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ACTIVE SUBSPACE METHODS IN THEORY AND PRACTICE:

APPLICATIONS TO KRIGING SURFACES∗

PAUL G. CONSTANTINE† , ERIC DOW‡ , AND QIQI WANG‡

Abstract. Many multivariate functions in engineering models vary primarily along a few direc-
tions in the space of input parameters. When these directions correspond to coordinate directions,
one may apply global sensitivity measures to determine the most influential parameters. However,
these methods perform poorly when the directions of variability are not aligned with the natural
coordinates of the input space. We present a method to first detect the directions of the strongest
variability using evaluations of the gradient and subsequently exploit these directions to construct a
response surface on a low-dimensional subspace—i.e., the active subspace—of the inputs. We develop
a theoretical framework with error bounds, and we link the theoretical quantities to the parameters
of a kriging response surface on the active subspace. We apply the method to an elliptic PDE
model with coefficients parameterized by 100 Gaussian random variables and compare it with a local
sensitivity analysis method for dimension reduction.

Key words. active subspace methods, kriging, Gaussian process, uncertainty quantification,
response surfaces
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1. Introduction and motivation. As computational models of physical sys-
tems become more complex, the need increases for uncertainty quantification (UQ)
to enable defensible predictions. Monte Carlo methods are the workhorse of UQ,
where model inputs are sampled according to a characterization of their uncertainty
and the corresponding model outputs are treated as a data set for statistical anal-
ysis. However, the slow convergence of Monte Carlo methods coupled with the
high computational cost of the models has led many to employ response surfaces
trained on a few carefully selected runs in place of the full model. This strategy
has had great success in forward [19, 26] and inverse uncertainty propagation prob-
lems [29, 4, 12] as well as optimization [24, 39]. However, most response surfaces
suffer from the curse of dimensionality, where the cost of constructing an accurate sur-
face increases exponentially as the dimension (i.e., the number of input parameters)
increases.

To make construction tractable, one may first perform sensitivity analysis [36] to
determine which variables have the most influence on the model predictions. With
a ranking of the inputs, one may construct response surfaces that concentrate the
approximation on the most influential variables, e.g., through a suitably anisotropic
design; the same concept applies to mesh refinement strategies for solving PDEs.
Methods for sensitivity analysis are typically classified as local perturbation or global
methods. Local methods perturb the inputs—often along coordinate directions—
around a nominal value and measure the effects on the outputs. Though relatively
inexpensive, local methods are fraught with difficulties like sensitivity to noise and the

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 8,
2013; accepted for publication (in revised form) April 2, 2014; published electronically July 24, 2014.

http://www.siam.org/journals/sisc/36-4/91613.html
†Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401

(paul.constantine@mines.edu).
‡Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge,

MA 02139 (ericdow@mit.edu, qiqi@mit.edu).

A1500

D
o
w

n
lo

ad
ed

 1
2
/2

3
/1

4
 t

o
 1

8
.5

1
.1

.3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

http://www.siam.org/journals/sisc/36-4/91613.html
mailto:paul.constantine@mines.edu
mailto:ericdow@mit.edu
mailto:qiqi@mit.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACTIVE SUBSPACE METHODS A1501

−1 0 1
−1

0

1  

x
1

 

x
2

0.5

1

1.5

2

2.5

Fig. 1. The function f(x1, x2) = exp(0.7x1 + 0.3x2) varies strongest along the direction
[0.7, 0.3], and it is flat in the direction [0.3,−0.7]. (Colors are visible in the electronic version.)

choice of the perturbation step. Also, the local sensitivity measured at the nominal
condition may be very different elsewhere in the parameter space. Global meth-
ods address these issues by providing integrated measures of the output’s variability
over the full range of parameters; consequently, they are computationally more ex-
pensive. Methods based on variance decompositions [30, 36] require approximating
high-dimensional integrals in order to rank the inputs. Consider the simple function
f(x1, x2) = exp(0.7x1+0.3x2) defined on [−1, 1]2 plotted in Figure 1. A local pertur-
bation method at the origin with a stepsize ∆x = 0.1 reveals f(∆x, 0) = 1.0725 and
f(0,∆x) = 1.0305 to four digits. The larger effect of the perturbation in x1 designates
x1 more important than x2. The global Sobol indices [30] for the main (univariate)
effects of the ANOVA decomposition are σ1 = 0.1915 and σ2 = 0.0361, which yields
a similar conclusion regarding x1’s importance.

Both classes of methods rank the coordinates of the inputs. However, some models
may vary most prominently along directions of the input space that are not aligned
with the coordinate system. The example f plotted in Figure 1 varies strongest
along the direction [0.7, 0.3], and it is flat along the direction [−0.3, 0.7]. This bi-
variate function is in effect univariate once the coordinate system has been rotated
appropriately. This suggests an alternative form of dimension reduction: rotate the
coordinates such that the directions of the strongest variation are aligned with the
rotated coordinates, and construct a response surface using only the most important
rotated coordinates.

We propose a method based on gradient evaluations for detecting and exploiting
the directions of strongest variability of a given function to construct an approxima-
tion on a low-dimensional subspace of the function’s inputs. Given continued interest
in gradient computations based on adjoint methods [5, 22] and algorithmic differ-
entiation [20], it is not unreasonable to assume that one has access to the gradient
of the function. We detect the directions by evaluating the function’s gradient at
a set of input points and determining a rotation of the input space that separates
the directions of relative variability from directions of relative flatness. We exploit
these directions by first projecting the input space to the low-dimensional subspace
that captures the function’s variability and then approximating the function on the
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A1502 PAUL G. CONSTANTINE, ERIC DOW, AND QIQI WANG

subspace. Following Russi’s 2010 Ph.D. thesis [34], we call this low-dimensional sub-
space the active subspace.

Subspace approximations are commonly used in optimization, where local
quadratic models of a function are decomposed to reveal search directions [18]. They
are also found in many areas of model reduction [1] and optimal control [41], where
a high-dimensional state space vector is approximated by a linear combination of rel-
atively few basis vectors. Common to both of these fields are methods for matrix
factorizations and eigenvalue computations [35], which are replete with subspace ori-
ented approaches. The use of subspace methods for approximating high-dimensional
functions arising in science and engineering models appears rare by comparison. Re-
cent work by Lieberman, Willcox, and Ghattas [27] describes a method for finding
a subspace in a high-dimensional input space via a greedy optimization procedure.
Russi [34] proposes a method for discovering the active subspace of a function using
evaluations of the gradient and constructing a quadratic response surface on the sub-
space; his methodology is similar to ours in practice. Recently Fornasier, Schnass, and
Vybiral [16] analyzed subspace approximation algorithms that do not need gradient
evaluations but make strong assumptions on the function they are approximating;
they take advantage of results from compressed sensing. Our previous work has ap-
plied the active subspace method to design optimization [8, 15], inverse analysis [12],
and spatial sensitivity [13].

The contribution of this paper is twofold. First we provide a theoretical founda-
tion for gradient-based dimension reduction and subspace approximation. We con-
struct and factorize a covariance-like matrix of the gradient to determine the directions
of variability. These directions define a new set of coordinates, which we separate into
a set y along which the function varies the strongest and a set z along which the
function varies relatively little on average. We then approximate the function by a
sequence of three functions that are z-invariant, i.e., that are functions of only the y

coordinates. The first is a theoretical best approximation via conditional expectation.
The second approximates the conditional expectation with a Monte Carlo method.
The third builds a response surface on the y coordinates using a few evaluations of
the Monte Carlo approximations. We provide error bounds for these approximations,
and we examine the effects of using directions that are slightly perturbed. Second, we
provide a bridge between the theoretical analysis and computational practice by (i)
relating the derived error bounds to SVD-based approaches for discovering the active
subspace and (ii) heuristically linking the theoretical quantities to the parameters of
a kriging surface constructed on the active subspace. We apply this procedure to an
elliptic PDE model with a 100-parameter model for the coefficients and a scalar quan-
tity of interest. We compare the active subspace approach to a dimension reduction
approach based on local sensitivity analysis.

2. Active subspaces and z-invariance. In this section, we describe the class
of functions that vary primarily along a few directions of the input space. We charac-
terize the active subspace and discuss a computational procedure for approximating
its basis. We perform the analysis using tools from probability theory such as ex-
pectation E [·], but we emphasize that there is nothing inherently stochastic about
the functions or the approximations; the probability notation provides a convenient
shorthand.

Consider a function f with m continuous inputs

(2.1) f = f(x), x ∈ X ⊆ R
m,
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ACTIVE SUBSPACE METHODS A1503

where we assume without loss of generality that X is centered at the origin. Let X
be equipped with a bounded probability density function ρ : Rm → R+, where

(2.2) ρ(x) > 0,x ∈ X and ρ(x) = 0,x �∈ X .

We assume that f is absolutely continuous and square-integrable with respect to ρ.

Denote the gradient of f by the column vector ∇xf(x) =
[

∂f
∂x1

· · · ∂f
∂xm

]T
. Define

the m×m matrix C by

(2.3) C = E
[

(∇xf) (∇xf)
T
]

,

where we assume that f is such that C exists; in other words, the products of partial
derivatives are integrable. C can be interpreted as the uncentered covariance of the
gradient vector. Note that C is symmetric and positive semidefinite, so it admits a
real eigenvalue decomposition,

(2.4) C = WΛWT , Λ = diag (λ1, . . . , λm), λ1 ≥ · · · ≥ λm ≥ 0.

The following lemma quantifies the relationship between the gradient of f and the
eigendecomposition of C.

Lemma 2.1. The mean-squared directional derivative of f with respect to the

eigenvector wi is equal to the corresponding eigenvalue, E
[

((∇xf)
Twi)

2
]

= λi.

Proof. By the definition of C,

(2.5) λi = wT
i Cwi = wT

i

(

E
[

(∇xf) (∇xf)
T
])

wi = E
[

((∇xf)
Twi)

2
]

,

as required.
The eigenvectors W define a rotation of R

m and consequently the domain of
f . With eigenvalues in decreasing order, we can separate components of the rotated
coordinate system into a set that corresponds to greater average variation and a set
corresponding to smaller average variation. The eigenvalues and eigenvectors are
partitioned

(2.6) Λ =

[

Λ1

Λ2

]

, W =
[

W1 W2

]

,

where Λ1 = diag (λ1, . . . , λn) with n < m, and W1 is m × n. Define the rotated
coordinates y ∈ R

n and z ∈ R
m−n by

(2.7) y = WT
1 x, z = WT

2 x.

Then we have the following lemma.
Lemma 2.2. The mean-squared gradients of f with respect to the coordinates y

and z satisfy

E
[

(∇yf)
T (∇yf)

]

= λ1 + · · ·+ λn,(2.8)

E
[

(∇zf)
T (∇zf)

]

= λn+1 + · · ·+ λm.

Proof. First note that we can write

(2.9) f(x) = f(WWTx) = f(W1W
T
1 x+W2W

T
2 x) = f(W1y +W2z).
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By the chain rule, the gradient of f with respect to y can be written

(2.10) ∇yf(x) = ∇yf(W1y +W2z) = WT
1 ∇xf(W1y +W2z) = WT

1 ∇xf(x).

Then

E
[

(∇yf)
T (∇yf)

]

= E
[

trace
(

(∇yf)(∇yf)
T
)]

(2.11)

= trace
(

E
[

(∇yf)(∇yf)
T
])

= trace
(

WT
1 E

[

(∇xf)(∇xf)
T
]

W1

)

= trace
(

WT
1 CW1

)

= trace (Λ1)

= λ1 + · · ·+ λn,

as required. The derivation for the z components is similar.
Lemma 2.2 motivates the use of the label active subspace. In particular, f varies

more on average along the directions defined by the columns of W1 than along the
directions defined by the columns of W2, as quantified by the eigenvalues of C. When
the eigenvalues λn+1, . . . , λm are all zero, Lemma 2.2 implies that the gradient ∇zf
is zero everywhere in X . We call such functions z-invariant. The next proposition
shows that z-invariant functions have both linear contours and linear isoclines. Similar
arguments can be used for higher-order derivatives when they exist.

Proposition 2.3. Let f be z-invariant, i.e., λn+1 = · · · = λm = 0. Then for

any two points x1,x2 ∈ X such that WT
1 x1 = WT

1 x2, f(x1) = f(x2) and ∇xf(x1) =
∇xf(x2).

Proof. The gradient ∇zf being zero everywhere in X implies that f(x1) = f(x2).
To show that the gradients are equal, assume that x1 and x2 are on the interior of
X . Then for arbitrary c ∈ R

m, define

(2.12) x′
1 = x1 + εc, x′

2 = x2 + εc,

where ε > 0 is chosen so that x′
1 and x′

2 are in X . Note that WT
1 x

′
1 = WT

1 x
′
2 so

f(x′
1) = f(x′

2). Then

cT (∇xf(x1)−∇xf(x2)) = lim
ε→0

1

ε
[(f(x′

1)− f(x1))− (f(x′
2)− f(x2))] = 0.(2.13)

Simple limiting arguments can be used to extend this result to x1 or x2 on the
boundary of X .

2.1. Two special cases. We present two cases where the rank of C may be
determined a priori. The first is a ridge function [11], which has the form f(x) =
h(aTx), where h is a univariate function, and a is a constant m-vector. In this case,
C is rank one, and the eigenvector defining the active subspace is a/‖a‖, which can be
discovered by a single evaluation of the gradient anywhere in X . The function shown
in Figure 1 is an example of a ridge function.

The second special case is a function of the form f(x) = h(xTAx), where h is a
univariate function and A is a symmetric m×m matrix. In this case

(2.14) C = 4AE
[

(h′)2 xxT
]

AT ,

where h′ = h′(xTAx) is the derivative of h. This implies that the null space of C is
the null space of A provided that h′ is nondegenerate.
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2.2. Discovering the active subspace. We must compute the eigenvectorsW
and eigenvalues Λ of the matrix C from (2.3). We immediately encounter the obstacle
of computing the elements ofC, which are integrals over the high-dimensional space X .
Thus, tensor product numerical quadrature rules are impractical. We opt for Monte
Carlo integration, which will yield its own appealing interpretation. In particular, let

(2.15) ∇xfj = ∇xf(xj), xj ∈ X , j = 1, . . . ,M,

be independently computed samples of the gradient vector, where xj is drawn from
the density ρ on X . In practice computing the gradient at xj typically involves
first evaluating fj = f(xj); we will use these function evaluations when testing the
response surface. With the samples of the gradient, we approximate

(2.16) C ≈ C̃ =
1

M

M
∑

j=1

(∇xfj)(∇xfj)
T

and compute the eigenvalue decomposition C̃ = W̃Λ̃W̃T . The size of C̃ is m × m,
where we expect m to be on the order of hundreds or thousands corresponding to the
number of variables x. Thus we anticipate no memory limitations when computing
the complete eigendecomposition of C̃ on a modern personal computer.

There is another interpretation of the sampling approach to approximate the
eigenpairs of C. We can write C̃ = GGT , where the m×M matrix G is

(2.17) G =
1√
M

[

∇xf1 · · · ∇xfM
]

.

If we compute the singular value decomposition (SVD) of G, then with elementary
manipulations,

(2.18) G = W̃
√

Λ̃VT .

This provides an alternative computational approach via the SVD. Again, we stress
that the number of variables m and the number of gradient samples M are small
enough in many applications of interest that the SVD can easily be computed on
a modern personal computer. More importantly, the SVD shows that the rotation
matrix W̃ can be interpreted as the uncentered principal directions [23] from an
ensemble of gradient evaluations.

It is natural to ask how large M must be for an accurate approximation of the
eigenvectors; this is one focus of our current research efforts. If nothing is known a
priori about C, then at least m evaluations are necessary (though maybe not suffi-
cient) to approximate a full rank C. However, we hypothesize that the number of
samples needed for accurate approximation may be related to the rank of C. Loosely
speaking, f must be very smooth for the Monte Carlo approximation to be effec-
tive. If f ’s variability is limited to a small subset of the high-dimensional domain,
then the samples of the gradient may not reveal true directions of variability. We
are currently exploring how to make such intuitive statements more precise and how
to create robust sampling approaches for extreme cases, e.g., a step function in high
dimensions.

In practice, we use the eigenpairs W̃ and Λ̃ from the finite-sample approximation
C̃ in place of the true eigenpairs W and Λ of C from (2.3). There may be numerical
integration methods that produce better approximations than simple Monte Carlo;
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the latter merely offers an appealing interpretation in terms of the principle compo-
nents of the gradients. Sequential sampling techniques [14] combined with a measure
of the stability of the computed subspaces could be a powerful approach for accurate
approximation with relatively few samples of the gradient. Alternatively, randomized
algorithms for low-rank approximation offer promise for reducing the number of gra-
dient samples [6, 21]. Quantifying the error in these finite-sample approximations is
beyond the scope of this paper. However, in section 3.4 we will examine the effects
of using the perturbed W̃ to construct the response surface given an estimate of the
perturbation.

3. Approximation in the active subspace. We assume that the number of
variables m is too large to permit standard response surface constructions that suffer
from the curse of dimensionality—such as regression or interpolation. The goal is
to approximate the m-variate function f by a function that is z-invariant. If f is
nearly z-invariant, then we expect a good approximation. A z-invariant function only
varies with changes in the n < m coordinates y. Therefore, we can build a response
surface approximation using only the variables y. Note that this requires (at least)
two levels of approximation: (i) approximating f by a z-invariant function and (ii)
building a response surface of the n-variate approximation. In this section we develop
the framework and error analysis for this type of approximation.

A few preliminaries: define the joint density function π of the coordinates y and
z from (2.7) as

(3.1) π(y, z) = ρ(W1y +W2z).

With this definition, we can define marginal densities πY (y), πZ(z) and conditional
densities πY |Z(y|z), πZ|Y (z|y) in the standard way. Next we define the domain of a
function that only depends on y. Define the set Y to be

(3.2) Y =
{

y : y = WT
1 x,x ∈ X

}

⊆ R
n.

Note that the marginal density πY (y) defines a probability density on Y. With these
defined we can begin approximating.

3.1. Conditional expectation. For a fixed y, the best guess one can make at
the value of f is its average over all values of x that map to y; this is precisely the
conditional expectation of f given y. Define the function G that depends on y by

(3.3) G(y) = E [f |y] =
∫

z

f(W1y +W2z)πZ|Y (z) dz.

The second equality follows from the so-called law of the unconscious statistician.
The domain of this function is Y from (3.2). Since G is a conditional expectation, it
is the best mean-squared approximation of f given y [40, Chapter 9].

We can use G to approximate f at a given x with the following construction:

(3.4) f(x) ≈ F (x) ≡ G(WT
1 x).

The next theorem provides an error bound for F in terms of the eigenvalues of C
from (2.3).

Theorem 3.1. The mean-squared error of F defined in (3.4) satisfies

(3.5) E
[

(f − F )2
]

≤ C1(λn+1 + · · ·+ λm),

where C1 is a constant that depends on the domain X and the weight function ρ.
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Proof. Note that E [f − F |y] = 0 by definition (3.4). Thus,

E
[

(f − F )2
]

= E
[

E
[

(f − F )2 |y
]]

(3.6)

≤ C1 E
[

E
[

(∇zf)
T (∇zf) |y

]]

(3.7)

= C1 E
[

(∇zf)
T (∇zf)

]

(3.8)

= C1(λn+1 + · · ·+ λm).(3.9)

Lines (3.6) and (3.8) are due to the tower property of conditional expectations. Line
(3.7) is a Poincaré inequality, where the constant C1 depends only on X and the
density function ρ. Line (3.9) follows from Lemma 2.2.

3.2. Monte Carlo approximation. The trouble with the approximation F
from (3.4) is that each evaluation of F requires an integral with respect to the z coor-
dinates. In other words, evaluating F requires high-dimensional integration. However,
if f is nearly z-invariant, then it is nearly constant along the coordinates z. Thus, its
variance along z will be very small, and we expect that simple numerical integration
schemes to approximate the conditional expectation G will work well. We use simple
Monte Carlo to approximate G and derive an error bound on such an approximation.
The error bound validates the intuition that we need very few evaluations of f to
approximate G if f is nearly z-invariant.

Define the Monte Carlo estimate Ĝ = Ĝ(y) by

(3.10) G(y) ≈ Ĝ(y) =
1

N

N
∑

i=1

f(W1y +W2zi),

where the zi are drawn independently from the conditional density πZ|Y . We approx-
imate f as

(3.11) f(x) ≈ F̂ (x) ≡ Ĝ(WT
1 x).

Next we derive an error bound for this approximation.
Theorem 3.2. The mean-squared error of F̂ defined in (3.11) satisfies

(3.12) E

[

(f − F̂ )2
]

≤ C1

(

1 +
1

N

)

(λn+1 + · · ·+ λm),

where C1 is from Theorem 3.1.
Proof. First define the conditional variance of f given y as σ2

y = E
[

(f − F )2 |y
]

,
and note that the proof of Theorem 3.1 shows

(3.13) E
[

σ2
y

]

≤ C1 (λn+1 + · · ·+ λm) .

Next note that the mean-squared error in the Monte Carlo approximation satisfies [31]

(3.14) E

[

(F − F̂ )2 |y
]

=
σ2
y

N
,

so that

E

[

(F − F̂ )2
]

= E

[

E

[

(F − F̂ )2 |y
]]

=
1

N
E
[

σ2
y

]

≤ C1

N
(λn+1 + · · ·+ λm) .(3.15)
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Finally, using Theorem 3.1,

E

[

(f − F̂ )2
]

≤ E
[

(f − F )2
]

+ E

[

(F − F̂ )2
]

(3.16)

≤ C1

(

1 +
1

N

)

(λn+1 + · · ·+ λm) ,

as required.

This bound shows that if λn+1, . . . , λm are sufficiently small, then the Monte
Carlo estimate with small N (e.g., N = 1) will produce a very good approximation
of f .

3.3. Response surfaces. We now reach the point where n < m can reduce the
cost of approximating f . Up to this point, there has been no advantage to using the
conditional expectation F or its Monte Carlo approximation F̂ to approximate f ;
each evaluation of F̂ (x) requires at least one evaluation of f(x). The real advantage
of this method is that one can construct response surfaces with respect to the few
variables y ∈ R

n instead of f ’s natural variables x ∈ R
m. We will train a response

surface on the domain Y ⊆ R
n using a set of evaluations of Ĝ = Ĝ(y).

Here we do not specify the form of the response surface; several are possible,
and section 4 discusses applications using kriging. However, there is one important
consideration before choosing a response surface method willy-nilly. If the eigenvalues
λn+1, . . . , λm are not exactly zero, then evaluations of the Monte Carlo approximation
Ĝ will contain noise due to the finite number of samples; in other words, the Monte
Carlo estimate Ĝ is a random variable. This noise implies that Ĝ is not a smooth
function of y. Thus, we prefer smoothing, regression-based response surfaces over
exact interpolation. In section 4, we characterize the noise and use it to tune the
parameters of a kriging surface.

We construct a generic response surface for a function defined on Y from (3.2) as
follows. Define the design on Y to be a set of points yk ∈ Y with k = 1, . . . , P . The
specific design will depend on the form of the response surface. Define Ĝk = Ĝ(yk).
Then we approximate

(3.17) Ĝ(y) ≈ G̃(y) ≡ R(y; Ĝ1, . . . , ĜP ),

where R is a response surface constructed with the training data Ĝ1, . . . , ĜP . We use
this response surface to approximate f as

(3.18) f(x) ≈ F̃ (x) ≡ G̃(WT
1 x).

To derive an error estimate for F̃ , we assume the error in the response surface can be
bounded as follows.

Assumption 1. Let Z = {z : z = WT
2 x,x ∈ X}. Then there exists a constant C2

such that

(3.19) E

[

(F̂ − F̃ )2 | z
]

≤ C2δ

for all z ∈ Z, where δ = δ(R, P ) depends on the response surface method R and the
number P of training data, and C2 depends on the domain X and the probability
density function ρ.
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With Assumption 1, we have the following error estimate for F̃ .
Theorem 3.3. The mean-squared error in F̃ defined in (3.18) satisfies

(3.20) E

[

(f − F̃ )2
]

≤ C1

(

1 +
1

N

)

(λn+1 + · · ·+ λm) + C2 δ,

where C1 is from Theorem 3.1, N is from Theorem 3.2, and C2 and δ are from

Assumption 1.
Proof. Note

(3.21) E

[

(f − F̃ )2
]

≤ E

[

(f − F̂ )2
]

+ E

[

(F̂ − F̃ )2
]

.

Theorem 3.2 bounds the first summand. By the tower property and Assumption 1,
the second summand satisfies

(3.22) E

[

(F̂ − F̃ )2
]

= E

[

E

[

(F̂ − F̃ )2 | z
]]

≤ C2δ,

as required.
The next equation summarizes the three levels of approximation:

(3.23)

f(x) ≈ F (x) ≈ F̂ (x) ≈ F̃ (x)

≡ ≡ ≡
G(WT

1 x) ≈ Ĝ(WT
1 x) ≈ G̃(WT

1 x).

The conditional expectation G is defined in (3.3), its Monte Carlo approximation Ĝ
is defined in (3.10), and the response surface G̃ is defined in (3.17). The respective
error estimates are given in Theorems 3.1, 3.2, and 3.3.

3.4. Using perturbed directions. Up to this point, we have assumed that
we have the exact eigenvectors W. However, as discussed in section 2.2, in practice
we have a perturbed version W̃—although both the true W and the perturbed W̃

are orthonormal. In this section we examine the effects of this perturbation on the
approximation of f . We assume the following characterization of the perturbation.

Assumption 2. Given W from (2.4), let W̃ be a perturbed version of W that
satisfies the following two conditions: (i) the sign of w̃i, the ith column of W̃, is
chosen to minimize ‖wi − w̃i‖; (ii) there is an ε > 0 such that the perturbation
satisfies ‖W − W̃‖ ≤ ε in the matrix 2-norm.

Lemma 3.4. Given the partition of W and a comparable partition W̃ =
[

W̃1 W̃2

]

, ‖WT
2 W̃2‖ ≤ 1 and ‖WT

1 W̃2‖ ≤ ε in the matrix 2-norm.

Proof. The orthogonality of the columns of W2 and W̃2 implies ‖WT
2 W̃2‖ ≤

‖WT
2 ‖‖W̃2‖ = 1. The second inequality follows from

(3.24) ‖WT
1 W̃2 − 0‖ = ‖WT

1 (W̃2 −W2)‖ = ‖W̃2 −W2‖ ≤ ε,

where the last relation follows from Assumption 2.
The perturbed W̃ defines perturbed coordinates ỹ = W̃T

1 x and z̃ = W̃T
2 x. The

joint density π̃(ỹ, z̃) = ρ(W̃1ỹ + W̃2z̃) begets marginal densities π̃Ỹ (ỹ), π̃Z̃(z̃) and
conditional densities π̃Ỹ |Z̃(ỹ|z̃), π̃Z̃|Ỹ (z̃|ỹ). The domain of the perturbed approxima-
tions is

(3.25) Ỹ = {ỹ : ỹ = W̃T
1 x,x ∈ X}.

D
o
w

n
lo

ad
ed

 1
2
/2

3
/1

4
 t

o
 1

8
.5

1
.1

.3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1510 PAUL G. CONSTANTINE, ERIC DOW, AND QIQI WANG

We construct the same sequence of approximations of f using these perturbed coor-
dinates. We denote the perturbed versions of the approximations with a subscript ε.
The conditional expectation approximation of f becomes Fε(x) ≡ Gε(W̃

T
1 x), where

(3.26) Gε(ỹ) = E [f | ỹ] =
∫

z̃

f(W̃1ỹ + W̃2z̃) π̃Z̃|Ỹ (z̃|ỹ) d z̃.

Then we have the following error estimate
Theorem 3.5. The mean-squared error in the conditional expectation Fε using

the perturbed eigenvectors W̃ satisfies

(3.27) E
[

(f − Fε)
2
]

≤ C1

(

ε (λ1 + · · ·+ λn)
1

2 + (λn+1 + · · ·+ λm)
1

2

)2

,

where C1 is from Theorem 3.1.
Proof. Following the same reasoning as the proof of Theorem 3.1 using the

Poincaré inequality,

(3.28) E
[

(f − Fε)
2
]

≤ C1E
[

(∇z̃f)
T (∇z̃f)

]

.

Using the chain rule, ∇z̃f = WT
2 W̃2∇zf +WT

1 W̃2∇yf . Then

E
[

(∇z̃f)
T (∇z̃f)

]

≤ E
[

(∇zf)
T (∇zf)

]

+ 2εE
[

(∇zf)
T (∇yf)

]

+ ε2E
[

(∇yf)
T (∇yf)

]

(3.29)

≤
(

E
[

(∇zf)
T (∇zf)

]
1

2 + εE
[

(∇yf)
T (∇yf)

]
1

2

)2

(3.30)

≤
(

ε (λ1 + · · ·+ λn)
1

2 + (λn+1 + · · ·+ λm)
1

2

)2

.(3.31)

Line (3.29) follows from Lemma 3.4. Line (3.30) follows from the Cauchy–Schwarz
inequality. Line (3.31) follows from Lemma 2.2

Notice how the eigenvalues λ1, . . . , λn contribute to the error estimate given the
perturbation bound ε on the eigenvectors. This contribution persists in error estimates
for the Monte Carlo approximation and the response surface using the perturbed
eigenvectors.

Let F̂ε(x) ≡ Ĝε(W̃
Tx), where

(3.32) Ĝε(ỹ) =
1

N

N
∑

i=1

f(W̃1ỹ + W̃2z̃i),

where z̃i are drawn from the conditional density π̃Z̃|Ỹ (z̃|ỹ). Then we have the fol-
lowing error estimate, whose derivation follows the proof of Theorem 3.2 using the
perturbed coordinates and the reasoning from the proof of Theorem 3.5.

Theorem 3.6. The mean-squared error in the Monte Carlo approximation F̂ε

using the perturbed eigenvectors W̃1 satisfies

E

[

(f − F̂ε)
2
]

≤ C1

(

1 +
1

N

)

(

ε (λ1 + · · ·+ λn)
1

2 + (λn+1 + · · ·+ λm)
1

2

)2

,(3.33)

where C1 and N are the quantities from Theorem 3.2.
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The response surface approximation using the perturbed eigenvectors is F̃ε(x) ≡
G̃ε(W̃

T
1 x), where

(3.34) G̃ε(ỹ) = R(ỹ; Ĝε,1, . . . , Ĝε,P )

for a chosen response surface method R. The Ĝε,k are evaluations of Ĝε at the design

points ỹk ∈ Ỹ. We have the following error estimate; again, its derivation follows the
proof of Theorem 3.3 using the reasoning from the proof of Theorem 3.5.

Theorem 3.7. Under the assumptions of Theorem 3.3, the mean-squared error

in the response surface approximation F̃ε satisfies

E

[

(f − F̃ε)
2
]

≤ C1

(

1 +
1

N

)

(

ε (λ1 + · · ·+ λn)
1

2 + (λn+1 + · · ·+ λm)
1

2

)2

+ C2 δ,

(3.35)

where C1, N , C2, and δ are the quantities from Theorem 3.3.
We summarize the three levels of approximation using the perturbed eigenvectors,

(3.36)

f(x) ≈ Fε(x) ≈ F̂ε(x) ≈ F̃ε(x)

≡ ≡ ≡
Gε(W̃

T
1 x) ≈ Ĝε(W̃

T
1 x) ≈ G̃ε(W̃

T
1 x).

The conditional expectation Gε is defined in (3.26), its Monte Carlo approximation
Ĝε is defined in (3.32), and the response surface G̃ε is defined in (3.34). The respective
error estimates are given in Theorems 3.5, 3.6, and 3.7.

4. Heuristics for kriging surfaces. In this section, we detail a heuristic pro-
cedure to construct a kriging surface [25] (also known as Gaussian process approxima-
tion [33] and closely related to radial basis approximation [38]) on the n-dimensional
reduced domain Y from (3.2) defined by the left singular vectors W̃ from the samples
of the gradient of f . To keep the notation clean, we use W instead of W̃, and we do
not explore the effects of the perturbed directions for this particular heuristic.

We must first choose the dimension n of the subspace. Many covariance-based
reduction methods (e.g., the proper orthogonal decomposition [37]) use the magnitude
of the λi to define n, e.g., so that λ1+· · ·+λn exceeds some proportion of λ1+· · ·+λm.
We are bound instead by more practical considerations, such as choosing n small
enough to construct a reasonable design (e.g., a mesh) for the kriging surface. The
trailing eigenvalues λn+1, . . . , λm then inform a noise model as discussed in section 4.2.
A rapid decay in the λi implies that the low-dimensional approximation is relatively
less noisy.

4.1. Design on reduced domain. We need to choose the points yk on the
reduced domain Y where we evaluate Ĝ and construct the kriging surface. We restrict
our attention to Y derived from two particular choices of the domain X and the density
function ρ that are often found in practice: a Gaussian density on R

m and a uniform
density on a hypercube.

4.1.1. The Gaussian case. The first case we consider is when the domain X
is R

m and ρ(x) is a Gaussian density with mean zero and an identity covariance.
In this case, the reduced domain Y is R

n, and the marginal density πY (y) is also a
zero-mean Gaussian with an identity covariance, since y = WT

1 x and WT
1 W1 = I.

We choose a simple tensor product design (i.e., a grid or lattice) on Y such that each
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univariate design covers three standard deviations. For example, a nine-point design
in R

2 would use the points {−3, 0, 3} × {−3, 0, 3}. This is the approach we will take
in the numerical experiments in section 5.

4.1.2. The uniform case. Next, assume that X = [−1, 1]m, which we write
equivalently as −1 ≤ x ≤ 1, and the density ρ is uniform over [−1, 1]m. The reduced
domain becomes

(4.1) Y =
{

y : y = WT
1 x,−1 ≤ x ≤ 1

}

.

In general, Y will not be a hypercube in R
n—only if W1 contains only columns of

the identity matrix. However, Y will be a convex polytope in R
n whose vertices are a

subset of vertices of [−1, 1]m projected to R
n. For example, if m = 3 and n = 2, then

one can imagine taking a photograph of a rotated cube; six of the cube’s eight vertices
define the polytope in R

2. These projections of hypercubes are called zonotopes, and
there exist polynomial time algorithms for discovering the vertices that define the
convex hull [17]. In principle, one can give these vertices to a mesh generator (e.g.,
[32]) to create a design on Y. The marginal density πY (y) is challenging to compute;
our current research efforts include this task.

4.2. Training the kriging surface. In section 3.2, we described approximating
the conditional expectation G(y) by its Monte Carlo estimate Ĝ(y) from (3.10). The
error bound in Theorem 3.2 shows that if the trailing eigenvalues λn+1, . . . , λm are
small enough, then the number N of samples needed for the Monte Carlo estimate
can be very small—even N = 1. However, the proof of the theorem used the error
measure (3.14), which assumes that zi are drawn independently from the conditional
density πZ|Y . In practice, we can use a Metropolis–Hasting [10] scheme to sample
from πZ|Y since it is proportional to the given ρ(W1y + W2z). But these samples
are correlated, and the error bound in (3.14) does not strictly apply [7].

In practice, we have had success using only a single evaluation of f in the compu-
tation of Ĝ, as suggested by Theorem 3.2. Therefore, we do not need to draw several
samples from πZ|Y ; we need only a single xk ∈ X such that WT

1 xk = yk for each yk

in the design on Y. We can easily find such an xk for each of the two cases discussed
in the previous section.

• If X = R
m and ρ is a Gaussian density, then xk = W1yk.

• If X = [−1, 1]m and ρ is a uniform density, then xk must satisfy WT
1 xk =

yk and −1 ≤ xk ≤ 1. Thus, xk can be found using Phase 1 of a linear
program [28].

With xk, we compute Ĝk = Ĝ(yk) = f(xk); the set {(yk, Ĝk)} comprises the training
data for the kriging surface.

We assume that the function we are trying to approximate is smooth with respect
to the coordinates y. However, since the training data Ĝk are not exactly equal to
the conditional expectation G(yk), we do not want to force the kriging surface to
interpolate the training data. Instead, we want to build a model for the noise in the
training data that is motivated by Theorem 3.1 and incorporate it into the kriging
surface. We choose the correlation matrix of the training data to come from a product-
type squared exponential kernel with an additional diagonal term to represent the
noise,

(4.2) Cov
[

G̃(yk1
), G̃(yk2

)
]

= K (yk1
,yk2

) + η2 δ(k1, k2),
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where δ(k1, k2) is 1 if k1 = k2 and zero otherwise, and

(4.3) K (yk1
,yk2

) = exp

(

−
n
∑

i=1

(yk1,i − yk2,i)
2

2ℓ2i

)

.

Along with the correlation function, we choose a quadratic mean term, which will
add

(

n+2

n

)

polynomial basis functions to the kriging approximation. Note that this
imposes a restriction that the design must be poised for quadratic approximation.

We are left to determine the parameters of the kriging surface, including the
correlation lengths ℓi from (4.3) and the parameter η2 of the noise model from (4.2).
Given values for these parameters, the coefficients of both the polynomial bases and
the linear combination of the training data are computed in the standard way [25, 33].
We could use a standard maximum likelihood method to compute ℓi and η2. However,
we can inform these parameters using the quantities from Lemma 2.1 and Theorem 3.1.

Toward this end, we approximate the directional derivative of f along wi with a
finite difference,

(4.4) ∇xf(x)
Twi ≈

1

δ
(f(x+ δwi)− f(x)) ,

which is valid for small δ. Decompose f(x) = f0 + f ′(x), where f0 = E [f ], so that f ′

has zero mean. By Lemma 2.1,

λi = E
[

((∇xf)
Twi)

2
]

(4.5)

≈ 1

δ2
E

[

(f(x+ δwi)− f(x))
2
]

=
1

δ2
E

[

(f ′(x+ δwi)− f ′(x))
2
]

=
2

δ2
(

σ2 − Cov [f ′(x+ δwi), f
′(x)]

)

,

where σ2 = Var [f ]. Rearranged, we have

(4.6) Corr [f ′(x+ δwi), f
′(x)] =

1

σ2
Cov [f ′(x + δwi), f

′(x)] = 1− λiδ
2

2σ2
.

This implies that the correlation function along wi is locally quadratic near the origin
with coefficient λi/2σ

2. A univariate squared exponential correlation function with
correlation length parameter ℓ has a Taylor series about the origin

(4.7) exp

(

− δ2

2ℓ2

)

= 1− δ2

2ℓ2
+ · · · .

Comparing these terms to the locally quadratic approximation of the correlation func-
tion, we can use a univariate Gaussian with correlation length

(4.8) ℓ2i =
σ2

λi

for the reduced coordinate yi. In other words, the correlation length parameter ℓi
corresponding to yi in the correlation kernel will be inversely proportional to the
square root of the eigenvalue λi. Thus we need to approximate the variance σ2.
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Applying Theorem 3.1 with n = 0, we have

(4.9) σ2 = Var [f ] ≤ C1(λ1 + · · ·+ λm).

Unfortunately, the Poincaré inequality is a notoriously loose bound, so we are reluctant
to simply plug in an estimate of C1 to approximate σ2. Instead, we posit that for
some constant α,

(4.10) σ2 = α(λ1 + · · ·+ λm),

where α ≤ C1, and we can employ an estimate of C1. For the case when X = R
m

and ρ is a standard normal, C1 ≤ 1 [9]. If X = [−1, 1]m and ρ is uniform, then
C1 ≤ 2

√
m/π [3]. Other cases can use comparable estimates, if available. To get

a rough lower bound on α, we use the biased estimator of σ2 from the samples fj
computed in section 2.2,

(4.11) σ̂2 =
1

M

M
∑

j=1

(fj − f̂0)
2,

where f̂0 is the empirical mean of the fj. Since M will generally be small due to
limited function evaluations, we expect the bias to be significant enough to justify the
bound

(4.12) σ̂2 ≤ α(λ1 + · · ·+ λm),

so that

(4.13)
σ̂2

λ1 + · · ·+ λm

≤ α ≤ C1.

From here, we treat α as a hyperparameter for the correlation kernel (4.3), and we
can use a maximum likelihood approach to set it. Note that the number of variables
in the maximum likelihood is one, in contrast to n + 1 variables for the standard
approach. Given a value for α that achieves the maximum likelihood, we set σ2 by
(4.10) and

(4.14) η2 = α(λn+1 + · · ·+ λm)

in (4.2). We now have all necessary quantities to build the kriging surface on the
active subspace.

4.3. A step-by-step algorithm. We summarize this section with an algorithm
incorporating the previously described computational procedures given a function
f = f(x) and its gradient ∇xf = ∇xf(x) defined on X with probability density
function ρ. Portions of this algorithm are specific to the Gaussian and uniform density
cases discussed in section 4.1.

1. Initial sampling. Choose a set of M points xj ∈ X according to the measure
ρ(x). For each xj , compute fj = f(xj) and ∇xfj = ∇xf(xj). Compute the
sample variance σ̂2.

2. Gradient analysis. Compute the SVD of the matrix

(4.15) G =
1√
M

[

∇xf1 · · · ∇xfM
]

= WΣVT ,

and set Λ = Σ2. Choose a reduced dimension n < m according to practical
considerations and the decay of λi. Partition W =

[

W1 W2

]

.
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3. Reduced domain. If X = R
m and ρ is a standard Gaussian density, then the

reduced domain Y = R
n. If X = [−1, 1]m and ρ is a uniform density, then

use the method described in [17] to determine the vertices of the zonotope
in R

n.
4. Design on reduced domain. Choose a set of P points yk ∈ Y. In the Gaussian

case, choose xk = W1yk. In the uniform case, use a linear program solver to
find an xk ∈ [−1, 1]m that satisfies yk = WT

1 xk.
5. Train the response surface. For each yk, set Ĝk = Ĝ(yk) = f(xk). Use a

maximum likelihood method to find the hyperparameter α with bounds from
(4.13). Set the noise model parameter η2 as in (4.14) and correlation lengths

(4.16) ℓ2i =
α

λi

(λ1 + · · ·+ λm)

for the product squared exponential correlation kernel on Ȳ . Apply standard
kriging with the training data {(yk, Ĝk)}.

6. Evaluate the response surface. For a point x ∈ X , compute

(4.17) f(x) ≈ F̃ (x) = G̃(WT
1 x),

where G̃ is the trained kriging surface.
We conclude this section with summarizing remarks. First, the choice of n requires
some interaction from the user. We advocate such interaction since we have found
that one can uncover insights into the function f by examining the λi and the elements
of wi. Second, as written, there is substantial freedom in choosing both the design
sites on the reduced domain and the response surface. This was intentional. For our
purposes, it suffices to use the gradient analysis to construct an approximation on the
active subspace, but the details of the approximation will require many more practical
considerations than we can address here. We have chosen kriging primarily because
of (i) the natural fit of the computed λi to the correlation length parameters and
training data noise model, and (ii) its flexibility with scattered design sites. However,
many other options for approximation are possible, including global polynomials, re-
gression splines, or finite element approximations; Russi advocates a global quadratic
polynomial [34] on the subspace.

Third, with the gradient available for f , one could use (2.10) to obtain gradients
with respect to the reduced coordinates. This could then be used to improve the re-
sponse surface on the active subspace [25]. As also mentioned in [25], since we know
a great deal about our correlation function, we could create designs that satisfy opti-
mality criteria such as maximum entropy.

Finally, we note that the function evaluations fj could be better used to construct
the response surface on the subspace. We have intentionally avoided proposing any
strategies for such use; we prefer instead to use them as a testing set for the response
surface as detailed in the next section.

5. Numerical example. In this numerical exercise, we study an elliptic PDE
with a random field model for the coefficients. Such problems are common test
cases for methods in UQ [2]. MATLAB codes for this study can be found at https://
bitbucket.org/paulcon/active-subspace-methods-in-theory-and-practice. They require
MATLAB’s PDE Toolbox, the random field simulation code at http://www.
mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation, and the
Gaussian process regression codes at http://www.gaussianprocess.org/gpml/code/
matlab/doc/.

D
o
w

n
lo

ad
ed

 1
2
/2

3
/1

4
 t

o
 1

8
.5

1
.1

.3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

https://bitbucket.org/paulcon/active-subspace-methods-in-theory-and-practice
https://bitbucket.org/paulcon/active-subspace-methods-in-theory-and-practice
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1516 PAUL G. CONSTANTINE, ERIC DOW, AND QIQI WANG

5.1. Forward and adjoint problem. Consider the following linear elliptic
PDE. Let u = u(s,x) satisfy

(5.1) −∇s · (a∇su) = 1, s ∈ [0, 1]2.

We set homogeneous Dirichlet boundary conditions on the left, top, and bottom
of the spatial domain; denote this boundary by Γ1. The right side of the spatial
domain denoted Γ2 has a homogeneous Neumann boundary condition. The log of the
coefficients a = a(s,x) of the differential operator are given by a truncated Karhunen–
Loeve (KL) type expansion

(5.2) log(a(s,x)) =
m
∑

i=1

xi γi φi(s),

where the xi are independent, identically distributed standard normal random vari-
ables, and the {φi(s), γi} are the eigenpairs of the correlation operator

(5.3) C(s, t) = exp
(

β−1 ‖s− t‖1
)

.

We will study the quality of the active subspace approximation for two correlation
lengths, β = 1 and β = 0.01. We choose a truncation of the field m = 100, which
implies that the parameter space X = R

100 with ρ a standard Gaussian density
function. Define the linear function of the solution

(5.4)
1

|Γ2|

∫

Γ2

u(s,x) ds.

This is the function we will study with the active subspace method.
Given a value for the input parameters x, we discretize the elliptic problem with

a standard linear finite element method using MATLAB’s PDE Toolbox. The dis-
cretized domain has 34,320 triangles and 17,361 nodes; the eigenfunctions φi from
(5.2) are approximated on this mesh. The matrix equation for the discrete solution
u = u(x) at the mesh nodes is

(5.5) Ku = f ,

whereK = K(x) is symmetric and positive definite for all x ∈ X . We can approximate
the linear functional as

(5.6) f(x) = cTMu(x) ≈ 1

|Γ2|

∫

Γ2

u(s,x) ds,

where M is the symmetric mass matrix, and the components of c corresponding to
mesh nodes on Γ2 are equal to one with the rest equal to zero.

Since the quantity of interest can be written as a linear functional of the solution,
we can define adjoint variables that enable us to compute ∇xf ,

(5.7) f = cTMu = cTMu− yT (Ku− f),

for any constant vector y. Taking the derivative of (5.7) with respect to the input xi,
we get

(5.8)

∂f

∂xi

= cTM

(

∂u

∂xi

)

− yT

(

∂K

∂xi

u+K
∂u

∂xi

)

=
(

cTM− yTK
)

(

∂u

∂xi

)

− yT

(

∂K

∂xi

)

u.
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Table 1

This table compares the normalized KL singular values from (5.2) with the normalized singular
values from the active subspace analysis, i.e., the singular values of G from (2.18). Two values of β
are the correlation length parameters for the random field model of the elliptic coefficients from (5.3).

KL, β = 1 ASM, β = 1 KL, β = 0.01 ASM, β = 0.01

1.0000 1.0000 1.0000 1.0000
0.0978 0.0010 0.9946 0.0055
0.0975 0.0006 0.9873 0.0047
0.0282 0.0005 0.9836 0.0046
0.0280 0.0002 0.9774 0.0042

If we choose y to solve the adjoint equation KTy = MT c, then

(5.9)
∂f

∂xi

= −yT

(

∂K

∂xi

)

u.

To approximate the gradient ∇xf at the point x, we compute the finite element
solution with (5.5), solve the adjoint problem, and compute the components with
(5.9). The derivative of K with respect to xi is straightforward to compute from the
derivative of a(s,x) and the same finite element discretization.

5.2. Dimension reduction study. Next we apply the dimension reduction
method to the quantity of interest f from (5.6). We compare two cases: (i) the random
field model for a has a long correlation length (β = 1 in (5.3)), which corresponds to
rapidly decaying KL singular values γi in (5.2), and (ii) a has a short correlation length
(β = 0.01), which corresponds to slowly decaying KL singular values. The number of
terms in the KL series is often chosen according to the decay of the singular values,
e.g., to capture some proportion of the energy in a; we choose m = 100 in both cases
for illustration purposes. Thus, the linear function f of the solution to the PDE u is
parameterized by the m = 100 parameters characterizing the elliptic coefficients a.

We use the finite element model and its adjoint to compute f and ∇xf at M =
300 points drawn from a m-variate normal distribution with zero mean and identity
covariance. Table 1 lists the first five singular values from the SVD of the matrix
of gradient samples (labeled ASM for active subspace method) for both β = 1 and
β = 0.01. They are normalized so that the first singular value is 1. We compare
these with normalized versions of the KL singular values for both correlation lengths.
Notice that the slow decay of the KL singular values for β = 0.01 suggests that little
dimension reduction is possible. However, the singular values of G decay very rapidly,
which suggests dimension reduction will be effective—assuming that the Monte Carlo
approximation of the matrix C is sufficiently accurate. The comparison is meaningful
only in the sense of dimension reduction; the singular values of G are with respect to
a specific scalar quantity of interest, while the KL singular values are for the spatially
varying field.

Figure 2 plots the components of the first two eigenvectors from the active sub-
space analysis—i.e., the first two columns of W from (2.18)—for both correlation
lengths. Notice that the mass is more evenly distributed for the short correlation
length. This is not surprising. The magnitude of the components of the first eigen-
vector are a measure of sensitivity of the function f to perturbations in the parameters.
The relative clustering of large values toward smaller indices (the left side of the plot)
for the longer correlation length implies that the coefficients xi in the KL series with
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Fig. 2. The left figure shows the components of the first eigenvector from the active subspace
analysis for both long (β = 1) and short (β = 0.01) correlation lengths. The right figure shows the
components of the second eigenvector. (Colors are visible in the electronic version.)

Table 2

This table shows the average relative error of the kriging surface at 300 testing sites as the
dimension of the active subspace increases. We report this approximation error for β = 1 and
β = 0.01 in (5.3). Note the relatively slow decay of the error justifies our attention on active
subspaces for n = 1 and n = 2.

n β = 0.01 β = 1

1 7.88e-3 1.78e-1
2 7.82e-3 1.49e-1
3 7.57e-3 1.88e-1
4 6.75e-3 1.22e-1
5 6.61e-3 1.10e-1

larger singular values contribute the most to the variability in f . But this relationship
relaxes for shorter correlation lengths.

Table 2 studies the approximation quality as the dimension of the low-dimensional
subspace increases for both choices of the correlation length parameter β. The num-
bers represent the average relative error in the active subspace method’s approxima-
tion for the M = 300 testing evaluations. We trained the kriging surfaces using a
five-point tensor product design on the reduced domain; the univariate designs use
the points {−3,−1.5, 0, 1.5, 3} to cover three standard deviations in the input space.
We use the heuristic described in section 4.2 for choosing the kriging hyperparame-
ters. The average error does not decrease rapidly for increasing n. Therefore, we will
consider only the active subspace approximations for n = 1 and n = 2.

We compare the accuracy of the kriging surface on the active subspace with a
kriging surface on the one- and two-dimensional coordinate subspaces defined by the
largest-in-magnitude components of the gradient∇xf evaluated at the origin. In other
words, we compare the approximation on the active subspace to an approximation
using local sensitivity analysis to reduce the number of parameters. For the long
correlation length β = 1, the two most important coordinates are x1 and x3. For the
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short correlation length β = 0.01, the two most important coordinates are x6 and
x1. For the coordinate dimension reduction, we use the maximum likelihood method
implemented in the GPML code [33] with a maximum of 500 function evaluations to
tune the hyperparameters of an isotropic squared-exponential covariance kernel and
a quadratic polynomial basis.

Figure 3 shows the one-dimensional projections. In all subfigures, the solid black
line is the mean kriging prediction, and the gray shaded region is the two-standard-
deviation confidence interval. The blue dots show the 300 evaluations of f computed
while studying the gradients projected onto the subspaces; we use these evalua-
tions as testing data. Figures 3(a) and 3(c) show the approximation for the long

(a) ASM, β = 1 (b) ASM, β = 0.01

(c) SENS, β = 1 (d) SENS, β = 0.01

Fig. 3. Comparing the kriging surfaces constructed on the one-dimensional subspaces defined by
the active subspaces, (a) and (b), and a local sensitivity analysis at the origin, (c) and (d). (Colors
are visible in the electronic version.)
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correlation length. Notice how the function evaluations cluster more tightly around
the mean prediction for the active subspace. Loosely speaking, this means the active
subspace has found the right angle from which to view the high-dimensional data to
uncover its one-dimensional character. Figures 3(b) and 3(d) show the same plots
for the shorter correlation length. Notice how for both methods the spread of the
function evaluations is larger. However, the active subspace is again able to uncover a
strongly dominant direction; when viewed from this direction, the data is essentially
one-dimensional. The local sensitivity method reveals no such trend for the shorter
correlation length. Figure 4 shows the same plots for the two-dimensional subspaces
without the shaded regions for the confidence intervals. The conclusions drawn from
the one-dimensional plots are the same for the two-dimensional plots.

Figure 5 shows histograms of the log of the relative error in the testing data for the
two correlation lengths on both the one- and two-dimensional subspace approxima-
tions. For each case, the histogram of the testing error in the active subspace approach
is compared with the coordinate reduction approach. In all cases, the active subspace
approach performs better, as indicated by the leftward shift in the histogram, which
corresponds to smaller error.

(a) ASM, β = 1 (b) ASM, β = 0.01

(c) SENS, β = 1 (d) SENS, β = 0.01

Fig. 4. Kriging surfaces constructed on the two-dimensional subspaces defined by the active
subspaces, (a) and (b), and a local sensitivity analysis at the origin, (c) and (d). (Colors are visible
in the electronic version.)
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(c) n = 2, β = 1
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(d) n = 2, β = 0.01

Fig. 5. Histograms of the log of the relative error in the testing data for kriging surfaces
constructed on the one- and two-dimensional subspaces for the two correlation lengths. (Colors are
visible in the electronic version.)

We mention the costs of these two approaches in terms of the number of function
and gradient evaluations. The active subspace method used M = 300 samples of the
gradient to approximate the covariance matrix. Since we had no prior knowledge that
C would be low-rank, we choseM = 300 as a 3× oversampling rate given the m = 100
variables. However, if we had suspected rapid decay in the singular values—and given
that we would use at most only a two-dimensional subspace—we could have used
many fewer gradient samples. With each gradient evaluation, we also get a function
evaluation that we can use for testing the approximation. Given the eigenvectors
defining the active subspace, we evaluated the function P = 5 or 25 more times for
the one- and two-dimensional subspaces, respectively. We then tested the kriging
surface on the subspace using the testing set computed along with the gradients.

The local sensitivity method used one gradient evaluation to find the first and
second most important input variable. It also used 5 or 25 additional function evalua-
tions to train a kriging surface on one- and two-dimensional coordinate subspaces. It
then used the same 300 function evaluations as testing data. Thus, the local method
was significantly cheaper but substantially less accurate.
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(b) n = 1, β = 0.01
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(c) n = 2, β = 1
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Fig. 6. Histograms of the log of the relative error in the testing data for kriging surfaces
constructed on the one- and two-dimensional subspaces for the two correlation lengths. ASM is the
kriging surface using the active subspace, and Full is the kriging surface on the full space. (Colors
are visible in the electronic version.)

5.3. Comparison with kriging on X . Finally, we compare the kriging surface
constructed on the low-dimensional domain Y using the active subspace with a kriging
surface on the full domain X . The cost of computing the gradient ∇xf via adjoint
computations is roughly twice the cost of computing the function f for a particular x.
Thus, the cost of constructing the active subspace approximation is roughly 3M + P
function evaluations, whereM is the number of gradient samples, and P is the number
of evaluations for the design on Y.

For a fair comparison, we build a kriging surface on the m-dimensional space
X using 3M + P function evaluations. In this case M = 300, P = 5 for the one-
dimensional subspace, and P = 25 for the two-dimensional subspace. We evaluate
f at 500 additional points to create an independent testing set. Histograms of the
testing errors are shown in Figure 6. For the same cost, the relative focus of the active
subspace method produces a more accurate approximation than the response surface
in m = 100 dimensions.
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6. Summary and conclusions. Active subspace methods enable response sur-
face approximations of a multivariate function on a low-dimensional subspace of the
domain. We have analyzed a sequence of approximations that exploits the active
subspace: a best approximation via conditional expectation, a Monte Carlo approxi-
mation of the best approximation, and a response surface trained with a few Monte
Carlo estimates. We have used these analyses to motivate a computational procedure
for detecting the directions defining the subspace and constructing a kriging surface
on the subspace. We have applied this procedure to an elliptic PDE problem with
a random field model for the coefficients. We compared the active subspace method
with an approach based on the local sensitivity analysis and showed the superior
performance of the active subspace method.

Loosely speaking, active subspace methods are appropriate for certain classes of
functions that vary primarily in low-dimensional subspaces of the input. If there is no
decay in the eigenvalues ofC, then the methods will perform poorly; constructing such
functions is not difficult. However, we have found many high-dimensional applications
in practice where the eigenvalues do decay quickly, and the functions respond well to
active subspace methods [8, 15, 12, 13]. Most of those applications look similar to
the one presented in section 5, where uncertainty in some spatially varying physical
input can be represented by a series expansion, and the coefficients of the expansion
are treated as random variables; such models arise frequently in UQ.

The computational method we have proposed is ripe for improvements and ex-
tensions. We have mentioned many such possibilities in section 4.3, and we are par-
ticularly interested in methods for using fewer evaluations of the gradient to compute
the directions defining the active subspace. We will also pursue strategies that make
better use of the function evaluations acquired during the gradient sampling.
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