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Abstract. In this paper, we harness the synergy between two important
learning paradigms, namely, active learning and domain adaptation. We
show how active learning in a target domain can leverage information
from a different but related source domain. Our proposed framework, Ac-
tive Learning Domain Adapted (Alda), uses source domain knowledge
to transfer information that facilitates active learning in the target do-
main. We propose two variants of Alda: a batch B-Alda and an online
O-Alda. Empirical comparisons with numerous baselines on real-world
datasets establish the efficacy of the proposed methods.
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1 Introduction

We consider the supervised1 domain adaptation setting [9] where we have a large
amount of labeled data from some source domain, a large amount of unlabeled
data from a target domain, and additionally a small budget for acquiring labels
in the target domain. We show how, apart from leveraging information in the
usual domain adaptation sense, the information from the source domain is further
leveraged to selectively query for labels in the target domain (instead of choosing
them randomly, as is the common practice). We achieve this by first training the
best possible classifier in the source without using target labels, for instance,
either by simply training a supervised classifier on the source labeled data, or
by using some unsupervised adaptation technique using the unlabeled target
data as well. Then, we use this learned hypothesis in various ways to leverage
the source domain information when we are additionally given some fixed budget
for acquiring some extra labeled target data (i.e., the active learning setting [12]).

� Authors contributed equally.
1 We define supervised domain adaptation as having labeled data in both source and

target, unsupervised domain adaptation as having labeled data in only source, and
semi-supervised domain adaptation as having labeled data in source and both labeled
and unlabeled data in target.
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We call this framework Active Learning Domain Adapted (Alda). Our pro-
posed framework is based on three key components. The first component is
unsupervised domain adaptation (i.e., without target labeled data). The goal of
this step is to suitably adapt the source data representation such that it makes
the marginal distributions of both source and target distributions look similar.
This enables training any traditional supervised classifier for the target domain
using the adapted representation of the source data. The second and the third
components improve this classifier even further by using active learning to selec-
tively acquire the labels of target examples, given a budget on the target labels.
Moreover, these components leverage the source domain information as well.
Specifically, the second step employs a domain separator hypothesis that rules
out querying labels of those target examples that appear “similar” to examples
from the source domain. The domain separator hypothesis is a classifier that
distinguishes between source and target domain examples and is learned using
only unlabeled examples from the two domains. The third component is a hybrid
oracle which consists of two oracles: one that provides labels for free but is im-
perfect (there could be noise), and one expensive (but “perfect”) oracle used in
the standard active learning settings. The source classifier acts as the free oracle
which, although not perfect, can provide correct labels for most of the examples
queried (essentially, the ones that appear ‘source’ like).

The proposed Alda framework is sufficiently general to allow varied choices
of domain adaptation and active learning modules. In addition, Alda applies to
both batch (Section 2) as well as online settings (Section 3). In this paper, we
present empirical results (Section 4) for specific choices of the domain adaptation
and the active learning schemes. For both batch and online settings, we empiri-
cally demonstrate that the proposed approach leads to significant improvement
in prediction accuracies for a given target label budget, when compared to other
baselines. Moreover, for the online setting, apart from showing empirically better
performance, we also show that our approach results in smaller mistake bounds
under suitable notions of domain separation. We provide intuitive arguments for
smaller label complexity in the target domain when compared to the standard
active learning where we do not have access to data from a related distribution.

2 ����: Active Learning Domain Adapted

In this section, we propose a principled approach towards active learning in a
target domain by leveraging information from a related source domain. In our
setting, we are given a small budget for acquiring labels in a target domain, which
makes it imperative to use active learning in the target domain. However, our
goal is to additionally leverage the domain relatedness by exploiting whatever
information we might already have from the source domain. At a high level, our
proposed approach aims to answer the following questions:
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1. given source information, which samples in the target are the most informa-
tive (in an active sense)?

2. among the informative target samples, can we use source information to infer
labels of a few informative target samples, such that the actual number of
target labels queried (from an oracle) is reduced even further?

In the following, we provide answers to the above questions. We begin by intro-
ducing some notations and presenting an overview of the Alda framework.

2.1 Preliminaries

Let X ⊂ R
d denote the instance space and Y = {−1, +1} denote the label

space. Let Ds(x, y) and Dt(x, y) be the joint source and target distributions,
respectively. We have a set of source labeled examples Ls(∼ Ds(x, y)) and a
set of source unlabeled examples Us(∼ Ds(x)). Additionally, we also have a
set of target unlabeled instances Ut(∼ Dt(x)), from which we actively acquire
labels. Furthermore, wsrc denotes a classifier learned from the source labeled
data and wds denotes the domain separator hypothesis. Finally, let φ represent
an unsupervised domain adaptation algorithm that outputs a classifier uφ. Note
that learning uφ does not require labeled target examples.

Fig. 1 shows our basic setup for Alda. The Active Learning (AL) module is
a combination of the sub-modules Uncertainty Sampler (US) (that is initialized
using the uφ classifier from the unsupervised domain adaptation phase) and Do-
main Separator (DS) (that uses the wds classifier). In addition, the setup employs
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Free Oracle Of

wsrc

LearnerHybrid

Oracle

φ: Domain Adaptation

uφ

wds

Active Learning

Target

Source

Learn classifier
on source

labeled data
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Fig. 1. An illustration of the proposed Alda framework. Domain adaptation can be
performed using any black-box unsupervised domain adaptation approach (e.g., [2,14]).
The active learning block can be any batch or online active learner.



100 A. Saha et al.

a hybrid oracle which is a combination of a free oracle Of and an expensive ora-
cle Oc. The free oracle Of is nothing but the classifier (wsrc) learned using the
source labeled samples Ls. At each step, the learner actively selects an informa-
tive target sample and gets it labeled by an appropriate oracle. This continues in
an iterative (for the batch setting) or online fashion until some stopping criterion
is met (say, for example, reached prescribed accuracy or exhausted label budget).
Next we describe each of these individual modules in more detail.

2.2 Initializing the Uncertainty Sampler

The first phase of Alda learns an unsupervised domain adapted classifieruφ which
uses labeled source data, and unlabeled source and target data. Note that this
phase does not use any labeled target data (hence the name unsupervised). There
are a number of ways to learn the classifier uφ. In this paper, we take the ap-
proach [14] that is based on estimating the importance ratio between the source
and the target distribution, without actually estimating these distributions. The
source domain examples, with their corresponding importance weights, can then
be used to train any classifier which is now readily adapted for the target domain
(of course, this can potentially still be improved, given extra labeled target data).
Note that the unsupervised domain adaptation step can be performed using a
number of other ways as well; for example, Kernel Mean Matching (KMM) can be
performed by matching the source and target distributions in some Reproducing
Kernel Hilbert Space (RKHS) and computing the importance weights of source
domain examples [8]. Another approach (especially for NLP problems), could be
to use Structural Correspondence Learning (SCL) to identify invariant (“pivot”)
features between source and target, and use these features for unsupervised do-
main adaptation [2]. The unsupervised domain adapted classifier uφ serves as the
initializing classifier for the subsequent active learning phase of our approach.

2.3 Leveraging Domain Divergence

It turns out that, in addition to using the source domain information to initialize
our active learner in the target domain (Section 2.2), we can further leverage
the domain relatedness information to improve the active learning phase in the
target. In this section, we propose the domain separator that further leverages
the relatedness of source and target domains while performing active learning in
the target. Assuming the source and target domains to be related, our proposed
technique exploits this relatedness to upfront rule out acquiring labels of those
target domain examples that “appear” to be close to the source domain.

As an example, Fig. 2 shows a typical domain separator hypothesis (denoted
by wds) that separates the source and target examples. We note that similar
source and target examples are expected to have the same labels since only
the marginal distribution of examples changes between the source and target
examples (i.e., Ds(x) �= Dt(x)) whereas the conditional distribution of labels
(given the examples) stays the same (i.e., Ds(y|x) = Dt(y|x)). Observe that if
the source and target distributions are far apart, then the two domains can be
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Fig. 2. An illustrative diagram showing the domain separator hypothesis wds separat-
ing source data from target data and the classifier uφ learned using the unsupervised
domain adapted source classifier.

perfectly classified by this separator. However, if the domains are similar, it is
expected that there will be a reasonable overlap and therefore some of the target
(or source) domain examples might lie on the source (or target) side (encircled
instances in Fig. 2) and hence will be misclassified by the domain separator
hypothesis. Acquiring labels for such target domain examples (that lie on the
source side) is not really needed since the initial hypothesis (refer uφ in Fig. 1)
of Alda would already have taken into account such examples. Therefore, such
target examples can be effectively ignored from being queried. Thus the domain
separator hypothesis, which can be learned using only source and target unla-
beled examples, provides a novel way of performing active sampling in domain
adaptation settings.

The domain separator hypothesis avoids querying the labels of all those target
examples that lie on the source side of the domain separator and hence are mis-
classified by it. This number, in turn, depends on the domain divergence between
the source and target domains. For reasonably similar domain pairs, the domain
divergence is expected to be small which implies that a large number of target
examples lies on the source side. We can formalize the label complexity reduction
due to the domain separator hypothesis. As earlier, let Ds and Dt denote the
source and target joint distributions, and let pDs(x) and pDt(x) be probabilities
of an instance x belonging to the source and the target respectively, in the un-
labeled pool used to train the domain separator hypothesis. Let Δ denote the
Mahalanobis distance between the source and target distributions. The Bayes
error rate [15] of the domain separator hypothesis is: Ebayes ≤ 2pDs (x)pDt(x)

1+pDs (x)pDt (x)Δ .
Thus, the label complexity reduction due to the domain separator hypothesis
is proportional to the number of target examples misclassified by the domain
separator hypothesis. This is again proportional to the Bayes error rate, which
in turn is inversely related to the distance between the two domains.
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2.4 Hybrid Oracle

Alda additionally exploits the source domain information by using the source
learned hypothesis (see, wsrc in Hybrid of Fig. 1) as an oracle that provides
labels for free. We denote this oracle by Of . Accordingly to the Covariate Shift
assumption in domain adaptation, only the marginal distribution changes across
domains whereas the conditional distribution remains fixed. If some target ex-
ample appears to be close to the source domain then it is reasonable to assume
that the prediction of the source classifer (which depends on the source condi-
tional distribution) on that target sample should be close to the prediction of a
good target classifier on that target sample. This explains the use of the source
learned classifier as a free oracle for the target domain examples. Moreover, as in
the standard active learning setting, we also have an expensive oracle Oc. This
leads to a hybrid setting which utilizes one of these two oracles for each actively
sampled target example. The hybrid oracle starts with a domain adapted source
initialized classifier (uφ in US of Fig. 1) and uses the domain separator hypoth-
esis (wds in DS of Fig. 1) to assess which of the uncertain target examples lie
on the source side and, for all such examples, it queries the labels from the free
oracle Of . For the remaining uncertain examples that lie on the target side, the
hybrid approach queries the expensive oracle Oc. Although the oracle Of is not
perfect, the hope is that it can still provide correct labels for most of the target
examples.

Algorithm 1 presents the final algorithm that combines all aforementioned
schemes. This algorithm operates in a batch setting and we call it B-Alda (for
Batch-Alda). As mentioned earlier (ref. Section 2.2), the importance ratio in
line 2 of Algorithm 1 can be obtained by the techniques SCL [2], KMM [8], etc.

Algorithm 1. B-Alda

input Ls = {xs, y}; Us; Ut; maxCost (label budget K and/or desired accuracy ε);
output v (target classifier);
1: cost := 0;
2: S := L̃s (importance weighted Ls learned using Ls, Us and Ut);
3: uΦ := learn a domain adapted source classifier using S;
4: wds := learn a classifier using the data {Us, +1} and {Ut,−1};
5: wsrc := learn a domain adapted source classifier using Ls;
6: while (cost < maxCost) do
7: x̄t := US(uΦ,Ut); /* choose most informative target point */
8: ŷds := DS(wds, x̄t); /* compute source resemblance */
9: if (ŷds == +1) then

10: yt = Of (wsrc, x̄t); /* query the free oracle */
11: else if (ŷds == −1) then
12: yt = Oc(x̄t); /* query the costly oracle */
13: cost ← cost + 1;
14: end if
15: S = S ∪ {x̄t, yt};
16: retrain uΦ using S;
17: end while
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3 Online ����

In B-Alda, the active learning module, at each iteration, chooses the data point
that lies closest to the decision boundary. However, this approach is prohibitively
slow for large or even moderately sized datasets. Hence, we propose Online Alda
(O-Alda) which performs active learning in an online fashion and for each
example decides whether or not to query its label. As in standard active learning,
this query decision must be biased by the informativeness of the example.

To extend Alda to the online setting, we adopt the label query strategy
proposed in [3]. However, we note that our framework is sufficiently general and
allows integration with other active online sampling strategies. The sampling
scheme in [3] proceeds in rounds and at round i queries the label of the example
xi with probability b

b+|ri| , where |ri| is the confidence (in terms of margin) of the
current weight vector on xi. Parameter b quantifies how aggressively the labels
are being queried. A large value of b implies that, in expectation, a large number
of labels will be queried (aggressive sampling) whereas a small value would lead
to a small number of examples being queried (conservative sampling). For each
label queried, the algorithm updates the current weight vector if the label was
predicted incorrectly. It is easy to see that the total number of labels queried by
this algorithm is

∑T
i=1 E[ b

b+|ri| ], where T is the total number of rounds. At this
point we note that the preprocessing stage of O-Alda assumes the existence of
some (maybe, a small amount) of target unlabeled data that can be utilized to
construct the common representation. The online active learning in the target
starts after this preprocessing phase when O-Alda selectively queries the labels
of the target data points that arrive in some random order.

Algorithm 2 presents the online variant of Alda which we refer to as O-
Alda (for Online-Alda). As shown in Theorem 1, our proposed O-Alda yields
provable guarantees on mistake bounds and label complexity.

Theorem 1. Let S = ((x1, y1), . . . , (xT , yT )) ∈ (R×{−1, +1})T be any sequence
of examples and UPT the (random) set of update trials for the algorithm (i.e.,
the set of trials i ≤ T such that ŷi �= yi and Zi = 1). Let v0 be the weight
vector with which the base target classifier is initialized and ri be the margin
of O-Alda on example xi. Then the expected number of mistakes made by the
algorithm is upper bounded by

inf
γ>0

inf
v∗∈RD

(
(2b + 1)

2b
E

[ ∑

i∈UPT

1
γ

Dγ(v∗; (x̂i, yi))
]

+
(2b + 1)2

8b

||v∗ − v0||2
γ2

)

The expected number of labels queried by the algorithm is equal to
∑T

i=1 E[ b
b+|ri| ].

In the above theorem, γ refers to some margin greater than zero such that
the cumulative hinge loss of the optimal target hypothesis v∗ on S is given by∑T

1 Dγ(v∗; (xi, yi)), where Dγ(v∗; (xi, yi)) = max{0, γ − yiv∗T xi} is the hinge-
loss on example i. In Appendix A, we discuss the above theorem and provide
a proof sketch for the mistake bound and the label complexity of O-Alda. In
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Algorithm 2. O-Alda

input b > 0; Ls = {xs, y}; Us; Ut; maxCost (label budget K/desired accuracy ε);
output v (target classifier);
1: cost := 0;
2: uΦ := learn a domain adapted source classifier using Ls, Us and Ut;
3: wds := learn a classifier using the data {Us, +1} and {Ut,−1};
4: wsrc := learn a domain adapted source classifier using Ls;
5: while ( (i <= T ) & (cost < maxCost) ) do
6: ri := US(uΦ,xi

t); /* compute margin of ith target point */
7: ŷi

ds := DS(wds,x
i
t); /* compute source resemblance */

8: sample Zi ∼ Bernoulli( b
b+|ri| );

9: if (Zi == 1) then
10: if (ŷi

ds == +1) then
11: yi

t = Of (wsrc,x
i
t); /* query the free oracle */

12: else if (ŷi
ds == −1) then

13: yi
t = Oc(x

i
t); /* query the costly oracle */

14: cost ← cost + 1;
15: end if
16: if (yi

t �= uT
Φxi

t) then
17: update uΦ using online update rule (such, as perceptron);
18: end if
19: end if
20: end while

addition, we discuss the conditions on v0 that lead to improved mistake bounds
in domain adaptation settings as compared to the case where there is no access
to data from a related source domain.

4 Experiments

In this section, we demonstrate the empirical performance of our algorithms and
compare them with a number of baselines.

4.1 Setup

Datasets: We present results for Sentiment and Landmine datasets. The
Sentiment dataset consists of user reviews of eight product types (apparel,
books, DVD, electronics, kitchen, music, video, and other) from Amazon.com.
The sentiment classification task for this dataset is binary classification which
corresponds to classifying a review as positive or negative. The dataset consists of
several domain pairs with varying A-distances, akin to a sense described in [1].
Table 1 shows some of the domain pairs used in our experiments and their
corresponding domain divergences in terms of the A-distance [1].

To compute the A-distance from finite samples of source and target domain,
we use a surrogate to the true A-distance (the proxy A-distance) in a manner
similar to [1]. First, we train a linear classifier to separate the source domain
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Table 1. Proxy A-distances between some domain pairs in the sentiment data

Source Target A-distance

Dvd (D) Books (B) 0.7616
Dvd (D) Music (M) 0.7314

Books (B) Apparel (A) 0.5970
Dvd (D) Apparel (A) 0.5778

Electronics (E) Apparel (A) 0.1717
Kitchen (K) Apparel (A) 0.0459

from the target domain using only unlabeled examples from both. The average
per-instance hinge-loss of this classifier subtracted from 1 serves as our estimate
of the proxy A-distance. A score of 1 means perfectly separable distributions
whereas a score of 0 means that the two distributions are essentially the same.
The amount of useful information that can be leveraged from the other domain
would depend on how similar the two domains are. To this end, we therefore
choose two datasets from the sentiment data - one with a domain-pair that is
reasonably close (Kitchen→Apparel), and another with a domain-pair that
is reasonably far apart (DVD→Books).

Our second dataset (Landmine) is the real Landmine Detection data [16]
which consists of 29 datasets. The datasets 1 to 10 are collected at foliated
regions whereas the datasets 20 to 24 are collected from bare earth or desert
regions. We combined datasets 1 − 5 as our source domain and treat dataset 24
as the target domain.

Methods: Table 2 summarizes the methods used with a brief description of
each. Among the first three (ID, sDA, Feda), Feda [6] is a state-of-the-art
supervised domain adaptation method but assumes passively acquired labels.
The first three methods (ID, sDA, Feda) acquire labels passively. The last five
(Alzi, Alri, Alsi, B-Alda and O-Alda) methods in Table 2 acquire labels
in an active fashion. As the description denotes, Alzi and Alri start active
learning in target with a zero initialized and randomly initialized hypothesis,
respectively. It is also important to distinguish between Alsi and Alda (which
jointly denotes both B-Alda and O-Alda). While both are products of our
proposed Alda framework, Alsi uses an unmodified source classifier learned
only from source labeled data as the initializer, whereas Alda (i.e., both B-
Alda and O-Alda) uses an unsupervised domain-adaptation technique (i.e.,
without using labeled target data) to learn the initializer.

In our experiments, we use the instance reweighting approach [14] to construct
the unsupervised domain adaptated classifier uφ. However, we note that this
step can also be performed using any other unsupervised domain adaptation
technique such as Structural Correspondence Learning (SCL) [2] and Kernel
Mean Matching (KMM) [8].

We compare all the approaches based on classification accuracies achieved for a
fixed unlabeled pool of target examples with varying label budgets. For B-Alda,
we use a margin based classifier (SVM) whereas for O-Alda we use vanilla
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Table 2. Description of the methods compared

Method Summary Active ?

ID In-domain data No
sDA Unsupervised domain adaptation followed by No

passively chosen labeled target data
Feda Frustratingly Easy Domain Adaptation [6] No

Alzi Active learning zero initialized Yes
Alri Active learning random initialized (with fixed label budget) Yes

���� Active learning source (hypothesis) initialized Yes
������ Batch active learning domain adapted Yes
	����� Online active learning domain adapted Yes

Perceptron as the base classifier. All online experiments have been averaged
over multiple runs with respect to random data order permutations.

4.2 ������ Results

We present results for B-Alda using a fixed target unlabeled pool and varying
target label budgets. Since, domain adaptation is required only when there are
small amounts of labeled data in the target, we limit our target label budget to
values that are much smaller than the size of the unlabeled target data pool. In
addition, due to long running times of our batch Alda (owing to repeated re-
training), we report results on relatively smaller target pool sizes. The B-Alda
results are presented for a unlabeled target pool size of 2500 data points.

Table 3. Classification accuracies and number of labels requested. Note: ID, sDA and
Feda are given labels of all examples in the target pool.

(a) DVD→Books

Met- Target Label Budget
hod 100 200 300 400 500

Acc Acc Acc Acc Acc

ID 50.83 57.86 62.42 55.69 62.68
sDA 62.18 62.78 55.75 52.45 50.49
Feda 63.92 64.27 64.88 65.94 66.19

Alzi 54.40 54.36 54.33 54.33 54.33
Alri 54.99 59.42 61.28 65.81 65.52

���� 63.75 66.26 68.73 63.10 62.08
������ 63.40 65.17 67.84 68.61 68.51

Acc: Accuracy

(b) Kitchen→Apparel

Met- Target Label Budget
hod 100 200 300 400 500

Acc Acc Acc Acc Acc

ID 48.40 43.44 44.92 48.40 49.77
sDA 52.78 55.41 57.37 53.60 46.37
Feda 70.47 69.97 70.06 71.83 69.96

Alzi 54.56 54.50 54.44 54.44 54.44
Alri 64.97 66.86 69.01 70.40 71.06

���� 74.91 70.58 72.97 72.34 72.29
������ 71.30 70.90 71.19 71.73 73.07

Acc: Accuracy

Sentiment Classification: Table 3a and Table 3b present the results for the do-
main pairs DVD→Books and Kitchen→Apparel, respectively. For these do-
main pairs, both Alsi and B-Alda substantially outperform all other baselines.
For the distant source-target pair (DVD→Books), Alsi performs very well for
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a small number of target labels (say, 100 and 200). As the number of target labels
increases B-Alda consistently improves with increasing number of target labels
and finally outperforms Alsi. When the source-target pairs are reasonably close
(Kitchen→Apparel), both Alsi and B-Alda have similar prediction accura-
cies which are in turn are much higher that the baseline accuracies.

Table 4. AUC scores and labels requested
for the Landmine dataset

Method Target Budget (300)
AUC

ID 0.59
sDA 0.60
Feda 0.56
Alzi 0.59
Alri 0.53
���� 0.63

������ 0.65
AUC: AUC score

Lab: Labels Requested

Landmine Detection: The Land-
mine dataset has a high class
imbalance (only about 5% positive ex-
amples), so we report AUC (area un-
der the ROC curve) scores instead
of accuracies. We compare our algo-
rithms with other baselines in terms
of the AUC score on the entire pool
of target data (the pool size was 300;
rest of the examples in dataset 24 were
treated as test data). As shown in Ta-
ble 4, our approaches perform better
than the other baselines with the do-
main separator based B-Alda doing
the best (in terms of AUC scores).

We do not report any label complexity result for B-Alda as the nature of
the algorithm is such that it iterates until the entire label budget is exhausted.
Hence, in all the results presented above in Table 3a, Table 3b and Table 4, the
number of labels used is equal to the target label budget provided.

4.3 	����� Results

One of the goals to propose an online variant for Alda is to make the pro-
posed approach scale efficiently for larger target pool sizes because batch mode
Alda requires repeated retraining. On the other hand, an online active learner
is an efficient alternative because it allows incremental update of the learner for
each new selected data point. In this section, we present results for O-Alda
and demonstrate the scalability of the Alda framework to larger target pool
sizes. The results for O-Alda use the entire target unlabeled pool (∼ 7000 for
Sentiment data). As a result, the label budget allocated is also much larger as
compared to B-Alda. We note that ID and sDA and Feda have been made
online by the use of the perceptron classifier. In addition, the same online active
strategy as O-Alda has been used for Alzi, Alri and Alsi.

Sentiment Classification: The results are shown in Table 5a and Table 5b. As
the results indicate, on both datasets, our approaches (Alsi and Alda) perform
consistently better than the baseline approaches (Table 2) which also include
one of the state-of-the-art supervised domain adaptation algorithms (Feda).
We note that Alda outperforms Alsi for Kitchen→Apparel as compared to
DVD→Books. When the domains are far (DVD→Books), the performance of
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Table 5. Classification accuracies and number of labels requested. Results are averaged
over 20 runs (w.r.t. different permutations of the training data). Note: ID, sDA and
Feda are given labels of all examples in the target pool.

(a) DVD→Books

Met- Target Label Budget
hod 1000 2000 3000 4000 5000

Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std)

ID 65.94(±3.40) 66.66(±3.01) 67.00(±2.40) 65.72(±3.98) 66.25(±3.18)
sDA 66.17(±2.57) 66.45(±2.88) 65.31(±3.13) 66.33(±3.51) 66.22(±3.05)
Feda 67.31(±3.36) 68.47(±3.15) 68.37(±2.72) 66.95(3.11) 67.13(±3.16)

Alzi 66.24(±3.16) 66.72(±3.30) 63.97(±4.82) 66.28(±3.61) 66.36(±2.82)
Alri 51.79(±4.36) 53.12(±4.65) 55.01(±4.20) 57.56(±4.18) 58.57(±2.44)

���� 68.22(±2.17) 69.65(±1.20) 69.95(±1.55) 70.54(±1.42) 70.97(±0.97)
	����� 67.64(±2.35) 68.89(±1.37) 69.49(±1.63) 70.55(1.15) 70.65(±0.94)

Acc: Accuracy | Std: Standard Deviation

(b) Kitchen→Apparel

Met- Target Label Budget
hod 1000 2000 3000 4000 5000

Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std)

ID 69.64(±3.14) 69.61(±3.17) 69.36(±3.14) 69.77(±3.58) 70.77(±3.05)
sDA 69.70(±2.57) 70.48(±3.42) 70.29(±2.56) 70.86(±3.16) 70.71(±3.65)
Feda 70.05(±2.47) 69.34(±3.50) 71.22(±3.00) 71.67(±2.59) 70.80(±3.89)

Alzi 70.09(±3.74) 69.96(±3.27) 68.6 (±3.94) 70.06(±2.84) 69.75(±3.26)
Alri 52.13(±5.44) 56.83(±5.36) 58.09(±4.09) 59.82(±4.16) 62.03(±2.52)

���� 73.82(±1.47) 74.45(±1.27) 75.11(±0.98) 75.35(±1.30) 75.58(±0.85)
	����� 73.93(±1.84) 74.18(±1.85) 75.13(±1.18) 75.88(±1.32) 75.58(±0.97)

Acc: Accuracy | Std: Standard Deviation

Alda depends on the underlying domain adaptation technique. However, when
the domains are close (Kitchen→Apparel), Alda performs better than Alsi.
This behavior suggests that the performance gains achieved by these variants is
significant when the source and target domains are reasonably close.

Landmine Detection: Similar to B-Alda results, in this case also we used
the entire pool of 300 target data points. The rest of the examples in dataset
24 were treated as test data. As earlier, our approaches perform better than
the other baselines with the domain separator based O-Alda demonstrating
slightly better AUC score and slightly lesser label complexity as compared to
online Alsi. Table 6 presents the AUC scores and the label complexities of the
various methods.

4.4 Remarks

For all datasets considered, both batch and online versions of Alda demonstrate
substantial improvement of prediction accuracy for Sentiment data
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Table 6. AUC scores and labels requested
for the Landmine dataset. Results are av-
eraged over 20 runs.

Method Target Budget (300)
AUC±Std (Lab)

ID 0.57±0.03 (-)
sDA 0.60±0.02 (-)
Feda 0.52±0.04 (-)
Alzi 0.61±0.02 (284)
Alri 0.56±0.05 (229)
���� 0.65±0.02 (244)

	����� 0.67±0.03 (241)
AUC: AUC score

Std: Standard Deviation
Lab: Labels Requested

(∼ (0.4% − 5.09%)). This improve-
ment is particularly high when the
domains are reasonably similar (for
example, Kitchen→Apparel in Ta-
ble 3b and Table 5b). In addition, the
Landmine data reports AUC scores
(not accuracies), and 1% increase in
AUC score implies substantial im-
provement.

For Sentiment and Landmine
datasets, both Alsi and Alda (i.e.,
B-Alda and O-Alda) demonstrate
improvement in prediction accuracy
for a fixed label budget when com-
pared to other baselines. Apart from
the results for DVD→Books in the
batch setting (Table 3a), the predic-
tion accuracies obtained by Alsi and Alda in all other cases are comparable.
However, to get a better sense of the robustness of these two approaches, we
compare the number of mistakes made by the online variants of these two ap-
proaches during the training phase. Table 7 presents the results for Sentiment
data. As can be seen, in almost all case the number of mistakes made by O-Alda
is much lesser (almost half in many cases) than online Alsi. Hence, irrespective
of the nearness or farness of the source-target domain pairs, Alda is a better
choice as compared to Alsi.

Table 7. Number of mistakes made by Alsi and O-Alda for Sentiment data

Target Label Budget
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Number of Mistakes
Method DVD→Books Kitchen→Apparel

Alsi 369 739 1117 1460 1816 245 532 810 1097 1088
O-Alda 384 741 1000 1012 1004 232 478 549 551 556

5 Related Work

Active learning in a domain adaptation setting has received little attention so
far and, to the best of our knowledge, there exists no prior work that presents
a principled framework to harness domain adaptation for active learning. One
interesting setting was proposed in [4] where the authors apply active learning
for word sense disambiguation in a domain adaptation setting. In addition, they
also improve vanilla active learning when combined with domain adaptation.
However, their approach does not use the notions of domain separator and hy-
brid oracle. Moreover, unlike our approach, their method only works in a batch
setting.
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Active learning in an online setting has been discussed in [5] and [3]. The
work of [5] assumes input data points uniformly distributed over the surface of
an unit sphere. However, we cannot make such distributional assumptions for
domain adaptation. As mentioned earlier, [3] provide worst-case analysis which
is independent of any input data distribution. However, none of these explic-
itly consider the case of domain adaptation. Nonetheless, the framework of [3]
folds nicely into our proposed Alda framework. [10] present extensive empirical
results to compare the performance of the two aforementioned approaches. How-
ever, all these settings are different from our in that these works consider only
active learning in an online setting without leveraging inter-domain information.

A combination of transfer learning with active learning has been presented
in [13]. One drawback of their approach is the requirement of an initial pool of
labeled target domain data which helps train the in-domain classifier. Without
this in-domain classifier, no transfer learning is possible in their setting.

6 Discussions and Future Work

In this work, we have considered a domain adaptation setting, and presented
a framework that helps leverage inter-domain information transfer while per-
forming active learning in the target. Both the batch and online versions of
the proposed Alda empirically demonstrate the benefits of domain transfer for
active learning.

At present, Alda is oblivious to the feature set used and, as such, does not
depend on domain knowledge and feature selection. It takes all features into
consideration. Nonetheless, it is possible that in the feature space, not all fea-
tures contribute equally while transferring information from source to target
and without a priori information about the source and target domains, it is
difficult to assess which features might maximally benefit the transfer of pa-
rameters from source to target. However, if prior domain knowledge about the
target is available from related source domains, then one can potentially leverage
active learning to selectively choose only those features that transfer maximum
information between the two domains.

An alternative approach to leverage feature information for Alda is to per-
form active learning on features. There exists work in active learning that queries
labels for features [7] and, in some cases, queries labels for both instances and
features in tandem [11]. We note that this is different from the above where ac-
tive learning can essentially be used as a tool for feature selection. In this case,
active strategies query labels that exploit both instance and feature informa-
tiveness (for e.g., in NLP, consider querying labels for rare words which serve as
informative features in the target domain). It would be interesting to extend the
proposed Alda to perform active domain transfer by querying labels of both
instances and features.
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A Discussion of Theorem 1

To conserve space, we skip presenting a detailed proof of the mistake bound
in Theorem 1. Proceeding in a manner similar to the proof of Theorem 1 of
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[3], it can be seen that almost all terms in the final expression for the mistake
bound cancel out by the telescopic argument. The term that remains is ||v∗ −
v0||2 and the mistake bound follows. It is easy to see that setting v0 = 0 in
Theorem 1 yields mistake bounds for online active learning in traditional single
task settings. We note that, the first term in the mistake bound of Theorem 1 is
the cumulative hinge loss of the optimal target classifier which is the same for
both domain adaptation and non-domain adaptation (traditional single task)
settings and hence is independent of the initialization used. The second term
in the mistake bound, in our case, is smaller than single task settings provided

θ ≤ cos−1

(
||v0||
2||v∗||

)

, where θ is the angle between the initializing hypothesis v0

and the target hypothesis v∗. Without loss of generality, assuming the norm
of v0 and v∗ stays fixed (which is true since both the initial and the optimal
hypotheses remain unchanged during learning in target domain), as the value of
θ decreases, it causes ||v∗ − v0||2 to decrease, leading to our claim of reduced
mistake bounds. Thus, in our framework, θ incorporates the notion of the domain
separation that improves the mistake bounds. For small values of θ, the source
and target domains have high proximity such that the initial target hypothesis
v0 lies reasonably close to the optimal target hypothesis v∗. As a result, is such
cases, O-Alda is expected to make a smaller number of mistakes to get to the
optimal hypothesis.

Now, we present an intuitive argument for the lower label complexity of O-
Alda as compared to single task online active settings. O-Alda is initialized
with a non-zero hypothesis v0 = wsrc learned using data from a related source
domain. Hence, the sequence of hypotheses O-Alda produces will in expecta-
tion have higher confidences margins |r̄i| as compared to some zero initialized
hypothesis. Therefore, at each step the sampling probability of O-Alda given
by b

b+|r̄i| will also be smaller, which will lead to a smaller number of queried

labels since it is nothing but
∑T

i=1 E[ b
b+|r̄i| ].
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