
ties of approximately constant size uniformly at random and
measured the decrease in error rate over one active selection
step. These results were averaged over 30000 restarts. The
first five rows of Table 1 show results for UCI data, the sixth
row for the face data, and the last row for similarity matrices
with off-diagonal entries uniform in [0, 1]. On four out of
five UCI datasets and on the face dataset, IU-RED decreases
the error more than S&T. The one dataset where we perform



Figure 4: Spectral clustering of photos with complete data. The top row shows example views of the kitchen,
and the bottom row example views of the living room. Humans can easily determine that photos in each row
were probably taken in the same room, but a computer algorithm would have difficulty solving this task.

worse is the waveform dataset, which Figure 3(d) shows to be
challenging for all methods. Overall, our method performs
much better than S&T on structured similarity matrices.
On random matrices both algorithms perform poorly, but
now S&T performs better than IU-RED.

6.3 Wearable Camera Dataset
Our next experiment focuses on the realistic example out-

lined in the Introduction where similarities are hard to com-
pute and noisy. The data of interest is a photo stream,
acquired by a wearable camera at a rate of about one photo
per 20 seconds. Clustering the data by the location at which
an image was taken may be useful in a variety of applica-
tions, ranging from health (e.g., in diagnosis and life quality
improvement for Alzheimer’s patients) to summarization of
personal memories. Because the data is collected in an en-
tirely unconstrained way, analyzing it is beyond the capa-
bilities of current unsupervised algorithms. The top row of
Figure 4, for example, shows five images taken in the same
kitchen. Clustering clearly requires some human input; at
the very least a preliminary annotation that could be used
to train supervised computer vision algorithms. It is im-
practical to ask annotators to simply label images by their
location, since salient locations and their number only be-
come evident as the stream progresses and may change from
week to week, and from subject to subject. Also, locations
may be interconnected, and multiple locations might be vis-
ible from the same viewpoint. In our data, for example, an
open kitchen connects to the living room so that large parts
of the space can be perceived to belong to both rooms. It is
much more natural (and cost effective) to collect similarities
between images and to infer a clustering from that data.

We took this approach in order to cluster 100 images taken
from the photo stream described above [12]. Of these, about
50 were taken in an open kitchen, and 50 were taken in the
adjacent living room. Some example images are shown in
Figure 4. We asked workers on Amazon Mechanical Turk to
rate, on a scale from 1 to 10, how likely it was that a given
pair of images was taken in the same room, with 10 indicat-
ing certainty. The user ratings were divided by 10 and then
used as similarities. Humans are adept at matching rooms
by a loose jumble of visible objects, making this task fairly
realistic. Indeed, the two rows of Figure 4 show representa-
tive examples from a partition that was found by spectral

clustering using the complete median similarity matrix, with
the median running over three repeat measurements. A sub-
sampled version of the median similarity matrix was shown
in Figure 1 on the left. To collect one similarity for each
pair of photos costs a total of US$74, so the three repeats
required for the median cost a total of US$222.

We first evaluated our algorithms on the median similarity
matrix using the same methods as before. The results are
shown in Figure 5(a). The legend is the same as in Figure 2.
Note that the x-axis is scaled to extend beyond 1.0, to ac-
count for the three repeat measurements necessary to com-
pute one median similarity. A fraction of f indicates that
a total of fn(n − 1)/2 pairwise measurements were made.
As before, our method outperforms a number of competitors
early on. The results can be also interpreted in terms of the
amount of money that must be expended to achieve a clus-
tering result of fixed quality. Each image comparison cost
us US$0.045 on Amazon Mechanical Turk. Table 2 shows
the resulting approximate cost in US$ for each algorithm in
order to achieve an error rate of 0.05. IU-RED is at least
4 times cheaper than S&T, which costs more than 30% of
the complete-labelling cost. This difference can easily render
larger image clustering tasks than ours impractical.

We also evaluated how IU-RED and S&T compare over
only one active choice. The result is shown in the row of
Table 1 labeled “photos.” As before, our active learning
framework outperforms that of Shamir and Tishby.

Next, we consider the extension of IU-RED to deal with
noisy similarities, as outlined in Section 5. Figure 6 illus-
trates the type of noise encountered in this labelling task.
We allow up to three repeat measurements of similarities
that are known with high uncertainty and which can poten-
tially change the current solution. The results are shown in
Figure 5(b). For comparison, Figure 5(c) shows results when
no repeat measurements are allowed and the standard devi-
ation is not estimated. The latter is the extreme counterpart
to measuring every similarity three times. All error rates are
relative to a spectral clustering computed from the complete
median similarity matrix, averaged over 20 runs. As before,
we scaled the x-axes to show the effective fraction of pairwise
measurements that was made. For the no-repeats framework
in Figure 5(c) this fraction cannot be larger than 1.0. An-
other important consequence of this measuring framework
is that all algorithms should yield approximately the same
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Figure 5: Results on the “photos” dataset. Fig-
ure (a) shows results when true similarities are es-
timated as the median of three measurements. Fig-
ure (b) shows results when the algorithm is allowed
choose which repeat measurements to make. Up to
three repeats are allowed. Figure (c) shows results
when similarities are estimated by a single noisy
measurement. The legend is the same as in Figure 3.

average error rate at a fraction of 1.0, since at that point
every algorithm has observed one complete set of (noisy)
similarities. The differences between algorithms are thus
only appreciated in the first half of the Figure 5(c).

Both versions of IU-RED continue to beat the remain-
ing algorithms in either of the two new settings. However,
random interleaving now helps slightly, where it was detri-
mental before. With the exception of S&T, most methods
improve early on compared to Figure 5(a). On the one hand
this is intuitive, since as long as the similarities are not ex-
tremely noisy, three measurements do not convey three times
as much information as one. One the other hand, it suggests
that moderately noisy measurements can still be quite in-
formative. Even so, we emphasize again that all algorithms
should perform identically at a fraction of 1.0 in Figure 5(c).
Maintaining running estimates and their accuracies is there-
fore preferable as it does not force performance to equalize
once a fixed measurement quantum has been reached. In-
deed, both IU-RED and IU-RED with random interleaving
perform marginally better in Figure 5(b) than Figure 5(c)
once a fraction of 1.0 measurements is reached.

Dataset IU-RED S&T
iris 0.0078 ± 0.0002 0.0016 ± 0.0001
wine 0.0103 ± 0.0003 -0.0010 ± 0.0003

pendigits 0.0067 ± 0.0002 -0.0007 ± 0.0002
waveform -0.0018 ± 0.0002 0.0008 ± 0.0001

segmentation 0.0104 ± 0.0002 0.0002 ± 0.0002
face 0.0009 ± 0.0001 0.0001 ± 0.0001

photos 0.0126 ± 0.0003 -0.0021 ± 0.0002
uniform -0.0057 ± 0.0009 -0.0037 ± 0.0007

Table 1: Average decrease in error rate across one
selection step. IU-RED generally decreases the er-
ror more than S&T.

Random S&T S&T, inter. IU-RED IU-RED, inter.
$53 > $70 $32 $17 $21

Table 2: Approximate labelling costs in US$ to
achieve a 0.05 error rate on the photos dataset.

Figure 6: Worker disagreement for two image com-
parisons on Amazon Mechanical Turk. For the
left two photos, workers agreed they were certainly
taken in the same room; for the right two, one
worker asserted they were definitely not.

7. CONCLUSION
In this paper we have presented and evaluated an active

learning algorithm for spectral clustering. Our main insight
is that similarity matrices are not random, but usually ex-
hibit clear clustering structure. Even when observing only
a small fraction of the data, this structure becomes evident.
Furthermore, assuming that the data clusters well, the final
v2 will usually have elements well away from zero. Moti-
vated by these observations, our algorithm uses the current
estimate v̂2 to choose measurements that will be most use-
ful in removing elements close to zero, i.e., to push the two
clusters in v̂2 apart. We have applied this algorithm to a
range of datasets and showed that it generally outperforms
a related algorithm by Shamir and Tishby.

The effects of costly and noisy similarities have so far been
ignored in the active learning setting. We propose an exten-
sion of our algorithm that maintains running estimates of the
true similarities as well as their accuracies. By taking these
accuracies into account during query selection, we can po-
tentially avoid unnecessary repeat measurements and speed
up the learning process in noisy settings.

Rahimi and Recht [16] previously showed that a version
of spectral clustering related to normalized cuts [20] clusters
data by finding a hyperplane that cuts the data in a lifted
space. The signed distances of points to the hyperplane are
given by rescaled elements of an Laplacian eigenvector, and
the partitioning can be done by taking the sign of the dis-
tances. If we have that W1 = c1, for some c > 0, then
their result implies that our version of spectral clustering
also finds such a hyperplane, and that the signed distances
are proportional to the second eigenvector v2. Our active



learning approach can then be interpreted as choosing mea-
surements that can maximally perturb the margin between
a hyperplane and the lifted datapoints. Rahimi and Recht’s
observation has recently been used to derive an active learn-
ing rule for the spectral graph transducer [2]. Here W is
completely known, but for each object an additional binary
class label can be queried. The rule chooses to label that
point next which is currently closest to a hyperplane. Similar
heuristics have also been employed in a number of other clas-
sifiers and clustering frameworks [3, 13, 23, 27]. In all these
methods, however, the pairwise similarities are assumed to
be known initially (either implicitly or explicitly) but ad-
ditional labels or constraints can be queried. In contrast,
our setting allows for incomplete similarities which we can
(perhaps only noisily) measure at high cost.
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