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The objective is to use active control to suppress the acoustic energy that is radiated to the far 
field from a structure that has been excited by a short-duration pulse. The problem is 
constrained by the assumption that the far-field pressure cannot be directly measured. 
Therefore, a method is developed for estimating the total radiated energy from measurements 
on the structure. Using this estimate as a cost function, a feedback controller is designed using 
linear quadratic regulator theory to minimize the cost. Computer simulations of a clamped- 
clamped beam show that there is appreciable difference in the total radiated energy between a 
system with a controller designed to suppress vibrations of the structure and a system with a 
controller that takes into account the coupling of these vibrations to the surrounding fluid. The 
results of this work provide a framework for a general, model-based method for actively 
suppressing transient structural acoustic radiation that can also be applied to steady, narrow, 
or broadband disturbances. 

PACS numbers: 43.40.Vn, 43.40.Rj 

INTRODUCTION 

Active structural acoustic control, using modern con- 
trol methods, is introduced here as a natural extension to 
active vibration control. Numerous investigations, both 
theoretical and experimental, have been conducted on active 
control of elastic structures. ]-• Such control methods are 

model based, typically posed in state-space forms, and rely 
on state or output feedback to introduce additional damping 
to the structure. The controllers may be designed for sup- 
pression of transient response (induced by initial condi- 
tions), or rejection of a continuous disturbance force on the 
structure. For vibration control, it is typical to choose modal 
coordinates as the basis for the state vector. However, sever- 
al authors have discussed vibration control from a wave 

propagation perspective. 6-8 It is anticipated that either basis 
would allow a formulation of the structural acoustic control 

problem, but we choose to work with the modal control ap- 
proach. 

Recently, there has been some interest in the active con- 
trol of sound radiation from elastic structures using force 
inputs. Fuller 9']ø demonstrated, both experimentally and 
analytically, that significant reduction in far-field radiated 
pressure was possible by applying control forces directly to a 
plate. By minimizing a radiated power cost function, the 
optimal control was derived which caused reduction in far- 
field pressure. The experimental work by Fuller used acous- 
tic pressure sensors in the far field to generate a radiated 
power cost function that was minimized using electrody- 
namic actuators on a circular plate. The control experiment 

used an adaptive algorithm, which has been discussed in 
Refs. 11 and 12. A state-space method for active control of 
sound radiationS3 by Meirovitch uses a standard LQR con- 
troller design for vibration control, with observation of the 
resulting far-field radiated pressures to verify the effective- 
ness of the control. In the following, we also discuss a state- 
space method but the acoustic radiation dynamics are imple- 
mented directly into the controller. The concept of this 
controller design for structural acoustic control was dis- 
cussed briefly in an overview paper by Fuller et al. •4 

In this paper, we distinguish the structural acoustic con- 
trol objective as a requirement to suppress only those surface 
velocity vectors that are efficiently coupled to the far field. It 
will be shown that this new requirement necessarily in- 
creases the order of the controller, but provides a significant 
reduction in radiated acoustic energy compared to tradition- 
al active vibration control. Additionally, this objective may 
actually reduce the number of control actuators required. It 
is intuitive that control effort need not be expended on ineffi- 
ciently radiating modes. The controller design discussed in 
this paper ensures that the dominant radiation modes of a 
structure will be actively damped most quickly in response 
to an impulsive loading. 

We consider a structure (immersed in a light fluid, such 
that Po/Pm '• 1, where Po is the fluid density and pm is the 
mass density of the structure) that has been excited by a 
mechanical impulse. The objective is to suppress the acoustic 
energy resulting from the pulsed input to the structure that is 
radiated to the far field. The problem is constrained by the 
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assumption that the far-field pressure cannot be directly 
measured. Therefore, a method is developed for estimating 
the total radiated energy from measurements on the struc- 
ture. Using this estimate as a cost function, a feedback con- 
troller is designed using linear quadratic regulator theory to 
minimize the cost. It will be shown that the cost function is 

practically equal to that used by Fuller, as discussed pre- 
viously. However, the state-space formulation allows a time- 
domain optimal control that is not available in the aforemen- 
tioned work. 

Computer simulations of a clamped-clamped beam 
show an appreciable difference in the total radiated energy 
between a system with a controller designed to suppress vi- 
brations of the beam and a system with a controller that 
takes into account the coupling of these vibrations to the 
surrounding fluid. Numerical results will be presented after 
the formulation of the structural acoustic control law. 

I. ESTIMATING TOTAL RADIATED ENERGY 

Consider a flexible structure that can be accurately 
modeled by a first-order ordinary differential equation of the 
form 

&=Aw+Bu +Lv, (1) 

where w•q '" is the state of the system, u•_R m is a vector of 
actuator inputs that can be used to control the structure, and 
v•_R p is the pulsed disturbance input. The approximate ve- 
locity of the structure at position x and time t is given by 

N 

v(x,t) = • •i(x)w2i(t). (2) 
i=1 

We incorporate a standard modal model in the exam- 
ples; however, ttie •i functions needn•be modes and can be 
any set of functions, such as finite element discretizations, 
that can approximate the actual velocity via Eq. (2) to the 
desired accuracy. 

The pressure in the far field at the point (R,0,•b) in a 
fixed spherical coordinate system, due to a harmonic input 
of frequency co, can be computed from the Rayleigh integral 
as 

œ ( t ) JcoP f s = R - 
dS. (3) 

The pressure resulting from the velocity distribution asso- 

From a system-theoretic point of view, we can consider 
the input of the system to be the time variation of the ith 
mode, w2i (t), and the output to be the pressure, p(t), at a 
given point (R,0,•b). For a harmonic input of the form in Eq. 
(5), Eq. (6) shows that the output can be written as 

œ( t) = i(co)w2i ejø•t, (7) 
which is in the form of the st?dy-state response of a linear 
system with transfer function h (co), where h (co) is the Four- 
ier transform of the system impulse response h (t). (In the 
remainder of the paper, the•Fourier transform of a variable 
will be denoted by a carat,. ) For a stable system, we can 
characterize the transfer function from steady-state consid- 
erations. However, knowledge of the transfer function com- 
pletely specifies the system since it is equivalent to knowing 
the impulse response. By building (i.e., specifying a differen- 
tial equation for) a filter having the desired transfer func- 
tion, the response of the system to transient, as well as 
steady-state, excitations can be computed by applying the 
desired input waveform to the filter and observing the out- 
put. Note that filtering the input in the time domain is a 
causal operation, and thus can be implemented in real time. 
The output pressure could also be computed by taking the 
Fourier transform of the input and then taking the inverse 
Fourier transform of the product • (co) •2i ( co ), but this can- 
not be done causally. 

We will write the transfer function between the time 

variation of the velocity, w2i (t), of the ith spatial function •i 
and the pressure in the far field at the point (R,0,•b) as 

•i (R,O,4,o)/•2i ( co ): i i ( O,•b,co ) d kR /R, ( 8 ) 
where the spatial dependence has been included explicitly 
and, for notational convenience, the delay and loss terms of 
the transfer function have been written separately. 

Before proceeding, we define the characteristics of the 
input and output signals. First, it is assumed that the time 
duration of each signal is such that 

W2i(t)=tli(t)=O, t<to, (9) 

where to corresponds to the application of the impulse 
•5 (t - to ). Second, we view the resulting radiated pressure as 
an energy signal with energy proportional to the integral of 
the signal squared. By the acoustic far-field assumption, the 
proportionaiRy constant (between pressure and velocity) 
will be the characteristic impedance pc. Note that the rela- 
tionshipp = (pc)v holds for instantaneous signals, as well as 
steady-state signals. 

ciated with the ith spatial function on the structure 

/J(x,t) = W2i(t)•]•i(X), (4) 
where 

W2i ( t) : W2i d'øt ( 5 ) 
can be written as 

p(t) = w2i 4Pi(S)e dS • (6) \ 2• R' 

where the factor of d ka accounts for the propagation delay, 
the factor of R in the denominator accounts for the spherical 
spreading loss, and 5' is the surface area domain of the radia- 
tor. 

Using the real-valued pressure and fixing R, the total 
energy per unit area radiated into the far field in direction 
(0,4) is given by the integration of the instantaneous power 
per unit area with respect to time, that is 

• t•i(R,O,q•,t) dt. (10) 
pC i 1 

Comparing Eq. (10) to Eq. ( 11 ) of Mann etal., 15 we recog- 
nize the expression as a summation of the instantaneous in- 
tensity for some spatial segment over time. 

By Parseval's theorem, this may be expressed as 

•0 © N 2 1 • lbi(a,o,•b,co) dco (11) 
7'l'pC i= 1 
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where 

1 IH(0,O,o) W(co) I do 
•rpcR 2 

1 Wr.(co)H r.(O,q•,co)H(O,q•,co) 
•rpcR • 

X W(co)dco, 

(12) 

(13) 

ß • •.. n ß 

LW2n 

For the above, the complex conjugate is denoted by *, and 
the units of Eq. ( 11 ) are energy per area (J/m 2) as expect- 
ed. 

To compute the total radiated energy, integrate Eq. 
(13) over the surface of a sphere of radius R such that 
kR >> 1. This yields 

o Wr*(co) [M(co) ] W(co)dco. (15) 
where 

M(co) 1 fo2••• = • H r. ( 0,•,co ) H ( 0,•,co ) sin 0 dO dr), 
•rpc 

(16) 

where M(co) has units corresponding to those of radiation 
resistance (kg/s). Thus the diagonal entries represent, up to 
a constant term, the self-radiation efficiencies of the 
"modes" •i. The off-diagonal terms similarly are the mutu- 
al-radiation efficiencies. A discussion of the mutual terms in 

the matrix is given later. 
It is possible to approximately factor the matrix in Eq. 

(16), to any desired accuracy, as 

M(co) •G r*(co)G(co). (17) 
To see this, note that H * (0,•,co) = H(0,•, -- co) and that 
M(co) can be written as 

1 fo • fo•Hr(O,q•,_ co)H(O,q•,co)sin 0 dO dr). (18) 
In the Laplace transform domain, consider the matrix 

= H r( 0,•, -- s)H(O,•,s)sin 0 dO dr), 
•rpc 

(19) 

where tt(O,q•,s) is the Laplace transform associated with 
H(O,q•,co) and M(s) agrees with Eq. (18) whens =jco. The 
matrix M(s) is real [M*(s) -- M(s*) ], paraconjugate Her- 
mitian [ M r. (s) = M( -- s*) ], and non-negative on the 
real-frequency axis s =jco (b r*M(jco)b>•O, ¾b•C• nx •). 
This positive semidefiniteness of the matrix is implied by its 
physical interpretation as a radiated energy operator. Ap- 
proxi_rnating M(s) to any desired accuracy by a rational ma- 
trix M(s) allows us to write 

.•/(s) = G r( _ s)G(s), (20) 
where G(s) is a real, rational matrix that is analytic in 
Re (s) > 0. Substituting s = jco produces the desired factori- 

zation. (A formal proof that the spectral factorization of the 
matrix quantity exists was presented by Youla. •6 A con- 
structive proof in state-space form can be found in Fran- 
cis. •7 ) In general, M(s) will be of normal rank n and G(s) 
will be an n X n matrix. For certain degenerate cases, it may 
happen that M(s) will be of normal rank r < n, in which case 
G(s) will be of dimension rX n. In the following, it will be 
assumed that M is not degenerate, but the degenerate case 
follows immediately. 

The total radiated energy may be expressed as 

II = W r* ( co ) G r* ( co ) G ( co ) W( co ) dco (21) 

and by Parseval's theorem this is equivalent to 

II = zr(t)z(t)dt, (22) 

where z(t) = •' - •[ G(s) W(s) ]. That is, z •_R "is the result 
of passing the vector of modal (velocity) amplitudes w2i 
through a filter with transfer function G(s). Thus, by com- 
puting the filter transfer function G(s) to the desired accura- 
cy and measuring the modal amplitudes, it is possible to ap- 
proximate the total far-field radiated power by Eq. (22). 

It should be noted that the "radiation filter," G(s), is a 
causal operator on the input (modal velocity) signal. This is 
a consequence of the fact that the spectral factorization pro- 
duces a G(s) with no poles in Re(s) > 0. Interpreting G(s) as 
a bilateral Laplace transform, which has a region of conver- 
gence including the jco axis, the absence of fight-half plane 
poles means that the inverse transform, which is the impulse 
response of the filter, is zero for t < 0 (Reft 18). Hence, the 
filter is causal. This is to be expected as the factorization was 
originally employed to solve the Weiner-Hopf problem, the 
goal of which was to generate causal optimal filters (see Reft 
19). Thus, we have designed a physically realizable frequen- 
cy/spatial filter to produce system states that can be used to 
generate a radiated power cost function. The squared magni- 
tude of the state z(t) can be viewed as the energy radiated 
through the given sphere at time t + R/c due to the velocity 
field up to time t. The transfer function G(s) does not con- 
tain a propagation delay, dkR, as this term canceled out in 
Eq. (13). 

Note that the form of the radiation resistance matrix, 
M(s), determines whether the power radiated by the various 
modes is coupled. For no coupling, Eq. (16) is a diagonal 
matrix. However, nonzero expressions for the off-diagonal 
elements of M(s) indicate an interaction of the power radiat- 
ed by the corresponding (ith, jth) modes. In the manner of 
Yousri and Fahy, 2ø we refer to the diagonal terms as self- 
radiation resistances and the off-diagonal terms as mutual- 
radiation resistances. 

II. CONTROLLER DESIGN 

A controller was designed using state space realizations 
for the structural dynamics and radiation dynamics. Next, 
we outline the steps required to generate the state equations 
for the radiation dynamics. 
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A. Radiation filters 

The first step in constructintg the radiation filter is to 
compute the transfer functions hi (0,•b,w) associated with 
the spatial functions •i. For very simple structures, such as 
the beam used in the next section, this can be done analyti- 
cally, but, in general, it will have to be done numerically for a 
sufficiently fine grid in the (0,qb,w) space. Then, M(w) can 
be computed from Eq. (16) by numerical quadrature. The 
matrix M(s) is formed by replacing each element of M(w) 
by a rational Laplace transform that matches the desired 
frequency response to the specified accuracy. 

One way to compute the spectral factorization given by 
Eq. (20) is to find a state-space realization of the transfer 
function M(s) and to use the state-space algorithms found in 
Francis. 17 This results in a state-space representation of the 
radiation filter of the form 

k=Aor + Bow, (23) 

z= Cor + Dow. (24) 

An alternative approach, which may be numerically easier, 
is to perform a Cholesky decomposition of the M(w) matri- 
ces that are known numerically at a given set of frequencies. 
This gives the values of G(w) directly at the given frequen- 
cies. Then, G(s) can be computed by fitting rational Laplace 
transforms to G(w ), and then a state-space realization of the 
form shown in Eq. (23) and (24) may be computed. 

B. Control law 

Using the state space realization of the radiation filter 
G(s), we can write the overall system equation as 

0 

with a corresponding output equation 

(25) 

(26) 

Assuming that there is a limit to the amount of control ener- 
gy that can be applied in a given time interval, the cost func- 
tion is chosen to be 

Jrad = (ZrZ + pu rU ) dt. ( 27 ) 

Minimizing this cost function produces a tradeoff between 
the total radiated energy and the total control energy used. 
As p approaches zero, minimizing the cost Jraa is equivalent 
to minimizing the radiated energy. 

The problem we have posed above is in the form of a 
standard, infinite-time, linear quadratic regulator (LQR) 
problem. :1 The optimal control is a time-invariant state 
feedback of the form 

u K rad. rad_ = w to -3- K r r, (28) 

where the feedback gains K raa and K raa are determined from W r 

the solution of an algebraic Ricatti equation. If the full state 
is not available for feedback, the problem can be put in the 
form of a linear quadratic Gaussian (LQG) problem. The 
states must be estimated by a Kalman filter and the estimates 
used in the feedback control law. 

TABLE I. Beam physical parameters. 

Young's modulus, E 2.04 X 10" Pa 
Mass per unit length, m 0.491 kg/m 
Length, L 1.0 m 
Width, b 0.125 m 
Thickness, h 0.5 mm 

For purposes of comparison, a cost function of the form 

Jvib = (WrW + puru)dt. (29) 

is also considered. Minimizing this cost function produces a 
tradeoff between total vibrational amplitude and the control 
energy used. Again, the solution is state feedback and the 
control law is of the form 

u K vib. = w w. (30) 

III. NUMERICAL EXAMPLE 

To illustrate the ideas discussed in the preceding sec- 
tions, consider an Euler-Bernoulli model for a uniform bar 
in a baffled, clamped-clamped configuration: 

E1 64Y(X't•) + m 62y(x't•) = f(x,t), (31 ) 
•X 4 •t 2 

y(O,t) = y(L,t) = 0; 6y(0,t•) = 6y(L,t_•_) = O ' (32) 
6x 6x 

where y is the displacement andf is the force vector contain- 
ing the disturbance and control actuator inputs. The param- 
eters of the beam are given in Table I. The beam area mo- 
ment of inertia,/, is computed using I = bh 3/12. 

The mode shapes are given by 16 

ß (x) = cos kix - cosh kix + Ri (sin kix -- sinh kix), 
(33) 

where 

o 10 ø 

= 10-1 

10-2 

; , ,--- M(1,1) 
M(2,2) 
M(3,3) 

/ ** ' ii¾"' •: + + actual val•es 

/d," i 
/.'.; / 

Z.', ' / 

•0. 3 + • ß ....... • .......... • , •,•,• • • • • ..... • • • • .... 
10 • 10 • 10• 10 4 10 s 10 • 

Frequency (rad/sec) 

FIG. 1. Numerical representation of M(co) compared to polynomial repre- 
sentations. 
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(cos kiL -- cosh kiL)/(sinh kiL -- sin kiL) 
(34) 

and k•L is the ith root of cosh kiL cos k•L = 1. For simpli- 
city, it will be assumed that the structure can be accurately 
modeled by using the first three modes. 

The matrix M was computed numerically at a large 
number of frequencies using Eq. (16). The integration was 
performed over a half sphere on one side of the baffle; the 
results are plotted in Fig. 1. There is no interaction between 
the radiation from mode 2 and the radiation from modes 1 

and 3. There is interaction between the energy radiated from 
modes 1 and 3. 

These interaction results can be explained in physical 
terms. For the baffled, clamped--clamped beam, modes 1 
and 3 are volumetric modes, while mode 2 is not. At low 
frequencies (kœ,• 1 ), the radiation from modes 1 and 3 is 
due primarily to the volume of fluid displaced. The total 
volume displaced by the combination of these modes de- 
pends on their relative magnitude and phasing, and, hence, 
the energy radiated by these modes is not the sum of the 
energies that would be radiated independently. This gives 
rise to the interaction terms. In terms of pressure patterns, 
modes 1 and 3 act like monopole sources at low frequencies. 
Depending on the magnitude and phasing of these modes, 
the far-field pressures will either enhance or diminish each 
other over the entire pattern, causing the energy radiated to 
vary depending on the interaction of the modes. At high 
frequencies, these arguments do not apply and the interac- 
tion terms go to zero. 

The pressure pattern of mode 2 resembles a dipole at low 
frequencies with half of its pattern 180 ø out of phase with the 
other half. Thus, if the superposition of the pressure from 
mode 2 with the pressure from modes 1 or 3 increases the 
total pressure over part of the pattern, it will decrease it 
correspondingly over the other part, resulting in no net 
change in the total radiated energy. This accounts for the 
zero interaction terms between mode 2 and modes 1 and 3. 

The direction in which the energy is radiated, however, 
will depend on the phasing of mode 2 relative to modes 1 and 
3. Also, had we only been concerned with radiation into a 
sector smaller than the half-space, interaction terms between 
mode 2 and modes 1 and 3 would have appeared in the analy- 
sis. 

The radiation filter was computed from a rational ap- 
proximation to M(s). The approximate values of M(s) for 
s =jw are plotted with the desired values, M(co), in Fig. 1 
and, except for differences in the (1,3) term, the fits are 
excellent. Figure 2 shows the frequency responses of the ele- 
ments of the radiation filter and the natural vibration fre- 

quencies of the modes are indicated. 
A state-space representation for the overall system was 

constructed as in Eq. (25) and feedback controllers for the 
acoustic problem [Eq. (27) ] and the vibration problem 
[œq. (29) ] were computed. Computer simulations were run 
to compare the performance of the two controllers. Because 
the magnitude of z r z in Eq. (27) is much less than the mag- 
nitude of w r w in Eq. (29), the values of p in these two 

101 

10 o 

? 104 
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I• 10'3 

10-4 

10-5 
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o(1,•) 
ß 

,.' 
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.,'• ..... G(2,2) 
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--- G(3,3) ß 
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ß G(1,3) 

102 103 i04 

Radiation Filter Shapes, Clamped-Beam, In-Air 
• , ,, ,,,,- 

_. •++*' .,- ++ - - ++ , +++ 

Frequency (rad/sec) 

FIG. 2. Radiation filters from factored matrix (7(s). 

expressions were adjusted on the basis of simulation experi- 
ments to make the total energy used by the controllers equal. 

The first simulation assumed that there was one actu- 

ator located at x = 0.25 and was initiated by a short-dura- 
tion pulse on the beam at the same location. The initial con- 
ditions of the system were taken to be zero for all states. The 
time histories of the modal amplitudes using the vibration 
controller and the acoustic controller are shown in Figs. 3 
and 4. 

The acoustic controller works harder at suppressing 
mode 3 than does the vibration controller and leaves mode 2 

virtually untouched. This matches our intuition based on 
radiating efficiencies of the modes. For the time interval con- 
sidered, the acoustic controller reduced the total energy ra- 
diated to the far field by 38% compared to the vibration 
controller. Further details of the simulation are summarized 

in Table II. 

0.02[ 
0.015 

0.01 +:•+ + 

• 0.005 ++ 
o 

• -0.005 
-0.01 

-0.015 -0.02 

/ • /"x..** . 
+ I • / Z' :/ % .... + 

+ 

++ 

Mode 1 

Mode 2 

Mode 3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time (secs) 

FIG. 3. Modal time histories using vibration control, one actuator at 
x = 0.25L. 
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FIG. 4. Modal time histories using acoustic control, one actuator at 
x = 0.25L. 
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FIG. 5. Modal time histories using vibration control, two actuators at 
x = 0.29L, x = 0.5L. 

The second simulation assumed that there were two ac- 
tuators located at x = 0.29 and x = 0.50. The short duration 

pulse was applied at the position x = 0.29 0nly. The time 
histories of the modal amplitudes using the two controllers 
are shown in Figs. 5 and 6. 

The acoustic controller again suppresses the vibration of 
mode 3 much faster than the vibration controller and leaves 

mode 2 virtually untouched. Also, it does not allow mode 1 
to oscillate, but forces it to decay exponentially. This reduces 
the radiation from this mode and is physically possible due 
to the extreme flexibility of the structure. For the time inter- 
val considered, the acoustic controller reduced the total en- 
ergy radiated by 69% compared to the vibration controller. 
Both controllers used more energy than in the first case, as 
can be seen by the increased damping of the modal ampli- 
tudes, but this resulted in an even greater advantage for the 
acoustic controller. 

IV. CONCLUSION 

The major result of this paper is a method for estimat- 
ing, in real time, the total acoustic energy radiated to the far 
field from measurements on the structure. This was accom- 

plished by first spatially decomposing the structure, using 
the •i functions, and then decomposing the radiation of 
these spatial functions with respect to temporal frequency. 

These frequency response functions were used to con- 
struct a radiation filter. To estimate the radiation, velocity 
measurements of the structural vibration are converted into 

velocities of the predetermined spatial functions and these 

TABLE II. Simulation results. 

Control objective Number of actuators p Acoustic energy 

Vibration 1 4.5e- 2 4.32e- 7 
Acoustic 1 1.0e -- 4 2.68e -- 7 
Vibration 2 4.5e- 3 1.93e- 7 
Acoustic 2 5.0e -- 4 6.04e -- 8 

velocities are filtered to produce an output signal whose inte- 
grate d square is proportional to the radiation. 

This is in contrast to recent work by Borgiotti 22 and 
Photiadis, 23 where the system is first decomposed temporal- 
ly, by considering a fixed frequency of excitation, and then 
decomposed spatially into orthogonal spatial functions that 
radiate efficiently and those that radiate inefficiently. Thus 
they arrive at spatial filters that can be used to determine the 
amount of far-field radiation. To use this approach for tran- 
sient or broadband persistent excitations, however, would 
seem to require that the excitation first be decomposed into 
temporal harmonics. 

The radiation filter developed in this paper was incorpo- 
rated into the design of a controller to minimize acoustic 
radiation. Several computer simulations have been present- 
ed to demonstrate the effectiveness of this acoustic con- 

troller when compared to a vibration controller using the 
same control energy. Further work is under way to explore 
the degree to which the radiation filters can be reduced in 
complexity without significant loss of performance. 
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FIG. 6. Modal time histories using acoustic control, two actuators at 
x = 0.29L, x = 0.5L. 
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