
S„	(an — io. )r/U

t	Time
U	Rotor linear velocity at the mean radius
Z	Complex gain, Z = R e+fl

a	Disturbance growth rate
Feedback phase angle
Flow coefficient, Axial Velocity/Wheel Speed

S	Flow coefficient perturbation
y	Control vane stagger angle
A	Inertia parameter for compressor rotors
µ	Inertia parameter for compressor
i9	Circumferential coordinate
p	Fluid density
T	Characteristic time

Non-dimensional characteristic time
[o	Disturbance frequency
yi	Total-to-static pressure rise

Vt	Torque coefficient, Torquel(Annulus Area • pU2r)

Subscripts
e Exit
i Inlet
ideal Ideal (Euler's Eq.)
IGV Inlet guide vane
isen Isentropic
n Harmonic number
r Rotor
s Stator
1 Upstream of IGV's
2 Downstream of control vanes

Superscriptrscript
-	Time average
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ACTIVE STABILIZATION OF ROTATING STALL
IN A THREE-STAGE AXIAL COMPRESSOR

Joel M. Haynes, Gavin J. Hendricks, and Alan H. Epstein
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ABSTRACT
A three-stage, low speed axial research compressor has been

actively stabilized by damping low amplitude circumferentially
travelling waves which can grow into rotating stall. Using a
circumferential array of hot wire sensors, and an array of high
speed individually positioned control vanes as the actuator, the
first and second spatial harmonics of the compressor were
stabilized down to a characteristic slope of 0.9, yielding an 8%
increase in operating flow range. Stabilization of the third spatial
harmonic did not alter the stalling flow coefficient. The actuators
were also used open loop to determine the forced response
behavior of the compressor. A system identification procedure
applied to the forced response data then yielded the compressor
transfer function. The Moore-Greitzer, 2-D, stability model was
modified as suggested by the measurements to include the effect
of blade row time lags on the compressor dynamics. This
modified Moore-Greitzer model was then used to predict both the
open and closed loop dynamic response of the compressor. The
model predictions agreed closely with the experimental results.
In particular, the model predicted both the mass flow at stall
without control and the design parameters needed by, and the
range extension realized from, active control.

NOMENCLATURE
A„ Coefficient of nth spatial harmonic of flow

coefficient perturbation
L Total pressure loss
SL Perturbation in total pressure loss
n Spatial harmonic number
P Static pressure
Pr Total pressure
6P Pressure perturbation
r Compressor annulus mean radius
R Feedback gain
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TABLE 1

MIT THREE-STAGE AXIAL COMPRESSOR DESIGN PARAMETERS

Tip Diameter (mm.) 610.00
Hub-to-Tip Ratio 0.88
Design Average Reaction 0.75
Design Flow Coefficient 0.59
Pressure Rise Coefficient (@design) 2.03
Efficiency (@design) 84.3%
Stalling Flow Coefficient 0.460

No. of
Blades

Chord
(mm.)

Camber
(degrees)

Stagger
(degrees)

Tip
Clearance*

(mm)

Leading Edge
Blade Angle*

(degrees)

Trailing Edge
Blade Angle*

(degrees)

Inlet Guide Vanes 125 20.1 11.0 8.1 0 10.0
IGV to CV Gap 6.0
Control Vanes 12 81.2 0.0 8.1 8.1 8.1
CV toRi Gap 13.0
Rotor 1 54 45.2 17.0 42.8 0.97 50.0 41.0
R1 to S 1 Gap 20.0
Stator 1 85 31.4 27.0 11.0 0.81 54.5 36.5
Si to R2 Gap 20.0
Rotor 2 55 44.8 18.0 43.5 0.94 58.0 38.0
R2 to S2 Gap 20.0
Stator 2 88 31.3 25.0 12.0 0.94 18.0 -1.0
S2 to R3 Gap 20.0
Rotor 3 49 50.7 20.0 44.6 0.89 27.5 2.5
R3 to S3 Gap 18.0
Stator 3 90 31.4 53.0 5.5 0.86 36.5 -17.0

*Measured by Gamache	CV = Control Vane
	

IGV = Inlet Guide Vane

INTRODUCTION

Axial flow compressors suffer from inherent hydrodynamic

instabilities known as surge and rotating stall. Surge is a one-

dimensional mass flow disturbance involving the entire

compression system, while rotating stall has a two- or three-

dimensional structure rotating about and local to the compressor

blading. Both are large amplitude disturbances, disrupting

compressor operation and imposing large structural loads, and so

are unacceptable in routine compressor operation.

A useful theoretical model of compressor hydrodynamic

stability started with Emmons et al. (1955) and has evolved

through Moore and Greitzer (1986). In this analysis, surge and

rotating stall are simply the mature form of the natural oscillatory

modes of the compression system. Surge is the lowest (zero)

order mode and rotating stall is the higher order modes. This

model predicts that these hydrodynamic disturbances start at very

small amplitude (during which time the modes may be considered

as linear and decoupled) but quickly grow into their large

amplitude form, surge and rotating stall (which exhibit nonlinear

behavior and whose dynamics are coupled). Thus, the stability of

the compressor is equivalent to the stability of these small

amplitude waves which exist prior to stall. Gamier et al. (1991),

McDougal et al. (1990), and Etchevers (1992) presented

experimental data showing the existence of these low amplitude

waves and their evolution into stall in several axial compressors.

More recently, Paduano and Gysling (1992) have shown that the

details of the time evolution of the disturbances, especially the

wave form, is quite sensitive to the shape of the compressor

pressure rise versus mass flow characteristic.

Epstein, Ffowcs Williams, and Greitzer (1989) first

suggested that surge and rotating stall could be prevented by

using active feedback control to damp the hydrodynamic

disturbances while they are still at small amplitude. Aside from

reducing the control authority required, control of the fluid

disturbances while they still are at very low amplitude permits

incipient surge and rotating stall to be treated and controlled

separately (since their behavior will be linear and decoupled).

Active suppression of surge was subsequently demonstrated

experimentally on centrifugal compressors by Ffowcs Williams

and Huang (1989) and Pinsley et al. (1991), and on an axial

compressor by Day (1991). Paduano et al. (1991) demonstrated

active suppression of rotating stall in a single-stage low speed

compressor. By damping the small amplitude travelling waves

rotating about the annulus prior to stall, they increased the stable

flow range of the compressor by 25%.

The data of Paduano et al. provides strong experimental

evidence that at least the qualitative structure of the

hydrodynamic stability theory is appropriate for this type of

compressor and that, indeed, rotating stall can evolve from small

amplitude travelling waves since damping these waves prevents

the formation of rotating stall. In those experiments, the

travelling waves were decomposed into separate spatial

harmonics with each harmonic controlled individually. This

showed that the linear and decoupled behavior predicted by the

theory did indeed occur. The theory, however, predicted that all

spatial harmonics go unstable at the same mass flow, while the

experiment showed that the lower the harmonic, the higher the

mass flow at instability. This behavior has an important

implication for active control since it means that all spatial

harmonics need not be simultaneously controlled in order to
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Fig. 1: Three-stage compressor arrangement with individ-
ually actuated high speed control vanes.

realize an increase in compressor operating range, greatly

simplifying the physical realization of such a control system.

In the work presented herein, we extend the experimental

single-stage work of Paduano by applying the same active control

techniques to a three-stage, low speed research compressor. Both
open loop forced response and closed loop actively stabilized data

are presented. We also extend the two-dimensional, incompress-

ible hydrodynamic stability theory of Moore and Greitzer to in-

clude non-ideal effects such as time lags associated with the

development of viscous losses and deviations. These

modifications have the effect of separating in mass flow the

Axial Station

Bell Mouth	 e	 o

inception of the instabilities of individual spatial harmonics as

observed by Paduano. We then show that this theory does an

excellent job in quantitatively predicting both the open and closed

loop dynamic behavior of the three-stage compressor. This

includes predicting the natural stall point (inception of rotating

stall without control) and predicting both the controller

parameters required and the improvement in mass flow range

gained from active control. Finally, we make some comments on

the utility of an actively stabilized machine for exploration of

compressor dynamics.

Experimental Apparatus
A 0.6 meter diameter, three-stage low speed axial research

compressor was adapted for use as a test article in these

experiments. Work in this rig was previously reported by

Gamache (1990), Lavrich (1988), and Gamier et al. (1991). The

blading details are given in Table 1. The control scheme adopted

was that used by Paduano et al. in which the travelling waves of

axial velocity are detected by a circumferential array of hot wires

just upstream of the compressor and individually actuated vanes

upstream of the rotor are used to generate the rotating disturbance

structure required for control. The test compressor was

appropriately modified by moving the inlet guide vanes (IGV's)

sufficiently far upstream so that control vanes could be placed

between the IGV's and the first rotor. In this arrangement, the

inlet guide vanes produce the mean swirl while the unchambered

control vanes provide the time and circumferential variations

0	 0

Inlet 1	+	+	+	+	+	+	+	+

Inlet 2

ll\l\lll\l\\l\ll\l\ll\ \l\111^l\\\\\\lllll\\1l\ \\\\ll\l\ll\ll111111\1111\\1l\111\11\ \\l\\l1\\\\\\\

Control \\\\\\\\\\\Vanes

	

Behind R1 +	 +	 +	 +

0\\\\\1\\\\\\\\\\\\\0\\\\\1111\\\\\O1\\\\\\\\\\\\\\\\\\\\

	Behind R2 +	+	+	+	+	+	+	+

	

Behind R3 +	 +	 +	 +

0\1\\\1\\\\\\\\\\\\\\\\\\\1111\\\\1\\\\\\\\\\\\\\\\\\\\\\

Downstream -

	0 	 it
	 • Struts	 Zit

A Total Pressure
• Wall Static Pressure
+ Hot-Wire Probe Holders

Fig. 2: Layout of compressor blading and instrumentation.
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needed to stabilize the compressor. Each of the twelve control

vane assemblies consisted of NACA 65-0009 cast epoxy airfoils,

cantilevered from a hollow core, high torque to inertia DC servo

motor (Fig. 1). Instrumentation included circumferential hot

wire, total pressure, and static pressure arrays mounted

throughout the compressor (Fig. 2). Additional measurements

consisted of rotor speed and torque, average compressor mass

flow (from a venturi), and rig housekeeping. The net

measurement precision of the flow coefficient (0), the pressure

rise coefficient (v'), the torque coefficient (yit), and the rotor

speed were all ±0.3% or better. Control vane angles were

measured to ±0.05°. On the stable portion of the compressor

characteristic near the point of instability, the signal-to-noise

ratios of the first three spatial harmonics were 46 dB, 29 dB, and

23 dB respectively.
The control system hardware is illustrated in Fig. 3. The

signals from the eight hot wire anemometers mounted about the

compressor circumference are filtered by four-pole Bessel filters

set at 1000 Hz, which is 25 times the shaft frequency, ms. The

signals are then digitized by a 16-bit A/D system in an 80486

computer, which implements the control laws and outputs the

commanded control vane positions to individual vane position

control systems. These consist of closed loop, PID position

servos, one for each channel, feeding 350 watt servo amplifiers

which drive the DC servo motors. Optical encoders mounted on

each motor provide a vane position signal to the position servos.

The vane servo loops operated at 50 w, (2000 Hz), while the

entire control loop in the computer was operated at 12.5 a),s (500

Hz). The control vane system dynamic response was determined

by driving the vane array with a pseudo-random binary signal

with a minimum frequency of 2.5 o, (100 Hz), while the

compressor was operated near its stall point. These

measurements showed that the transfer function of the flow

actuation system could be modelled quite closely by two second

order systems in series with a natural frequency of 170 Hz and a

damping ratio of 0.35. This yields a frequency response flat to ±3

dB up to 3 co,t (120 Hz). The first spatial harmonic of rotating

stall is approximately 03 03 (12.5 Hz) in this compressor.

The rotating stall control algorithms were similar to those

used by Paduano. At each time step, the anemometer data is

digitized and linearized into axial velocity; a discrete spatial

Fourier transform is then used to decompose the eight velocity

measurements into spatial harmonics (only modes 1, 2, and 3

were examined here); a separate control law is then implemented

on each spatial harmonic; and then an inverse discrete Fourier

transform on the spatial harmonics is taken to yield individual

blade position commands to each of the 12 control vane position

control systems.

A simple proportional control law was implemented in these

experiments. For each spatial harmonic n, the change in control

vane stagger angle, y, is proportional to the measured change in

axial velocity, V.

-------------------------------------------------------------,

486-based PC

Control vane

Active control software:	 position	 ,

AID	 - DFT of hot-wire signals	
commands	Motion control	̂

- Modal control law	 (az)
- IDFT to blade commands

^---	---------------------------------------	-------------J

current
command

...............................	
------------------------------

Bessel filters	 Anemometers `•

velocity signals

Encoders "I I

Vane position

Servo amp
(350 W)

current to motors
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87 n =Z.Vn	 (1)

where Z4, is the complex constant of proportionality

Zn =_ R,i e'6n	 (2)

R„ represents the gain of the controller, while 13,E is the phase

angle between the measured velocity perturbation and

commanded stagger angle change for each harmonic. With this

harmonic by harmonic control scheme, /, a is a spatial lead which
can account for both lags in the control system and the dynamics

of the compressor. The total change in vane stagger angle is then

simply the sum of the deflections calculated for the individual

harmonics being studied (1, 2, or 3 in this case). Paduano

established the optimum gain and phase for each harmonic

empirically. Here, as will be shown later, theory can be used to

calculate the optimum feedback gain and phase with results

closely matching those found experimentally.

Steady State Compressor Performance
In addition to the active stabilization experiments, steady

state measurements were taken both to assess the compressor

operating characteristics and to establish the aerodynamic

parameters needed as input to the analytical modeling and control

law design. These included measurements of the speedline shape,

the torque efficiency, and the influence of control vane stagger

angle (y) on the non-dimensional pressure rise coefficient (yr).

Specifically, the a idy values required by the theory were

derived from measurements of the steady state influence of vane

stagger on compressor pressure rise, as illustrated in Fig. 4. The

resultant values of d 4dyand d4'/do are shown in Fig. 5. Data in

the normally unstable low flow area were taken while the

compressor was stabilized with feedback control.

Compressor Performance With Active Stabilization
Active feedback stabilization of the first two spatial har-

1.1

y

-0.2
Cs

-0.24

a -0.28

-0.32
ro

aW

acv	̂ .

aY

ra

0
ro

a)

^o
Cl)
m

-2 .--̂o
m
m
0.

-3 0)

	

-0.36 1	 I

	

0.4	0.44	0.48	0.52	0.56	0.6

Flow Coefficient, 0

Fig. 5: Variation of speedline slope (ayda4)) and control
vane angle pressure rise influence (/a') meas-

ured for the three -stage compressor.

monics was implemented as described above. The results using

the optimum feedback gain and phase found are illustrated on the

speedline in Fig. 6. Control of the first harmonic yields a range

increase of 3%, while control of the first and second harmonics

together increase that to 8%. At this point, the speedline slope is

0.9. The compressor torque efficiency continues to decrease

smoothly in the actively stabilized region.

It is useful to examine the time history of the transient into

stall as an aid in understanding the instability evolution process.

The time history of the axial velocity measured by the eight

sensors about the compressor circumference is shown in Fig. 7 for

the unstabilized compressor. Here, the smooth growth of the first

spatial harmonic wave is quite apparent for the 15 rotor

revolutions illustrated before stall (it is highlighted by the parallel

dotted lines in the figure). When the first spatial harmonic is

actively suppressed (Fig. 8), the stall inception process is different

a 1

0.9

0
o 0.8
V
U,

rx

y 0.7
8

0.6

^M

Y

Y= 23.1°

OA	0.5	0.6	0:
Flow Coefficient, 0

1.04

1.02

4)stall
0.98 4)1

U 0.96	4)sralll,z

0.94

No Control
0.92 o 1st Harmonic Control Only

x 1st & 2nd Harmonic Control
°	0.9

	

0.4	0.44	0.48	0.52	0.56	0.6

Flow Coefficient,

Fig. 4: The influence of uniform control vane stagger angle
(Y) on the compressor characteristic at 5° intervals
of Y.

Fig. 6: Active stabilization of the first and second spatial
harmonics decreases stalling mass flow by 8%.
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Time, rotor revolutions

Fig. 7: Stall inception flow field around compressor annulus
at midspan, measured upstream of the IGV's when
¢ = 0.46, with no control.
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Fig. 8: Stall inception flow field around compressor annulus
at midspan during first harmonic control, measured
upstream of the IGV's when 0 = 0.45.
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Fig. 9: Magnitude and phases of the first three spatial
Fourier coefficients (SFC) calculated from the stall
inception flow field at midspan (calculated from the
data of Fig. 7).
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Fig. 10: Magnitude and phases of the first three spatial
Fourier coefficients calculated from the stall in-
ception flow field at midspan during first harmonic
control (calculated from the data of Fig. 8).
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198° a-
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1st & 2nd HARMONIC CONTROL
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0	5	10	15	20

Time, rotor revolutions

Fig. 11: Stall inception flow field around compressor annu-
lus during optimal first and second harmonic
control, measured upstream of the IGV's when

= 0.43.

in that it occurs at a lower mass flow and that the low amplitude
waves growing prior to stall have one half the wavelength, as can
be readily seen by comparing Figs. 7 and 8. It is the second
spatial harmonic which goes unstable now and triggers the
rotating stall when the first harmonic is stabilized.

A useful tool for examining the wave growth is a discrete
spatial Fourier transform of the axial velocities measured about
the compressor annulus at each instant in time. This yields a
complex Fourier coefficient for each spatial harmonic, the
magnitude of which represents the instantaneous strength of that
spatial wave, and the phase of which is a measure of the
instantaneous angular position of the wave. Thus, a straight line
phase history indicates that the wave is travelling at constant
angular velocity. This behavior can be seen in Fig. 9, which
presents the spatial Fourier coefficients calculated from the
unstabilized data of Fig. 7. The first harmonic position does

change at a constant rate for some 15 revolutions before stall.

(Note that the compressor is unwrapped here so that 2n radians

represents one revolution of the wave, 4m radians two revolutions,

and so on.) Examination of the magnitudes of the first three

spatial harmonics in Fig. 9 shows that the first is the strongest and

that it grows to large amplitude before the second and third do.

This uncontrolled compressor has a single lobed stall (primarily

first harmonic) at this mass flow. When the first harmonic is
actively stabilized, however, the Fourier coefficient of the second
harmonic is strongest prior to stall (Fig. 10). Once stall starts,
though, the first harmonic quickly dominates. Indeed, examin-

0.2
1st Harmonic—

c2nd Harmoni	----
o > 3rd Harmonic	----•••••

^^ 0.1
1st&2nd

HARMONIC CONTROL
;r 

M'^, 	k ì

^
0

g

1st Harmonic —
2nd Harmonic
3rd Harmonic -•••••••-

N
0)

10

01
0

Time, rotor revolutions

Fig. 12: Magnitude and phases of the first three spatial
Fourier coeffients calculated from the stall
inception flow field at midspan during optimal first
and second harmonic control (calculated from the
data of Fig. 11).

ation of the time history in Fig. 8 shows that once the fully
developed rotating stall is established, it is a single lobed stall.

A time history of the compressor under first and second

harmonic control is shown in Fig. 11 and the corresponding

spatial Fourier coefficients in Fig. 12. Here, the instability

appears to grow from both the first and second harmonic, with the

third harmonic weaker. Again, the fully developed stall is

primarily single lobed. Although the third harmonic does not

appear to play a dominant role in Fig. 12, simultaneous

stabilization of the first three harmonics was implemented with

results shown in Figs. 13 and 14. No increase in stable flow

range is achieved over control of only the first and second

harmonics. The relative roles played by the three spatial

harmonics is not clear from the data in Fig. 14, although the first

harmonic does appear to grow first.

We have now presented experimental data showing that a

low speed multistage axial compressor can be actively stabilized

and illuminating the stall inception processes in this machine. We

will now use this data as an aid in refining an analytical model of

instability inception and show both how this model can

quantitatively predict many details of stall inception and how the

model can be used to design an active control system.

MODELING
The two-dimensional, incompressible theory formulated by

Moore and Greitzer to describe rotating stall implies that, at the

inception of the instability, small amplitude travelling waves

develop in the compressor annulus, grow in magnitude, and

eventually develop into rotating stall cells. In this analysis of
instability inception, an arbitrary axial velocity disturbance is

decomposed into its Fourier spatial harmonics which can then be
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Fig. 13: Stall inception flow field around compressor annu-
lus during optimal first, second and third harmonic
control, measured upstream of the IGV's when

=0.43.

analyzed independently, since the equations describing the

evolution of the instability are linear. If the compressor is
assumed to operate in a quasi-steady manner, i.e. pressure rise is a
function of flow coefficient only, this model predicts that all the
spatial harmonics of the flow coefficient perturbation become

unstable at the operating point where the total-to-static pressure
rise characteristic (yr vs. 0) becomes positively sloped.
Disturbances are damped where the characteristic is negatively
sloped, and amplified where the characteristic is positively
sloped, with the growth or decay rate of the perturbation being

determined by the magnitude of the slope.
Contrary to the assumptions of the above model, airfoils do

not respond instantaneously to changes of incidence, and it has

been observed in experiments (Nagano et al., 1971; Mazzawy,

1977) that the pressure rise across a compressor does not respond

instantaneously to variations in flow coefficient. As will be

shown, this finite response time of the compressor pressure rise

has a stabilizing effect on flow perturbations, stabilizing higher

harmonics to a greater extent than lower ones. When the quasi-

steady assumption in the model is relaxed, and allowance is made

for finite blade-passage flow response times, the spatial

harmonics become unstable sequentially, with higher harmonics

becoming unstable at larger positive slopes of the compressor

total-to-static pressure-rise characteristic (i.e. lower flow

coefficients). This is the behavior observed in the experiments on

both the three-stage compressor being discussed, and previous

experiments on a single-stage compressor (Paduano, 1991;

0.2
to ;^' 1st Harmonic —

8
c

2nd Harmonic ----
3rd Harmonic

0.1 1st ,2nd & 3rd

EE HARMONIC CONTROL ,̂; 
:fi'yF

0

1st Harmonic —
2nd Harmonic ----
3rd Harmonic •••••••••

I-

N
d

U

n	5	10	15
Time, rotor revolutions

Fig. 14: Magnitude and phases of the first three spatial
Fourier coeffients calculated from the stall
inception flow field at midspan during optimal first,
second and third harmonic control (calculated from

the data of Fig. 13).

Paduano et al., 1991).

In the following sections, the model is extended to include

the finite response time and the results are compared to

experimental data.

ACCOUNTING FOR BLADE ROW PRESSURE LOSSES,
DEVIATION AND BLOCKAGE

Current 2-D models of compressor stability like that of

Moore and Greitzer are quite simplified. In these analyses, the

compressor is described only in terms of the slope of its pressure

rise–mass flow characteristic and the inertia of the fluid in the

blade rows. The effects of physical phenomena important to the

compressor designer such as stagnation pressure losses,

deviations, blockage, and characteristic airfoil response times had

not been treated explicitly in these models since little data was

available to evaluate their influence on compressor stability. The

actively stabilized compressor rig is a tool with which such data

may be acquired so that we can now evaluate the relative

importance of these phenomena and modify the analysis

accordingly.
To start, we will quantify the effects of deviation, blockage,

and airfoil unsteady response on the measured compressor

pressure rise. In an ideal compressor with none of the above, the

ideal pressure rise (yy;) can be calculated with the Euler

equation and decreases monotonically with increasing flow

coefficient, as can be seen in Fig. 15. The difference between this

ideal pressure rise and the actual measured one (Vr) is due to the

combined effects of lack of flow turning (due to both deviation as

specified in Carter's rule and blockage which is the result of

viscous effects) and total pressure losses (viscous dissipation in

all compressors plus shock losses in transonic machines). To
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0.4	0.5	0.6	0.

Flow Coefficient, 0

Fig. 15:The difference between the ideal pressure rise
(V' ai) and the isentropic pressure rise (yr, e„) is
due to deviation, while the difference between the
measured pressure rise (p) and yr,^„ is due to total
pressure losses.

separate the two effects, consider the case when the compressor is

operating isentropically so that all of the shaft work goes into

stagnation pressure rise. This isentropic stagnation pressure rise

(risen) 
can be calculated from the measured shaft torque, yit, as:

Vfisen = L ^	2

	

^ — ^	J
(3)

  2cos2 se

where se is the exit flow angle from the last stator. The isentropic

pressure rise characteristic of this compressor is shown in Fig. 15.

The loss in pressure rise represented by the difference between

the ideal (w, j) and the isentropic (yrisen) pressure rises must be

due to lack of turning (i.e. deviation and blockage). While the

loss in pressure rise represented by the difference between the

isentropic rise (Vrism) and the measured rise (yr) must be due to

total pressure losses (viscous dissipation). These are illustrated in

Fig. 15.
The important information in Fig. 15 is that, for the three-

stage compressor considered here, the total pressure losses due to

dissipation, (yr - 1yisen)• increase significantly with reduction of

flow coefficient over the range of interest (to the left of the peak

of the measured characteristic). On the other hand, the loss due to

the deviation (>V,sp.& - yiuen), is relatively flat over this range.

Thus, we would expect the influence of dissipation on compressor

stability to be considerably larger than that of deviation. Both

were modelled and, in fact, the influence of deviations proved

negligible so that in the following sections we will only discuss

the role of dissipation. We have not studied the generality of this

observation to all compressors but have merely exploited it to

simplify the modeling (more details may be found in Haynes

(1992)). We note, however, that Longley and Hynes (1989)

reported deviation to be more important in their compressor than

the one studied here.

Instantaneous
Effective ^r

Wisen

W^ \

` /W — Wises

t+At t Flow Coefficient, 0

Fig. 16:Compressor time lags temporarily decrease the
effective slope of the compressor characteristic
during a transient, as illustrated starting at time, t.

MODELING COMPRESSOR TRANSIENT BEHAVIOR
Dissipation influences compressor stability because of the

time lags the viscous flow introduces. An instantaneous change

in mass flow (axial velocity) abruptly changes the compressor

blading angle of attack. The flow over the blades does not change

instantaneously, however; rather it evolves to the new steady state

over a time period on the order of the bulk convection time

through the blade rows. Emmons et al. (1955) suggested

modeling the evolution of losses as a first order lag. For the step

reduction in 0, the change in stagnation pressure loss & is then

given by:

&Ltransienr = SLquasi—steody (1— a r12^	 (4)

where T is the characteristic time.

Since the instantaneous stagnation pressure losses reflect the

time lags associated with the flow within the compressor blade

passages, the compressor pressure rise must as well. To illustrate

this point, consider an instantaneous reduction in flow coefficient

when the compressor is operating on a positive sloped portion of

the characteristic (Fig. 16). Immediately after the reduction in

flow coefficient, the stagnation pressure loss is at its initial value,

so that the actual pressure rise follows as a curve parallel to the

isentropic pressure rise (yiisen), as shown in Fig. 16. The transient

slope is thus less than the steady-state one, so that the compressor

is more stable than it is in steady state at the same mass flow. In

the operating range where the compressor characteristic slope is

positive (and the compressor unstable), the transient slope can be

negative (and thus the compressor stable) if the transient time

constant is low enough (i.e. if the reduced frequency is high).

This has important implications for the inception of rotating stall

since the stability of disturbances is dependent on the effective

slope of the pressure rise characteristic. Specifically, inclusion of

the time lag can increase compressor stability.
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COMPRESSOR STABILITY MODELING
The analytical model used in this study is an extension to the

one described in Moore (1984), Hynes and Greitzer (1987), and

Epstein, Ffowcs Williams, and Greitzer (1989). The analysis is

two-dimensional, which is appropriate since the machine under

consideration has a high hub-to-tip ratio. The inlet flow field is

undistorted (uniform inlet total pressure), and the inlet and exit

ducts are assumed long, so that end effects, i.e. reflection and

scattering of the disturbance wave from the ends, are not

important. In addition, the tip speed of the compressor is

assumed to be low enough for the flow field to be considered

incompressible.

In the analysis an arbitrary flow perturbation, S¢ is assumed

to be of the form:

0= 
^Anesnem3

	(5)
n=1

where

(an — iw )r
	(6)sn =	U

The rotation rate of the n'th spatial harmonic non-dimensionalized

by the rotor rotational speed is represented by wnrinU, while

amt U represents the non-dimensionalized growth rate of the n'th

spatial harmonic. When the above form of the flow coefficient

perturbation is substituted into the differential equations

describing the dynamics of the fluid in the compression system,

the analysis yields an eigenvalue problem in S, with the growth

and rotation rates of each spatial harmonic determined from the

solution to the eigenvalue problem. If the real part of is

negative, the spatial harmonic is damped, and the compressor

operation is stable; if the real part of s n is positive, the spatial

harmonic grows exponentially, so that the compressor is unstable.

Details of the extension of the stability modeling to account for

finite compressor response time can be found in Appendix A.

The analysis must then be extended to include the effects of

active feedback control. Control is implemented by the temporal

and spatial variation of the control vane stagger angles in

response to a measured inlet axial velocity distribution. The

spatial variation in the control vane stagger angle has two effects

on the compressor inlet flow. The first is an inlet flow angle

variation to the first rotor with an associated variation in pressure

rise. The second is a variation in flow blockage in the compressor

which is a consequence of the variation in blade passage
geometry around the annulus of the compressor. Paduano et al.

(1991) developed a semi-actuator disk model of the control vanes

which accounts for both of these effects. In the present study, this

vane model is retained, but the compressor model is extended to

account for the finite response time of the compressor pressure

rise to both axial velocity fluctuations and control vane

deflections. The modeling of the actuation system includes the

time delay between velocity sensing and the controller command

to the guide vane servo-motors, and the dynamic response of the

control vane/ servo-motor assembly to the controller command.

To illustrate the analysis technique, a derivation of the model with

a simplified version of the controller and actuator dynamics is

given in Appendix B.

SYSTEM IDENTIFICATION OF COMPRESSOR DYNAMICS
Paduano showed that the response of compressor flow

perturbations to control vane deflections can be expressed in

transfer function form as,

(iG„s+A„ + iB„)(a„ I + a,, s+ai3s2 +...+Q,,s')

by (s—C, —iD. ,, i)(b, +bzs+b*,s2+...+b,,,rst) (7)

where s represents the complex frequency (growth rate and

rotation speed) of the forcing function; Sy, the control vane

deflection wave; and ¢I refers to the flow coefficient at the

measurement station. The transfer function developed from the

compression system model in Appendix B can be written in an

equivalent form, hence the model parameters can be related

directly to those determined experimentally. In particular, C n

corresponds to the growth rate a,1, and Dn to the rotation rate uo l

of the n'th spatial harmonic. (-B„/Gn) and (A„/Gn) represent the

growth rate and frequency of the forced perturbation wave at

which the actuation system is ineffective at producing a flow

perturbation response. (This is defined as a zero of the actuation

system.) In addition, Gn represents the effectiveness of the

compression system to control vane forcing over the frequency

range. The parameters A,,, B, Cn, Dn, and G n therefore

completely specify the open loop behavior of the

compressor/actuation system. The parameters in Eq. (7) were

experimentally determined using a least squares algorithm to fit

the form of the transfer function to the measured dynamic

response of the compressor. The accuracy of the theoretical

model as a quantitative predictive tool could therefore be

established by comparing the experimentally determined

parameters to those predicted theoretically.

O eR n Loop Identification Methodology
In the development of the hydrodynamic stability model, it is

assumed that the spatial harmonics of disturbance waves are

decoupled, so that a linear model could be used. This assumption

should be valid for the experimental identification studies so long

as both the forcing and response disturbances are small in

amplitude. Since the compressor characteristic slope plays an

important role in the dynamics, a unique transfer function exists

at each steady-state operating point for each spatial harmonic of

the disturbance wave. In the experiment, the forced response was

determined with the compressor operating in both the stable and

normally unstable range. In the normally unstable operating

range, the compressor was operated under closed loop active

control. Under active control, it is the dynamic response of the

combination of the compressor and the control system that is

measured, therefore it is necessary to also accurately characterize

the dynamics of the control system, so that compressor transfer

can be deduced from measurements of the overall system.

The basic approach is to excite the compressor with a well-

characterized disturbance (a small amplitude sine wave deflection

of the control vanes travelling about the circumferences at various

speeds is a simple example). To generate the data presented

herein, on the normally stable portion of the compressor map, a

pseudo-random binary excitation signal with a bandwidth 1.25

times the rotor's rotational frequency was used to excite the

dynamics of the first three spatial harmonics. Identification

studies of harmonics higher than three would have
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Spectral Method	-

ed 	40 Idanification
Parametric Fit to Data - - - -

10-2	10-I	 10°	 lot

Normalized Frequency (wr/U)

TABLE 2
PARAMETER IDENTIFICATION DATA

Percent
1st Harmonic

Difference Re(zero)= Im(zero)=
from 4's&l C1 = a1 D1= [01 Al B1 G1 -BI / G1 Al / G1

0.488 6.0 -0.1839 0.329 -0.0709 0.00280 -0.0573 0.0489 1.238

0.462 04 -0.0303 0.304 -0.0650 0.00375 -0.0515 0.0728 1.262
0.432 -6.0 0.1320 0.270 -0.0463 0.00943 -0.0329 0.2865 1.406

Percent
2nd Harmonic

Difference Re(zero)= Im(zero)=
from 4'w.ii C2= a2 D2= arl A2 B2 G2 -B2 l G2 A2 l G2

0.488 6.0 -0.2829 0.790 -0.1119 -0.01525 -0.0872 -0.1749 1.283
0.460 0.0 -0.1223 0.762 -0.1032 -0.00446 -0.0724 -0.0616 1.426
0.432 -6.0 0.0510 0.781 -0.0684 0.00345 -0.0431 0.0799 1.587

required control vane forcing at a frequency beyond the

bandwidth of the actuation system. The transfer function was

then determined from simultaneous discrete-time measurements

of the control vane deflections, and flow field velocity

perturbations around the compressor annulus, using a spectral

method. The transfer function of each spatial harmonic

resembled a second order dynamic system, which is equivalent to

a first order system with complex coefficients of the form,

30, _ iGs +A„+iB„ (8)

8y s-C„-iD„

which indicates that the additional terms in Eq. (7) do not affect

the transfer function significantly. From the order of magnitude

of the coefficients of the additional terms in the theoretical model,

one can deduce that they will not affect the shape of the transfer

function significantly over the range of forcing frequencies that

was used in the experiment. Figures 17 and 18 show a least

squares fit of the transfer function of the form in Eq. (8) to the

experimental data. The fidelity of fit indicates that the form of

Eq. (8) is quite appropriate for this compressor. The fit

parameters which therefore form the dynamic model of this

compressor are given in Table 2.

When the spatial harmonic of interest was stabilized by

closed-loop control, the transfer function could not be determined

directly in the above manner. In this case, the parameters

describing the open-loop performance were calculated using an

instrument-variable modeling technique adapted to compressor

identification by Paduano (1991). This method required an

accurate model of the actuator dynamics, and a quantitative

Fig. 17: Estimate of compressor transfer function for first
harmonic at 4' = 0.49 (6% above the stalling flow
coefficient.

Fig. 18: Estimate of compressor transfer function for sec-
ond harmonic at ¢ = 0.49 (6% above the stalling
flow coefficient.
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Fig. 19: Measured wave growth and rotational rates com-
pared with predictions of the unmodified Moore-
Greitzer model for the first three spatial harmonics.

estimate of time delays in the feedback system. The actuator
dynamics were determined from measurements of the response of
control vane motion to the command signal. The open loop
transfer function of the compressor was then measured by
superimposing a forcing signal on the vane control signal. The

accuracy of the instrument-variable method was checked

continually by comparing the vane deflections with those

simulated by the actuator dynamic model. The open loop

dynamic parameters of the compressor could then be obtained

from the commanded forcing perturbation, the actual vane

deflections, and measurements of velocity perturbations upstream

of the compressor. The details of the procedure are described by

Haynes (1992).

COMPARING OPEN LOOP MEASUREMENTS
AND PREDICTIONS

The symbols in Fig. 19 show the growth rates and

frequencies of the first three spatial harmonics of a disturbance
wave determined from the experimental identification studies.
Negative values of am/U represent temporal decay of a spatial

harmonic while positive values represent exponentially growth.

The experimental data shows that the spatial harmonics of the

disturbance wave become unstable sequentially as 0 is decreased,

9 1..
T
U

0. ,

I
A

i2

Flow Coefficient, 0

Fig. 20: Measured wave growth and rotational rates com-

pared with predictions of the model modified to
account for compressor time lags. The arrows
denote the experimentally determined rotating stall
initiation points.

with higher harmonics becoming unstable at lower flow

coefficients. The spacing of the neutral stability points (a„ = 0)

of the spatial harmonics is important for active control of rotating

stall in compressors, since it gives an indication of the range

extension that could be achieved for each additional spatial

harmonic that is controlled.

With no control, the identification data indicates that rotating

stall would be triggered by the growth of the first spatial

harmonic where al = 0 at a flow coefficient of 0 = 0.46. The

time history of spatial harmonic coefficients shown in Fig. 9 does

indeed show that a coherent first harmonic perturbation appears

first here and grows in amplitude before the higher harmonics do.
Figure 19 shows the prediction of the unmodified Moore-

Greitzer model (which does not include the effects of finite
compressor time response) that all the spatial harmonics of the
disturbance wave become unstable at the same flow coefficient,
0 = 0.468, which is the peak of the total-to-static pressure rise
characteristic. Also, the model underpredicts the rotational
frequencies of the spatial harmonics. The model modified to
include finite response times, however, gives much better

agreement with the experimental data (Fig. 20). Since the exact
values of the compressor blade row time lags needed by the
model were not known a priori, a parametric study was done to
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Phase Change of First Harmonic Feedback, P1

Fig. 21: The influence of the first spatial harmonic controller
phase angle, 1G, on stalling flow coefficient at two

controller gains, R.

-180	-100	0	100	180

Phase Change of Second Harmonic Feedback,

Fig. 22: The influence of the second spatial harmonic con-
troller phase angle, /32, on stalling flow coefficient
at two controller gains, R.

determine the effect of their variation on the resultant theoretical

predictions. In Fig. 20, the blade row response times zs and Tr

are set equal to 1.5 times the blade passage convection times,

which gave the best agreement of the model with the

experimental data. It is important to note that the growth and

rotation rates of all three harmonic disturbances (6 quantities in

total) predicted by the model show good agreement with data

when only one constant is adjusted, the blade row time lag.

Furthermore, the value required to match the data, 1.5 times the

blade passage convection time, is within the range found by

Nagano et al. (1971) whose experiments to characterize the

response time produced values of between 1 and 1.5. This

supports the hypothesis that finite pressure rise response time is

the physical mechanism causing the sequential destablizing of the

spatial harmonics of the flow coefficient perturbation.

PREDICTING CLOSED LOOP COMPRESSOR BEHAVIOR
As was discussed above, the modified compressor stability

model does a good job of predicting the open loop dynamics of

the system, implying that the compressor dynamics are

appropriately represented. This model adapted to the closed loop

system should then be able to predict both the behavior of the

compressor under active control as well as the influence of

control system design parameters on that behavior. Details of the

closed loop model are given in Appendix B.

Figure 21 shows the boundary between stable and unstable

operation of the compressor operating under closed loop active

control of the first spatial harmonic, as the phase of the control

vane deflection wave is varied relative to that of the measured

velocity perturbation wave. The flow coefficient at which the

spatial harmonic becomes unstable with no feedback control

(gain, R = 0) is also shown. The operating range of the

compressor is thus extended for those phases for which the closed

loop stability boundary is lower than the uncontrolled neutrally

stable flow coefficient. The control system has a destabilizing

effect on the compressor where the stability boundary is greater.

The optimum feedback phase is that which gives the largest range

extension and corresponds to the trough of the closed loop

stability curve.

The model prediction and the experimental results in Fig. 21

agree closely. The agreement for control of the second spatial

harmonic is close as well (Fig. 22), suggesting that the model is

indeed an accurate representation of the stabilized compressor

dynamics.

DISCUSSION AND SUMMARY
We have presented herein details of the closed loop control

of a three-stage low speed research compressor. In addition to

being only an end unto itself, the actively stabilized compressor is

a powerful research tool for use in the understanding of

compressor dynamics. In particular, such a machine facilitates

the accurate measurement of the compression system dynamics

with a combination of forced response experiments and system

identification methodology. We have found the adoption of

controls formalization to be a great aid in this area of fluid

mechanics research.

Two approaches were taken to establish the compressor

dynamics: (1) experimental measurement and identification, and

(2) an analytical hydrodynamic 2-D stability model of the flow

field. The experimental data was used to determine the relative

importance of fluid phenomena included in the modeling. In this

case, compressor time lags due to losses proved to be important

while those stemming from deviation and blockage were not. The

Moore-Greitzer stability model when suitably modified to include

these time lags accurately predicted the open loop onset of stall as

well as the behavior of the stabilized compressor. This implies
that, to the degree to which these results may now be generalized,

a tool now exists for predicting the rotating stall point in high

hub-to-tip ratio compressors for which compressibility is not

important.

What limits the improvement in compressor operating range

achievable with active stabilization, and are these limits predicted

by theory? As the compressor operating point is moved to lower

mass flows and the characteristic slope increases, the controller

gain must be increased. At some point, however, the bandwidth

and control authority of the stabilization system will be

inadequate to maintain stability. The drop-off of control authority

with frequency is exacerbated with variable angle control vane
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actuators because of unfavorable dynamic behavior. The vanes

change the flow angle into the rotor (the primary control

mechanism) but also the convergent/divergent passages formed

between the vanes (depending on stagger angle distribution)

simultaneously introduce an additional circumferential flow

variation which influences the compressor stability. These two

effects have differing frequency response and sign, so as the vane

frequency is increased, they can cancel each other, reducing the

net control authority. When the control loop is closed by sensing

axial velocity upstream of the control vanes (as is the case here), a

non-minimum phase zero is introduced limiting controller

effectiveness. (Calculations indicated that moving the sensors

downstream of the control vanes can alleviate this problem by

altering the system phase lags and thereby increase the stable

compressor operating range. This has yet to be verified

experimentally, however.)

The limits imposed by actuator effectiveness and sensor

placement notwithstanding, the theory predicts that the controller

gain (R) could be increased by a factor of two over the values

used in this work with a concomitant increase in stable operating

range. Experimentally, however, the higher controller gain

yielded no improvement in performance. Why? At the higher

gain, the model indicates that there is very little margin for error

in the setting of the feedback parameters, while we know that, at

the very least, there is uncertainty in such parameters as the

characteristic slope (dyi/do) and control authority (ayr/d,
whether derived from aerodynamic theory or parametric fits. In

addition, considerable noise (uncharacterized unsteadiness) is

present on all measurements in a multi-stage compressor. Thus,

we attribute the difference between the theoretical and empirical

gain limits to modeling uncertainty (a sophisticated way of saying

that we are not certain of the cause). Control theorists have

developed a considerable body of knowledge concerning the

design of controllers for systems with parametric uncertainty, but

we have yet to apply it in this case.

Since control of the first two harmonics confirms quite

closely to theory at the lower gains, Hendricks and Gysling

(1992) have used this modeling approach to examine the per-

formance of alternate actuators in controlling this compressor.

They predicted that a circumferential array of jets at the compres-

sor inlet in place of the control vanes should be particularly

effective, stabilizing the compressor down to a characteristic

slope of 4, over four times that achievable with control vanes,

with a concomitant increase in stable flow range. Work is

proceeding on an experimental verification of this analysis.

Overall, we believe that the good agreement between the

experiment and theory presented herein indicates that it is now

possible to assess analytically the influence of active compressor

stabilization on the dynamics of the type of machine tested.

Work is ongoing to extend the modeling and experiment to

include low hub-to-tip ratio compressors (a 3-D stability model),

to account for the effects of compressibility, and to treat the

influence of inlet distortion on actively stabilized compressors.
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APPENDIX A
COMPRESSOR STABILITY MODEL INCLUDING

TRANSIENT BEHAVIOR

In this model, the pressure rise across a compressor is

modified by the pressure difference required to overcome the

inertia of the fluid within the blade channels when the flow within

the compressor is unsteady. If one assumes that the flow within

the blade passages is one dimensional, the unsteady pressure rise

across the compressor can be written as (Moore, 1984; Hynes and

Greitzer, 1987):

	P e -P<< =w-X d0 -'urdo	
(Al)

pU	8z9 U at

where:

V/ = V/isen - Lr - Ls	(A2)

yiisen is the isentropic stagnation pressure rise across the

compressor and Lr and L s are the rotor and stator stagnation

pressure losses. The inertia of the fluid in the rotors and in the

compressor are represented by ;, and Fs respectively. At the

inception of rotating stall, the flow coefficient through the

compressor is modified by a small perturbation S0 so that:

d—•	̂

risen = ^isen	d^ S

The compressor pressure rise perturbation equation is therefore:

SPe-SPk _ dFisend(s0) - d(Sc)S^-54-SLr -A	 (A4)
pU2	d^	 de U at

V1 isen = Y^ +' r  Ls	(A5)

where yr is the steady, axisymmetric total-to-static pressure rise

including losses, and L, and 4. the steady stator and rotor

stagnation pressure losses respectively. The stator transient

stagnation pressure loss perturbation, BLs, is given by the

differential equation:

T a(SL3 ) = aLs	
- sS	SL	 (A6)s at	ao 

The rotor transient stagnation pressure loss, L. is calculated in a

reference frame rotating with the rotor:

Tr (2AC) + v a dd )) = a_ S0) &_5L5	(A7)

In this analysis, a general perturbation in flow coefficient of the

form:

_ Ane("n -`r"n)te"u3	
(A8)

n=1

is considered. Each spatial harmonic of the perturbation can be

considered separately, so only the n'th spatial harmonic:

Son = Ane(an -icon )tein6	 (A9)

will therefore be examined.

The variables describing the evolution of the perturbation can

be non-dimensionalized as follows:

	!- tU 	T- TU	s - (an-i[on)r
,	(A10)

	r 	 r	n	U

where U is the rotor speed and r is the average radius of the

compressor annulus, so that the equations describing the

perturbation become:

SPe - BPti - dY/isen	a(8_)	a(8_)
pU2	db S^n-SLs-SLr- 

atg 	ad 
(All)

	a(& s ) - aL
sS^SL	 (Al2)

T s at	a^ n - s

z a(5L,) + a(SL,.)  a4
5^ - sL	A13

' ( at	at9 ) ao n	r	(	)
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perturbations are given by the expressions (Epstein, Ffowcs

Williams, Greitzer, 1989):

BPtt —  id(ôØ)
	(A15)

pU2	Inl d '

and

SPe _ 1 a(80n)
	(A16)

pU2 ICI d

Substitution of Eqs. (A15), (A16) and (A14) into Eqs. (All)-

(A13) produces a generalized, complex eigenvalue problem in s n :

(A— snB) &z = 0	 (A17)

1 dWisen	1	1	1do	inA I 	—

A	ds ) —	0	(A18)
s O	s

dr	0 4Lri+ r

1 0 0

B=0 10	 (A19)

0 0 1

S^n

61 = &L5	(A20)

SL,

^ = ( 2 +µJ	 (A21)

Y^isen=  7+4+LsL.	 (A22)

The solution to the eigenvalue problem yields the growth and

rotation rates of the perturbation wave. If the real part of s n is

negative, the disturbance is damped, representing stable operation

of the compressor. If the real part of s, is positive, the

disturbance grows exponentially, representing unstable operation.

For the uncontrolled compressor the growth rate of the

perturbation is determined by the slope of the total-to-static

pressure rise characteristic.

We must now fit this model to our data. The steady state

compressor slope, d yi/d4 is determined from a polynomial fit to

the measured pressure rise data. The total pressure loss across the

compressor is estimated from the difference between the

isentropic pressure rise characteristic and the measured one. A

polynomial fit to this estimate is then used to determine the slopes

of the rotor and stator loss curves, dL,/do and dLs /dO. For the

particular build of the three stage compressor that was considered

(75% reaction), it was assumed that 75% of the steady total

pressure losses occurred across the rotors, and 25% across the

stators. The time constants z,. and z, were related to the

convection time of the bulk flow through the blade channels.

Since the values of these constants were not measured, a

parametric study was done by varying these constants about the

blade passage convection time. The best agreement with the

experimental data was obtained with the time constants set to 1.5

times the blade passage convection time.

APPENDIX B
COMPRESSOR STABILITY MODEL INCLUDING

ACTIVE CONTROL

In an actively controlled compressor, the relation between

pressure and velocity perturbations can be manipulated by the

actuator. Analysis of the movable inlet guide vane actuator

involves determining relations between the actuation and

perturbations in velocity and pressure introduced into the flow

field. The actuator is modeled using quasi-steady actuator disk

theory. A detailed model of the compressor with control vane

control is given by Paduano (1991) and Paduano et al. (1991), and

is outlined here, with modifications to account for finite

compressor response times. With control vanes and quasi-steady

compressor response the compressor perturbation equation for

each spatial harmonic can be written as:

	SP e —SP12 = ad 5	di 57 a(S^2) _p d(S^2) (B1)
pU2	aO	dy	dt9	at

SPe _ 1 a(S^)
	(B2)

pU2	In! di

	aP t2 — aP tl	a (	1	
cB3>

pU = PU2—Pp ^i( s02+ 2Pk/g azg
____

i 

	S02 = S1—inop ig„Sy	 (B4)

and

SP,I _ 1 d(S01)
pU	Inl di	(B5)

Here Sy represents an angular displacement of the inlet guide

vanes from their mean position. When the quasi-steady

assumption is relaxed, and the finite compressor response times

are modeled, the compressor perturbation equation can be written

as:

where:

and

where,

and

with
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SPe - SPt2 = a 1Visen S	+ di uiren S
Y - s

model was required to accurately match the measured actuator

pU2	aO	aY transfer function.) With axial velocity sensing upstream of the

(B6)
control vanes, the actuator equation then becomes:

d(5 2 ) 	 a( S^2)
- A	

d6	at
a2(S)	a(s)

+2sQuQ	
=	(Ze

-14=r=w S^1- SY)	(B 13)a-2	
aiY

where the transient losses, SL, and SL, are now modeled by the Equations (B2)-(B8) and (B10)-(B13) produce an eigenvalue
following equations, problem.	Parameters in the analysis are the operating flow

coefficient (which determines the slope of the pressure rise
-T a(6s) = aLs S0 _ SL	 (B7) characteristic), the gain and phase of the feedback control law,

s	sdta^ and the actuator dynamic parameters.	For the control vane

actuator with velocity feedback, this system of differential

T- (a(a^) + d .5 )^	S^ +	sY - sz,	(B8)r a	aY equations reduces to the form given in (A17), where the matrices

A, B, and the vector Sx are now:

The above system of equations can be written as a transfer 1 1 aWisen	l _ 1	- 1	1 raisen 1	O
function between the flow perturbation at the measurement t l	a^	)	c	c l	ay	JI

location upstream of the IGV's, xh,,,, and the control vane 1 aL
s	i	- 	0	0	0

deflection Sy,

	

T a	T
s	̂	s

_
_ lnpipo e-H'hw +

A=
1 aL,	 1 1	1 aL ,

7, aO	0	- in+ T^ J
	- aY	0

S7 0	0	0	0	1

_V_isen _	aL.,Idy	_in
4u
	1 + Nigv	 (B9)

`^^^jnj
7.HTXhw	0	0	X	-2Sawa

dy	1+T7(s+in)	 2	e-Ws^,,,
(B 14)

ten	_Ls 1 a_2 +	-	_^sinA-
aO2	1+szs	1+'c,(s+in)

r!Lisv j 1^t
1	0	0	0	

.
+

Control is implemented by sensing the axial velocity perturbation, 0	1	
fr
	2

41 upstream of the inlet guide vanes. The measured signal is
0	0	0B _	

15)
0	0	0	0	 )1 processed by the controller which commands the control

vanes to introduce a suitable perturbation into the flow field. 0	0	0	1	 0

With the proportional feedback scheme that was employed in the 0	0	0	0	 1
experiment, the measured signal is modified in amplitude and

shifted spatially in phase. This is implemented analytically as 1502

follows:
SLs

SYL = Z e' Sail	 (B 10) Sz	SL,	 (B 16)

SY
Z = Re	 (B l l) a(SY)l at

where R is the gain in amplitude of the signal, and A is the spatial with:

phase shift of the commanded signal relative to the measured

signal. In practice, non-ideal behavior causes the output from the
(

2

actuator to differ from the command given by the controller. The C = I 	+ µ)	 (B 17)

non-ideal actuator dynamics were determined experimentally by

measuring the transfer function of the actuator motion relative to
risen= iY+L, +Ls	(B 18)

an input command signal, and then fitting an appropriate dynamic

model to the transfer function. As a simple example, assume that

the dynamics of the actuator can be modeled by a second order and

differential equation,

d2 (SY) +2cawa	SY) 	w2 (SyI - or)	(B12)
aF2	at There are five eigenvalues for each spatial harmonic of the

disturbance, and the system is stable when the real part of each of

where can and C are the resonant frequency and damping ratio of the eigenvalues is negative.
the actuation system. (In the experiment a higher order dynamic
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