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Abstract

Active control of the die-level temperature is desirable during production testing

of high power microprocessors, so as to ensure accurate performance classification.

Such control requires that the controlling thermal load time-lead the dissipated

thermal load and that it be modulated to account for the distributed thermal

capacitance and resistance of the device packaging. The analysis in this paper

demonstrates fundamental limits of temperature control for typical devices under

test conditions. These limits are identified for specified control power to die power

ratios. The effects of test sequence design and device package design on the tem-

perature control limits are also examined. The theory developed can be applied

to any thermal control problem where a conductive medium separates the control

source from the location where control is desired.
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Nomenclature

Symbol Description

A(x) Cross-sectional area of IHS fin [m2]

A0 base cross-sectional area of IHS fin [m2]

A mathematical constant, Eq. (10)

at thermal diffusivity [m2/s]

B mathematical constant, Eq. (11)

Bids Biot number for die-side of IHS, b/kRt

BiIHS Biot number for top side IHS, hcb/k

b integrated heat spreader thickness [m]

C, C1, C2 mathematical constants

Cn constant in infinite series

cp specific heat capacity at constant pressure [J/kg · K]

D, E, F mathematical constants, Eq. (18) [W2/m4 · K2]

G mathematical constant, Eq. (23) [W2/m4 · K2]

hc average convective transfer coefficient [W/m2 · K]

i the imaginary number,
√−1

k thermal conductivity [W/m · K]

L fin length [m]

L unsteady diffusion scale in IHS,
√

ω/2at [m−1]

M energy transfer correction factor, Eq. (39)

N mathematical constant, Eq. (23) [W2/m4 · K2]

m mass of die per unit area [kg/m2]

P mathematical constant, Eq. (24); or fin perimeter [m]

PS1, PS2 mathematical constants, Eq. (32)

PS3 mathematical constant, Eq. (46)
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Qsq square-wave die power density [W/m2]

Qtr triangular wave die power density [W/m2]

Qd die power density [W/m2]

Qda corrected die power density [W/m2], Eq. (43)

Qc control power density [W/m2]

R mathematical constant, Eq. (25)

Rt thermal contact resistance [K · m2/W]

S ratio of die timescale to IHS diffusion timescale, Eq. (49)

T fin temperature matrix [K]

Tair air temperature [K]

Tdie die temperature [K]

Tref reference temperature — often taken as zero [K]

TBF IHS die-side temperature [K]

t time [s]

U, V mathematical constants, Eq. (28)

W complex temperature solution

X real part of complex temperature solution [K]

x distance from reference face of integrated heat [m] spreader

Greek Symbols

α, β, γ phase shifts [rad]

α shaped fin geometry factor

αn infinite series constant

λ lumped frequency response of die, 1/(mcpRt) [s−1]

τ imaginary part of complex temperature; or period of square/triangular
wave [s]

θ temperature defect, (T − Tref ) [K]

ω frequency of die power variation [rad/s]
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1 Introduction

All high-performance electronic devices are subject to a 100% functional test prior

to being shipped by the manufacturer [1]. High power microprocessor devices are

also subject to a classification test to determine the effective operating speed

of the device. During this classification test, the goal of control is to keep the

temperature of the die at a single set temperature while the device power is

varied between 0% to 100% power in a predetermined test sequence. Temperature

increases over the specified test temperature decrease the signal propagation speed

within the device, and an excessive temperature rise above the test temperature

can result in the device being classified in the wrong category (e.g., a 1 GHz

device classified and shipped as a 950 MHz device). The manufacturer normally

specifies a die-level test temperature range; a typical test temperature specification

is 85◦C − 0◦C/ + 3◦C.

As microprocessor device powers have increased and device sizes have de-

creased, the power densities in packaged microprocessor devices have approached

levels of 50 to 100 W/cm2 [2, 3, 4]. With test sequences rapidly varying the device

power at these power densities, active temperature control is essential to holding

the die temperature within tolerance. Because the tests are being performed on

packaged devices, thermal control cannot be applied to the die itself. Instead,

control heating and cooling must be applied to some external part of the pack-

aging. This separation of the control point from the die limits the achievable

temperature control tolerances for given test sequences and device powers.

An estimate of the required control power is needed in the early design phases

of temperature control systems for test equipment, so that the heating and cooling

system capabilities can be specified. For this reason, an analysis of the packaged

device by itself, without any consideration of the control system, is very useful

in determining the required minimum heating and cooling capacities as well as in
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determining the effects of varying the test sequence design and package design on

the thermal control limits. This paper develops such a model.

2 Mathematical Model

Semiconductor packaging encompasses a wide range of geometries, die archi-

tectures, and materials. In this paper, we consider the arrangement shown in

Fig. 1. The device consists of a silicon die mounted on single or multiple inter- Fig. 1

poser/interface layers. An integrated heat spreader (typically plated copper) is

mounted on top of the die structure with a very thin layer of a thermal interface

material or grease between the die and the heat spreader. The heat spreader area

is typically much larger than the die area and provides a bonding surface for an

external heat sink in the final device application. We consider situations in which

the die’s heat generation is essentially uniform over its area, with no large-scale

variations.

Our focus is on temperature under test conditions. During testing, the pack-

aged device is held in a test socket which is itself temperature controlled to the

desired test temperature. The socket is thermally isolated from the test electron-

ics [1, 5].

Work by Viswanath et al. [6] and Sweetland [7] has shown that the thermal

resistance between the die structure and the interposer layer is typically much

higher than the thermal resistance between the die structure and the surface of

the integrated heat spreader. For this reason, only the die and integrated heat

spreader will be considered in the transient model (the interposer side of the die

is considered adiabatic). If the architecture of a particular device allows non-

negligible heat transfer to the interposer, the present results will provide a upper

bound on the required control power and a conservative basis for design.
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Several additional simplifying approximations can be made about the device

under test and the operating conditions. The goal of this analysis is to determine

the limits of temperature control under typical transient die power fluctuations,

so only transient effects will be considered1. The system is initially taken to be

one-dimensional. This is equivalent to neglecting the effect of transient lateral

conduction in the integrated heat spreader; a correction factor for this approxi-

mation is given in a later section.

The interfacial resistance between the die and the integrated heat spreader is

assumed to be known. The heat capacitance of the interface material is neglected,

since typical interface materials are thin relative to typical dies.

Temperature gradients within the die are taken to be small, effectively mak-

ing the die a lumped object with uniform internal heat generation. At low fre-

quencies, this approximation is easily justified because the thermal resistance of

the interface layer is large compared to that of the die, unless the dies are very

thick (> 1500µm). For higher frequencies, analysis of the unsteady conduction

in the die, with heat generation confined to the face opposite the integrated heat

spreader, shows that the die follows lumped response for the frequencies of impor-

tance to the die’s thermal response. At sufficiently high frequencies, departures

from lumped behavior occur but are associated with very small temperature vari-

ations [7]. We give a specific criterion later in the paper.

Based on these approximations, the physical system reduces to the model

system shown in Fig. 2. Fig. 2

Various implementations of test-system temperature controls have been devel-

oped [7, 8, 9]. For the purposes of this paper, the control power is assumed to be a

radiation source (a high power laser) whose power can be instantly adjusted. The

1The steady state (DC) component of the temperature response of the system can be super-

imposed if needed.
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front face of the integrated heat spreader is subjected to both this radiation and

convective cooling. The convective conditions are constant2, with thermal control

being attained through modulation of the radiation source. This combined radi-

ant heating/convection cooling thermal control system has the advantage that no

additional thermal mass is placed in contact with the device under test, which

greatly improves the transient response.

The transient part of the die test power sequence can be decomposed into

component frequencies. The results will show that the control power required for

a specified die temperature tolerance is a function of the test-sequence frequency.

For this reason, the die power in the analysis will be assumed to be a sinusoidal

signal at a fixed frequency and magnitude. Any desired test sequence can be

reconstructed using sinusoids by superposition. A surface flux that provides the

control power is also taken to be sinusoidal, having the same frequency but with

some specified phase shift. It is important to note that the fluctuating (AC)

control power is superposed on a larger, steady (DC) power so that the physical

surface flux is always positive.

To start the transient analysis, only the temperature profile within the inte-

grated heat spreader (IHS) will be considered. For mathematical convenience,

that problem can be further decomposed into the two parts shown in Fig. 3. The

first part is for the IHS with an adiabatic back face3 and a front surface subject

to convective cooling and the radiative control power profile (Fig. 3A). The sec- Fig. 3

ond part is for the IHS with an imposed surface flux from the die on one face

and convection on the other face (Fig. 3B). The two results are then combined

using superposition. To maintain contact with the physical variables, we do not

introduce a full nondimensionalization until the solution has been constructed, at

2Fixed air temperature and constant air flow rate.
3Die-side face is assumed adiabatic.
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the end of this section.

2.1 IHS Temperature response to control input

The steady periodic transient response to the two cases in Fig. 3 can be calculated

using a complex temperature approach [10]. Consider an infinite slab with one side

adiabatic as shown in Fig. 3A. The other face is subject to convective boundary

conditions, an average heat transfer coefficient hc with an air temperature Tair = 0,

and a control flux Q(t) = Qc cos(ωt). Using complex analysis methods, it is

assumed that the solution to the temperature profile in the complex plane takes

the form:

W = X(x) · τ(t) (1)

where τ(t) = eiωt and i =
√−1 is the imaginary number. The conduction equation

in the integrated heat spreader is

∂2W

∂x2
=

1

at

∂W

∂t
(2)

so with an assumed solution of form Eq. (1), this can be rewritten

d2X

dx2
=

iω

at

(3)

which has the general solution

X(x) = C1 exp

(
−

√
iω

at

x

)
+ C2 exp

(√
iω

at

x

)
(4)

The boundary conditions on Eq. (3) are as follows:

x = 0
dX

dx
= 0 (5)

x = b −k
dX

dx
+ Qc = hcX (6)

Use of the boundary condition at x = 0 yields:

dX

dx
= 0 = −

√
iω

at

C1 +

√
iω

at

C2 (7)
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from which C1 = C2 ≡ C. The boundary condition at x = b produces the

expression:

hcC
[
e−bL(i+1) + ebL(i+1)

]
+ kC

[
e−bL(i+1) − ebL(i+1)

]
L(i + 1) = Qc (8)

where L ≡ √
ω/2at (m−1). This equation must be solved for C. Expanding all

exponential terms into complex sinusoids, Eq. (8) can be written as:

kL · C (A + Bi) = Qc ebL (9)

where

A =

{
BiIHS

bL
cos(bL)

(
e2bL +1

) − [cos(bL) + sin bL]

+ e2bL [cos(bL) − sin bL]

}
(10)

B =

{
BiIHS

bL
sin(bL)

(
e2bL −1

) − [cos bL − sin(bL)]

+ e2bL [cos(bL) + sin bL]

}
(11)

where BiIHS = hcb/k is the spreader Biot number and bL = b
√

ω/2at is a dimen-

sionless frequency parameter. The Biot number is typically small compared to

one. Equation (9) can now be solved for C by multiplying both sides through by

the complex conjugate. Substituting the results into the original solution for X

yields:

X =
Qc ebL (A − Bi)

kL(A2 + B2)

[
e−xL(i+1) + exL(i+1)

]
(12)

To find the solution to the temperature profile in the integrated heat spreader in

the real domain, the real part of X eiωt must be taken:

T (x, t) = Re
(
X eiωt

)
=

Qc ebL−xL

kL(A2 + B2)
[A cos (ωt − xL) + B sin (ωt − xL)]

+
Qc ebL+xL

kL(A2 + B2)
[A cos (ωt + xL) + B sin (ωt + xL)] (13)
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2.2 IHS Temperature response to die input

An identical approach can be used to find the temperature profile of the integrated

heat spreader subject to heat input from the die, but with different boundary con-

ditions. Using the coordinate system shown in Fig. 3B, the boundary conditions

are as follows:

x = 0 k
dX

dx
= hcX (14)

x = b Qd = k
dX

dx
(15)

With Eq. (4) for X, the boundary condition at x = 0 yields:

k

√
iω

at

(C2 − C1) = hc (C1 + C2) (16)

This equation can be solved to express the new C1 in terms of the new C2:

C1 = C2
2(kL)2 − h2

c + (2hckL) i

h2
c + 2khcL + 2(kL)2

(17)

in which L =
√

ω/2at as before. Defining

D = h2
c + 2khcL + 2(kL)2, E = 2(kL)2 − h2

c , F = 2hckL (18)

Eq. (17) can be written

C1 = C2
(E + Fi)

D
(19)

and the solution for X becomes

X = C2

[
E + Fi

D
exp

(
−

√
iω

at

x

)
+ exp

(√
iω

at

x

)]
(20)

Substitution of this expression into the boundary condition at x = b produces

Qd = C2kL

[
(i + 1) ebL ebLi −e−bL

D
(E + Fi) (i + 1) e−bLi

]
(21)

which may be rearranged to

Qd

C2kL
= ebL [cos(bL) − sin(bL)] − e−bL

D
[G cos(bL) + N sin(bL)]

+ ebL i [sin(bL) + cos(bL)] − e−bL

D
i [−G sin(bL) + N cos(bL)] (22)
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where

G = E − F and N = E + F. (23)

With the following additional definitions

P = ebL [cos(bL) − sin(bL)] − e−bL

D
[G cos(bL) + N sin(bL)] (24)

R = ebL [sin(bL) + cos(bL)] +
e−bL

D
[G sin(bL) − N cos(bL)] (25)

the solution for the constant C2 may be written

C2 =
Qd (P − Ri)

kL(P 2 + R2)
(26)

The function X is therefore

X =
Qd (P − Ri)

kL(P 2 + R2)

[
(E + Fi)

D
e−xL(i+1) + exL(i+1)

]
(27)

The solution for the temperature in the heat spreader is again found by solving

for the real part of X eiωt. Setting

U =
P · E + R · F

D
and V =

P · F − E · R
D

(28)

the final expression for the temperature of the heat spreader is

T (x, t) = Re
(
X eiωt

)
=

Qd e−xL

kL(P 2 + R2)
[U cos (ωt − xL) − V sin (ωt − xL)]

+
Qd exL

kL(P 2 + R2)
[P cos (ωt + xL) + R sin (ωt + xL)] (29)

We note that P , R, U , and V depend on bL and BiIHS only.

2.3 IHS Combined Temperature Response

The temperature response of the integrated heat spreader to concurrent control

and die heat inputs is found using superposition. In particular, we seek the tem-

perature on the face of the IHS that contacts the die. That temperature is obtained
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by adding the solution for the control input at x = 0, Eq. (13), to the solution for

the die input at x = b, Eq. (29), recalling that the x coordinates differ for the two

solutions. A phase shift, α, must be added to the solution for the control input in

order to calculate the required amplitude and phase lag of the control heat input

for a desired IHS temperature; this simply means substituting (ωt+α) for (ωt) in

Eq. (13). After some algebra, the final temperature response on the die-side face

of the IHS is:

TIHS =
2Qc ebL

kL(A2 + B2)

{
[A cos α + B sin α] cos(ωt) + [B cos α − A sin α] sin(ωt)

}

+
Qd e−bL

kL(P 2 + R2)

{
[U cos(bL) + V sin(bL)] cos(ωt)+[U sin(bL) − V cos(bL)] sin(ωt)

}

+
Qd ebL

kL(P 2 + R2)

{
[P cos(bL) + R sin(bL)] cos(ωt)−[P sin(bL) − R cos(bL)] sin(ωt)

}

(30)

From this result, for any specified power dissipation amplitude on the die Qd and

any desired IHS die-side temperature response TIHS, the control power amplitude

Qc and phase shift α required can be calculated. For example, to obtain a constant

temperature at the die contact point on the integrated heat spreader(TIHS = 0,

say), the magnitude and phase shift of the control signal are found by solving the

equation:

{
PS2 · [A cos α + B sin α] · Qc + PS1 · e−bL [U cos(bL) + V sin(bL)]

+ PS1 · ebL [P cos(bL) + R sin(bL)]
}

cos(ωt)

+
{

PS2 · [B cos α − A sin α] · Qc + PS1 · e−bL [U sin(bL) − V cos(bL)]

+ PS1 · ebL [R cos(bL) − P sin(bL)]
}

sin(ωt) = 0 (31)

with

PS1 =
Qd

kL(P 2 + R2)
PS2 =

2 ebL

kL(A2 + B2)
(32)
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Since Eq. (31) must hold for any time t, the solution for Qc and α may be obtained

by requiring that coefficients of the sine and cosine terms of Eq. (31) vanish

separately. This yields two equations which define Qc as a function of α:

{
2 ebL [A cos α + B sin α]

A2 + B2

}
· Qc

Qd

=

−
{

e−bL [U cos(bL) + V sin(bL)] + ebL [P cos(bL) + R sin(bL)]

P 2 + R2

}
(33)

{
2 ebL [B cos α − A sin α]

A2 + B2

}
· Qc

Qd

=

−
{

e−bL [U sin(bL) − V cos(bL)] + ebL [R cos(bL) − P sin(bL)]

P 2 + R2

}
(34)

The solution to these simultaneous equations is the intersection point of a graph

of the sine and cosine for Qc as a function of α; a dimensional example is shown

in Fig. 4. For a 10 Hz die power profile with a magnitude of Qd = 10 W/cm2, Fig. 4

the solution for the control power profile to obtain a constant temperature on the

back face of the IHS is a 10 Hz control profile with a phase shift of α = 226.1◦

and an amplitude Qc = 12.5 W/cm2.

In nondimensional terms, factors in braces in these equations depend only

upon the dimensionless frequency parameter, bL, and the Biot number of the

IHS, BiIHS. Thus, the dimensionless control power required, Qc/Qd, is a function

of (bL) and BiIHS.

The solution for Qc under given conditions can be used to generate the tem-

perature profile in the IHS under steady periodic conditions. Figure 5 presents

the temperature response in the IHS if only the die power profile is imposed, con- Fig. 5

tinuing the example begun in Fig. 4. As can be seen, the temperature of the IHS

at the die interface fluctuates at 10 Hz, as does the convection side of the IHS.

The maximum and minimum temperatures through the IHS are plotted in the

bottom frame of Fig. 5. A phase shift occurs between the temperatures on the
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two faces, and the amplitude on the die side is slightly larger than the convection

side.

If a control profile of magnitude Qc = 12.5 W/cm2 and phase lag of α = 226.1◦

is applied to the convection side of the IHS, the resulting IHS temperature profile

is shown in Fig. 6. As can be seen, the temperature variation at the die side Fig. 6

contact face of the IHS can be reduced to zero by application of the control power

profile.

2.4 Temperature response of die

The die normally has small thermal resistance and can be treated as isothermal

for the frequencies of interest. Its temperature response is described by

m · cp
dTdie

dt
= Qd · cos(ωt) − T − TBF

Rt

(35)

where m is the mass of die per unit area and TBF is the die-side surface tempera-

ture of the integrated heat spreader. This equation neglects the heat capacity of

the thermal interface material between the die and the IHS. For ideal temperature

control, where there is no change in die temperature, and taking the desired die

temperature be zero4, the equation for the IHS back face temperature becomes:

TBF = −Qd · Rt cos(ωt) = Qd · Rt cos(ωt + π) (36)

The second expression clearly shows that for ideal temperature control, the desired

IHS back face temperature is 180◦ out of phase with the die power profile with a

magnitude that depends on Qd and the thermal interface resistance Rt. Returning

to the example in Fig. 5, to obtain constant die temperature, the desired back-

face temperature must be obtained by appropriate scaling of the control profile.

4Any other desired die temperature can be used by adding a steady state offset to this

solution.
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To find this control profile, Eq. (31) must be solved, but instead of zero on the

righthand side of the equation, the term (−Qd · Rt cos(ωt)) must be used. Again

separating the sine and cosine terms, the solution for the power profile can be

found.

The desired control profile phase shift to obtain a constant die temperature

with a die power density of Qd = 10 W/cm2 is α = 283.42◦ with a magnitude of

Qc = 173.0 W/cm2. The phase shift calculated here is a phase lag between the

die input and the control input, which may alternatively be regarded as a phase

lead of 76.58◦ with the control power profile leading the die power profile. This is

important when the analysis turns to control limits for a die power profile.

From these results, the temperature profile in the IHS can again be calculated,

as in Figure 7, which also shows the die power profile and the target temperature, Fig. 7

TBF . Although the target temperature can be again maintained, a significantly

higher control power is required relative to the previous case (for which TBF was

held constant). The ratio of control power to die power has risen from 1.25 to

17.30. This is because the entire mass of the IHS must now be driven over a

much wider temperature range. Similar calculations can be performed over the

full range of frequencies and powers.

2.5 Control Profile Calculation with Specified Die

Temperature Tolerance

The two previous analyses identify the control profile for the cases where the die

temperature is constant (ideal control) or where the temperature of the back face

of the IHS is held constant. To reach actual practice, we must go a step further

and allow the die temperature to fluctuate within specified tolerance limits for a

given die power profile (non-ideal control). We now adapt the previous analyses

to obtain the control power profile for a varying die temperature.
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In the light of Eqs. (35) and (36), we may assume that for non-ideal control,

the back face temperature of the IHS has the form

TBF = M · Rt · Qd cos(ωt + β) (37)

where the scaling factor M takes on a value between 0 and 1. Upon substituting

Eq. (37) into Eq. (35) and integrating, we obtain

Tdie =
Qd

mcp (λ2 + ω2)
{(1 + M cos β) [λ cos(ωt) + ω sin(ωt)]

− sin β [λ sin(ωt) − ω cos(ωt)]} (38)

where λ ≡ 1/mcpRt (1/λ is the lumped-capacity time constant associated with

Eq. 35). Of interest here is the magnitude of the fluctuation of Tdie. By setting this

magnitude equal to the allowed tolerance ∆T of the die temperature, a relationship

between the scaling factor M and the phase shift β is obtained:

M = − cos β ±
√

cos2 β − 1 +
(
mcp∆T

/
2Qd

)2
(ω2 + λ2) (39)

The goal is to minimize M for a given die power profile, since a smaller value of

M leads to a smaller required control power. Equation (39) can be differentiated

with respect to β

dM

dβ
= sin β ∓ cos β sin β√

cos2 β − 1 +
(
mcp∆T

/
2Qd

)2
(ω2 + λ2)

= 0 (40)

This equation has two roots: β = 0 and β = π. For the case ∆T = 0, the solution

must be M = 1, not M = −1, so the correct root is β = π. Hence,

M = 1 − mcp∆T

2Qd

√
λ2 + ω2 = 1 − ∆T

2QdRt

√
1 + ω2/λ2 (41)

which determines the magnitude of the fluctuation of TBF .

One more issue must be addressed in order to find the required control power

profile. The flux from the die into the heat spreader is no longer equal to the die
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power profile because some of the die power is taken up by the heat capacity of

the die and stored in the form of a steady periodic die temperature change. From

the preceding analysis, the die temperature profile is

Tdie =
Qd(1 − M)

mcp (λ2 + ω2)
[λ cos(ωt) + ω sin(ωt)] (42)

The heat flux from the die into the heat spreader, Qds, may be calculated from

Eqs. (37) and (42)

Qds =
Tdie − TBF

Rt

=

(
Qdλ(1 − M)

mcpRt (λ2 + ω2)
+ MQd

)
cos(ωt) +

Qd ω(1 − M)

mcpRt (λ2 + ω2)
sin(ωt)

Qds = Qd

√
λ2 + M2ω2

λ2 + ω2
· cos (ωt + γ) ≡ Qda cos (ωt + γ) (43)

where γ is given by

γ = tan−1

[
ωλ(M − 1)

λ2 + Mω2

]
(44)

and the amplitude Qda is defined as shown. The heat flux from the die into the

integrated heat spreader is reduced in magnitude and shifted by a phase lag γ.

These revised solutions for the magnitude and phase shift of the flux and

temperature at the die-side of the IHS can now be used in Eq. (30), by setting

TIHS in Eq. (30) to TBF from Eq. (37) and setting Qd in Eq. (30) to Qda from

Eq. (43). Upon separating the sine and cosine terms, there obtains:

{
PS2 · [A cos α + B sin α] · Qc + PS3 e−bL · [U cos(bL − γ) + V sin(bL − γ)]

+ PS3 ebL · [P cos(bL + γ) + R sin(bL + γ)]

}
cos(ωt)

+

{
PS2 · [B cos α − A sin α] · Qc + PS3 e−bL · [U sin(bL − γ) − V cos(bL − γ)]

− PS3 ebL · [P sin(bL + γ) − R cos(bL + γ)]

}
sin(ωt)

= −RtM · Qd cos(ωt) (45)
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where PS3 is defined as

PS3 =
Qda

kL(P 2 + R2)
(46)

Equation (45) is solved in the same way as Eq. (31), by requiring that the sine

and cosine terms vanish simultaneously:

{
2 ebL [A cos α + B sin α]

A2 + B2

}
· Qc

Qd

· Qd

Qda

= −M · bL

Bids

· Qd

Qda

−
{

e−bL [U cos(bL − γ) + V sin(bL − γ)] + ebL [P cos(bL + γ) + R sin(bL + γ)]

P 2 + R2

}

(47)

{
2 ebL [B cos α − A sin α]

A2 + B2

}
· Qc

Qd

· Qd

Qda

=

−
{

e−bL [U sin(bL − γ) − V cos(bL − γ)] + ebL [R cos(bL + γ) − P sin(bL + γ)]

P 2 + R2

}

(48)

where Bids ≡ b/(kRt) is a Biot number for the die side of the IHS.

As previously noted, the coefficients (A, B, P, R, U, V ) depend upon the di-

mensionless parameters bL and BiIHS. The factors Qd/Qda, M , and γ depend on

the additional dimensionless groups QdRt/∆T and ω/λ. The latter parameter

can be rewritten as

ω

λ
= (bL)2

(
2atmcpRt

b2

)
≡ (bL)2S (49)

in which the dimensionless parameter S is the ratio of the lumped timescale of the

die to the diffusion timescale of the IHS. We find, therefore, that the dimension-

less control power Qc/Qd and phase shift α each depend upon five dimensionless

variables: bL, BiIHS, Bids, QdRt/∆T , and S. Among these, only bL is dependent

upon the signal frequencies used during testing. Thus, adjusting the range of bL

selected in a test sequence most easily adjusts the required control power, since

no redesign of the device or its packaging is required.
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As a dimensional example, when Qd = 10 W/cm2 and ω = 10 Hz with ∆T =

4 K, the required control power profile has a phase shift α = 277.2◦ and a control

magnitude of Qc = 63.05 W/cm2. This performance is much better than for ideal

temperature control where the control magnitude was found to be 173.0 W/cm2.

The resulting temperature profiles for the die and the back face of the IHS are

shown in Fig. 8. Fig. 8

2.6 Model Confirmation

In order to provide an independent confirmation of the mathematical solution,

an implicit finite difference model [11] of the die/heat spreader system was con-

structed. The details of this solution method will be outlined in a later section,

where the same method is used to estimate lateral conduction effects in the IHS.

This approach is not very convenient for determining for the required control input

magnitude and phase shift, but it is very useful for checking the analysis.

Figure 9 shows the die temperature as calculated from the finite difference Fig. 9

model for a 10 Hz die power with Qd = 10 W/cm2. The control input has

Qc = 63.05 W/cm2 and α = 277.2◦, as predicted by the analysis for a tolerance of

∆T = 4 K. As can be seen, the finite difference model confirms that the predicted

control input does control the die temperature to the desired level.

3 Control of Non-Sinusoidal Die Power Profile

Any periodic or finite length die power profile can be decomposed into a Fourier

series of sinusoidal terms, each of which satisfies the analyses of the previous

sections. The results can be superposed to find the temperature response for the

actual die power profile. In any such decomposition, a steady (DC) component

must also be added so that the power inputs are non-negative.
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For example, a square-wave die power profile can be written as [12]

Qsq(t) =
4Q

π

∑
n=1,3,5...

1

n
sin

(
2nπt

τ

)
(50)

where Q is the amplitude of the square wave5 and τ is its period. Each of these

components can now be analyzed using the method developed previously in order

to determine the required control input at each specific frequency. In order to do

this, the temperature tolerance at each frequency must be specified in such a way

that the total temperature tolerance of the die is maintained. For any specified

total temperature tolerance, many solutions are possible; however, we desire the

solution that minimizes control power required.

For example, suppose that desired total die temperature tolerance is ∆T = 4 K

on a 5 Hz square-wave signal having Qd = 10 W/cm2 and h = 1200 W/m2K. The

control input may be broken down into an initial allowance of ∆T = 1 K for the

first frequency component of the decomposition, 1 K for the second component,

1 K for the third, and 1 K for the fourth. For this initial guess, it can quickly

be shown that the third and fourth components produce die fluctuations much

lower than the target values of ∆T = 1 K, so that no control power is actually

needed at these two frequencies. The required rms power for the two remaining

frequencies is 57.2 W/cm2. If the analysis is redone with ∆T = 2 K on the first and

second components only, the required rms control power is 43.3 W/cm2, and with

∆T = 2.5 K on the first frequency, 1.2 K on the second frequency, and 0.3 on the

third frequency, the required rms control power is 32.0 W/cm2. Multiple iterations

are generally required to find the optimal solution; it is beyond our present scope

to develop a systematic algorithm for these iterations. For the current example, Fig. 10

an optimized result (Fig. 10) puts ∆T = 2.3 K on the first component (5 Hz),

∆T = 1.0 K on the third (15 Hz), and ∆T = 0.7 K on the fifth (25 Hz), requiring

29.0 W/cm2 rms control power.
5Half the peak to peak amplitude.
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A similar analysis can be performed for power profiles of any shape. A trian-

gular wave can be expressed as the Fourier series [12]

Qtr(t) =
8Q

π2

∑
n=1,3,5...

(−1)
n−1

2

n2
sin

(
2nπt

τ

)
(51)

Using this decomposition, the control input for a desired level of die temperature

control can be calculated. The solution in this case is fairly simple as only the

first frequency term in the series requires control, so the entire ∆T tolerance can

be applied to the first term. The results for a triangular wave decomposition are

shown in Fig. 11. Fig. 11

Note the big difference in control power required between the triangular wave

and square wave die power profiles. The square wave needs almost an 8:1 control

to die power ratio to hold the die temperature within 4 K, whereas the triangular

wave requires only a 2.4:1 ratio to hold a tighter tolerance of 2 K. Sudden changes

in die power (as seen in a square wave) require much higher control power to hold

a given temperature tolerance than do more slowly varying power profiles (such

as the triangle wave).

4 Limits to Control for a Given Die Power Profile

A knowledge of the required control power profile for a given temperature tolerance

in the die can be used to define the control limits for any given system. Specifically,

for a given die power frequency and amplitude, if the control power is limited

to some finite value then the die temperature can be controlled only to some

minimum tolerance. Tighter temperature control is not possible for that level of

control power.

Over a range of die power frequencies, the control power ratio, Qc/Qd, can

be found for a given die temperature tolerance, scaled into the die power as

QdRt/∆T . By evaluating the control power ratio over a range of frequencies,
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we may define a control limit plot for a specified set of die conditions. Figure 12

shows such control limits over a range of dimensionless frequency, (bL)2. In this Fig. 12

graph, BiIHS = 0.0055, Bids = 0.11, and S = 0.76, corresponding to a 200 µm

thick die, a 1.8 mm thick copper IHS, Rt = 0.42 cm2K/W, and convective cooling

through hc = 1200 W/m2K. (Those values are typical of test conditions currently

being developed [7].)

An expanded view of the same data is shown in Fig. 13. These figures illustrate Fig. 13

the limits of control. There are three regions in Fig. 13, each representing a

different region of operation. The area to the left of each curve represents a

region where the temperature of the die can be controlled by applying the control

power associated with that curve. The region to the right of the lines represents

a region where the die power frequency is so high that no control is required to

maintain the temperature tolerance limits on the die. The region contained under

the curve is a regime where the specified control cannot be attained with the

specified control power/die power ratio.

Figure 12 shows that any desired die flux to temperature tolerance ratio can

be obtained with sufficient control power, so no theoretical limit to temperature

control exists. On a practical level, however, power ratios over 3 or 4 quickly

become impractical due to cooling requirements of the effective steady state heat

load — the sum of the DC components of die power and control power. (Recall

that this analysis was for the periodic components of the power profiles; in prac-

tice, both profiles also have steady components, since the instantaneous powers

are never negative.)

These results lead to some very important points. The position of the lefthand

sides of the curves are defined by the physical configuration of the heat spreader

(thickness, conductivity, etc.), whereas the righthand sides are defined by the mass

of the die, frequency of the die power profile, and thermal interface resistance
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between the die and the IHS. If the design of the IC device cannot be altered for

thermal purposes, as is usually the case, a desired level of temperature control

may instead be obtained by designing the circuit test sequence, for example, so

that the die power profile always lies to the right side of the figure.

We may also evaluate the effect of design changes to the integrated heat

spreader and thermal interface between the die and IHS. Changing the thermal

resistance between the die and the IHS can have a profound effect on the control

limits at higher power ratios. This is seen in Fig. 14A for Qd/∆T = 5 W/cm2K. Fig. 14

The effects of changing the thickness of the integrated heat spreader and the die

are shown in Fig. 14B and Fig. 14C, respectively. Changing the thickness of the

die (and therefore its mass) has the largest impact on the control limits of the

device. The increasing the thickness of the IHS also raised the power required for

a given level of control. The effect of changing the convective transfer coefficient

hc is negligible, with no change observed when hc varies from 500 W/m2K to

2000 W/m2K.6

4.1 Limitations of the isothermal die approximation

The techniques used to analyze the IHS can also be applied to heat conduction in

the die as a check on the lumped capacitance model for the die. The results of such

analysis show that a die of thickness δ can be treated as isothermal for frequencies

low enough that δ2ω/(2at) < 0.3 to 0.4. For the baseline die considered here, that

corresponds to frequencies of 200 to 300 Hz and (bL)2 < 30 to 40. It must also

be noted that the temperature variations associated with the higher frequencies

tend to be quite small.

6These values are typical of the air-jet array cooling we have implemented and measured in

such systems. Small nozzle diameters, modest air pressures, and close nozzle-to-nozzle spacings

are required.
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5 Lateral Conduction Effects in IHS

The function of the heat spreader is to act as a fin, conducting heat laterally

away from the die. For the steady components of die power, the IHS will indeed

function as a fin. For higher frequency components, however, the fin effect will

be limited to a frequency-dependent thermal penetration length in the IHS near

the die. Only the lower frequency components will have a sufficient penetration

depth to influence the control response. In this section, we examine the effect of

frequency-dependent lateral conduction on the control requirements.

The Biot number, BiIHS, for a typical heat spreader is very small, even at the

highest hc values considered here (e.g., BiIHS = 0.009 for hc = 2000 W/m2K and

b = 1.8 mm). Thus, the thermal response of the parts of the spreader beyond the

die can be modelled using the unsteady fin equation

∂2Θ

∂x2
+

1

A(x)

dA

dx

∂Θ

∂x
− hP

kA(x)
Θ =

1

at

∂Θ

∂t
(52)

where Θ = T − Tair, P is the perimeter subject to convection, A(x) is the cross-

sectional area, and at is the thermal diffusivity.

A square heat spreader with a square die can be broken into four identical

quadrants, by symmetry. The cross-sectional area of the heat spreader can now

be expressed as A(x) = A0 + 2α · b · x, where A0 is the area of the fin along the

line of contact with the die and α = 0.5.

Equation (52) has been studied extensively, and analytical solutions have been

reviewed by Aziz and Kraus [13]. In the present case, with variable cross-sectional

area and time dependent boundary conditions, the equation will be solved using

discrete methods. The two items of principal interest are the heat flux and the

thermal penetration depth that result from a change in base temperature, with the

latter corresponding to the temperature of the IHS directly over the die structure.

The base temperature is never uniform across the thickness of the heat spreader
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because the powers are time dependent (as shown in previous sections). Never-

theless, this temperature varies over a well specified range, and a bounding value

can be used to examine the worst case losses into the fin-like parts of the IHS

away from the die. The magnitude of the temperature variation in the IHS over

the die can be taken from the previously determined IHS temperature profiles,

such as Fig. 8.

Using an implicit finite difference method [11], the fin may be divided into the

N sections shown in the inset in Fig. 16. The temperature of a fin section subject Fig. 16

to time varying boundary conditions can be written as

A · Ti+1 = Ti + F (53)

where [Ti] and [Ti+1] are arrays of the fin temperature at time step i and i + 1

respectively. The details of the forcing function [F] and characteristic matrix [A]

are standard, and will not be repeated here (see [7] for details). The temperature

at time step i + 1 is found by matrix inversion.

We used this approach to determine the temperature profile in the fin as a

function of time subject to changing base temperature T i
b . The fin was broken

into 100 segments and the time step ∆t was decreased by factors of two until

successive changes in the time step produced results that varied by less than

0.01◦C at all times.

The heat lost by conduction into the IHS away from the die is found by inte-

grating the flux into the base area, A0, over a full period of the harmonic power

variation. This heat may be viewed as lost control energy. For example, con-

sider a 1 cm2 die and that has a 1.8 mm thick heat spreader measuring 3.4 cm

by 3.4 cm. The temperature profile in the part of the IHS not above the die is Fig. 15

shown in Fig. 15 for a 10 Hz base temperature variation having a peak-to-peak

magnitude of 4 K with hc = 1200 W/m2K. The cyclic heat loss is 0.36 W per fin

segment, or 1.44 W for the entire heat spreader. Similar calculations have been
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done for a range of frequencies and for various hc (Fig. 16). Fig. 16

The results of such analyses can be used in one of two ways to correct the

control response for the lateral conduction losses. One approach is simply to add

the control losses to the total control power. The second approach is to provide

a control heat flux to an area of the heat spreader larger than the die, so as to

minimize time-dependent lateral heat loss from the die (in the case of laser heating

of the IHS, this amounts to over-illumination of the IHS). The second option is

only really possible for higher frequency signals, because at lower frequencies the

penetration depth is of the same order of magnitude as the width of the heat

spreader. If the penetration depth is defined as the distance from the base of

the fin to the point where the temperature fluctuation is less than 0.1◦C, then

the penetration depth for the temperature profile shown in Fig. 15 is 6.1 mm.

Illuminating the die area covers 1.0 cm2, illuminating the die area and a sufficient

edge area to prevent lateral conduction effects on the die area requires illumination

of 4.9 cm2.

Similarly, the penetration depth for a 40 Hz signal is 3.4 mm with over-

illumination covering 2.8 cm2; and at 100 Hz, the pentration depth is 2.1 mm

with over-illumination covering 2.0 cm2. Assuming the radiant intensity is uni-

form over the entire illuminated area, over-illumination requires 4.9 times more

radiant power at 10 Hz, 2.1 times more at 40 Hz and 2.0 times the power at 100 Hz.

6 Conclusions

Time-leading temperature control in a distributed-parameter thermal system has

been evaluated in one and two dimensions. A particular focus has been the testing

of packaged, high-power, integrated circuits. The analysis identifies the control

power required to bound the temperature variation of a system having time-

26



dependent self-heating if control is by time-varying heat conduction to a position

distant from the location being controlled.

The results may be very useful in the design of active thermal control systems

for testing of electronic devices and for understanding the impact of electronic

test-sequence designs and packaging design on the practical limits of temperature

control. Three areas of operation for thermal control have been identified. At

high frequencies, active control is not required because the temperature deviation

without control is below the desired tolerance: steady (DC) cooling is all that is

needed. At sufficiently low frequencies, thermal control can be obtained using a

system’s available control power. For intermediate frequencies, either control is

not possible at the system’s rated control power and desired temperature toler-

ance, or larger temperature deviations have to be accepted as a result the system’s

limitation on control power.

This analysis can be applied to any situation where the temperature control

source is separated from the active region where temperature control is desired,

and should have value for systems other than electronics testing equipment.

Experimental tests of this analysis have been performed on prototype micro-

processors, with good agreement [7]. These tests will be the subject of a future

paper.
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Figure 8: Temperature profile for die and back-face of IHS for ω = 10 Hz, Qd =
10 W/cm2 and a tolerance ∆T = 4 K.
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Figure 9: Calculated die temperature using finite difference model to confirm
analytic solution for control input. Target ∆T is 4 K with hc = 1200 W/m2K,
Rt = 0.42 cm2K/W, b = 1.8 mm, and Qd = 10 W/cm2.
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Figure 10: Die and control powers and die temperature change, θ, for square-wave
die power profile.
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Figure 11: Die and control powers and die temperature change, θ, for triangle-
wave die power profile.
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Figure 12: Control power limits for specified die power amplitude, Qd, and die
temperature tolerance, ∆T , as a function of nondimensional die power frequency,
(bL)2.
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Figure 13: Control power limits for specified die power amplitude, Qd, and die
temperature tolerance, ∆T , as a function of nondimensional die power frequency,
(bL)2.
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Figure 14: Effect on control power limits of: A) interfacial thermal resistance; B)
IHS thickness; and C) die thickness.
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Figure 15: Transient fin temperature profile for 10 Hz example. Top: temperature
variation at base and tip of fin. Bottom: maximum/minimum temperature defect
along the length of the fin.

42



1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Q
 (

W
)

h
c
 = 1000 W/m 2K 

h
c
 = 1200 W/m 2K 

h
c
 = 2000 W/m 2K 

h
c
 = 500 W/m 2K 

1

N-1

2

N

..
.

A0

Segment

L

Figure 16: Lateral conduction into IHS for various hc: Q = cyclic lateral loss into
IHS; ∆Tb = temperature fluctuation amplitude of IHS at die edge. Insert shows
discretization of IHS for numerical solution.
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