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Abstract

The three existing dominant network families, i.e., CNNs,
Transformers, and MLPs, differ from each other mainly in
the ways of fusing spatial contextual information, leaving de-
signing more effective token-mixing mechanisms at the core
of backbone architecture development. In this work, we pro-
pose an innovative token-mixer, dubbed Active Token Mixer
(ATM), to actively incorporate flexible contextual informa-
tion distributed across different channels from other tokens
into the given query token. This fundamental operator ac-
tively predicts where to capture useful contexts and learns
how to fuse the captured contexts with the query token at
channel level. In this way, the spatial range of token-mixing
can be expanded to a global scope with limited computational
complexity, where the way of token-mixing is reformed. We
take ATM as the primary operator and assemble ATMs into
a cascade architecture, dubbed ATMNet. Extensive experi-
ments demonstrate that ATMNet is generally applicable and
comprehensively surpasses different families of SOTA vision
backbones by a clear margin on a broad range of vision tasks,
including visual recognition and dense prediction tasks. Code
is available at https://github.com/microsoft/ActiveMLP.

Introduction
Convolutional neural networks (CNNs) (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman
2015; Szegedy et al. 2015, 2016; Huang et al. 2017) serve
as the most prevalent vision backbones for a long time.
Inspired by the successes in Natural Language Processing
(NLP), DETR (Carion et al. 2020) and ViT (Kolesnikov
et al. 2021) introduce self-attention based model, i.e., Trans-
former, into computer vision. Afterwards, Transformers
spring up and make splendid breakthroughs on various
vision tasks (Liu et al. 2021; He et al. 2021b; Wang et al.
2021a; Xie et al. 2021; Cheng, Schwing, and Kirillov 2021;
Lin, Wang, and Liu 2021; He et al. 2021a). Most recently,
the multi-layer perceptrons (MLPs) based architectures
(Tolstikhin et al. 2021; Lian et al. 2022) have regained
their light and been demonstrated capable of achieving
stunning results on various vision tasks (Touvron et al.
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2021a; Tolstikhin et al. 2021; Chen et al. 2022; Lian et al.
2022; Zhang et al. 2021; Tang et al. 2022).

Those three categories of architectures differ from each
other mainly in their different ways of token mixing. For dif-
ferent architectures, we uniformly refer to each feature vec-
tor as one token. CNN-based architectures (Simonyan and
Zisserman 2015; He et al. 2016; Huang et al. 2017) mix
tokens locally within a sliding window of a fixed shape.
Transformer-based architectures (Kolesnikov et al. 2021;
Touvron et al. 2021b; Wang et al. 2021b) perform message
passing from tokens in the global scope into the query to-
ken based on the pairwise attentions commonly modeled by
the affinities between tokens in the embedding space. MLP-
based architectures mostly enable spatial information inter-
action through the fully connected layers across all tokens
(Tolstikhin et al. 2021; Touvron et al. 2021a; Hou et al. 2022;
Tang et al. 2022) or certain tokens selected with hand-crafted
rules in a deterministic manner (Chen et al. 2022; Zhang
et al. 2021; Wang et al. 2022a; Yu et al. 2022; Lian et al.
2022; Tang et al. 2021). However, the fully connected layer
across all tokens makes the model unable to cope with the
inputs of variable resolutions. Adopting manually designed
rules for token selection relaxes this constraint on fixed res-
olutions by restricting token mixing within a deterministic
region, but sacrificing the adaptability to various visual con-
tents of diverse feature patterns.

In this work, we first revisit the token mixing mechanisms
in dominant types of architectures from a unified perspec-
tive, then propose a novel Active Token Mixer (ATM). As
an innovative basic operator, ATM considers two proper-
ties of the learned features to actively select the tokens for
mixing: 1) the semantics in different spatial positions may
correspond to diverse scales and deformations; 2) different
semantic attributes of a token would distribute in different
channels (Bau et al. 2020; Wu, Lischinski, and Shechtman
2021). As illustrated in Fig. 1 (a), for a query, ATM ac-
tively predicts the locations offsets of tokens whose infor-
mation should be incorporated for interaction. Particularly,
ATM predicts the respective offset channel-wisely to select
the context elements which are then recomposed to a new
token. This empowers a more adaptive and flexible informa-
tion interaction across tokens. We adopt this operation along
the horizontal and vertical dimensions in parallel (Fig. 1 (b)),
making such predictive context localization easier to be opti-
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mized. Then we learn to adaptively fuse the two recomposed
tokens and the original query to be the output

The ATM can serve as a primary operator for construct-
ing backbone architectures. To showcase this, we build a se-
ries of model variants with different model scales, named
ATMNet-xT/T/S/B/L, respectively. ATMNet shows impres-
sive effectiveness of ATM on a broad range of vision tasks
as well as favorable scalability over different model scales.
Besides, ATM can also serve as a plug-and-play enhanced
replacement of the conventional convolution layers in FPN
(Lin et al. 2017a) to enhance the pyramid feature learning for
dense prediction tasks (object detection and segmentation).

Our contributions can be summarized below:
• We propose Active Token Mixer (ATM), a basic operator

to efficiently enable content-adaptive and flexible global
scope token mixing at channel level. It expands the range
and reforms the way of message passing.

• We build an efficient vision backbone ATMNet with
ATM as its primary ingredient for effective spatial infor-
mation interaction. For the commonly used neck structure
FPN, we build an enhanced FPN, i.e., ATMFPN, powered
by ATM, for dense prediction tasks.

• ATMNet achieves strong performance over different
model scales and across various vision tasks. For im-
age classification, only trained on ImageNet-1K, ATM-
Net achieves 82.0% top-1 accuracy with 27M parame-
ters and reaches 84.8% when scaling up to 76M. More-
over, ATMNet outperforms recent prevalent backbones on
dense prediction tasks by a significant margin with com-
parable or even less parameters and computation cost.

Related Work

CNN Based Models

Convolutional neural networks (CNNs) have been the main-
stream architectures in computer vision for a long time. The
CNN model is originally presented in (LeCun et al. 1998) for
document recognition. Beginning with the significant suc-
cess of AlexNet (Krizhevsky, Sutskever, and Hinton 2012)
in ILSVRC 2012, various CNN-based architectures are de-
signed or searched, e.g., Inception (Szegedy et al. 2015,
2016, 2017), VGG (Simonyan and Zisserman 2015), ResNet
(He et al. 2016), DenseNet (Huang et al. 2017), ResNeXt
(Xie et al. 2017), EfficientNet (Tan and Le 2019), MNAS-
Net, (Tan et al. 2019) and others (Wang et al. 2020; Ding
et al. 2021; Liu et al. 2022b). In addition, there are a series
of works dedicated to improving the convolution layers from
different perspectives, e.g., depthwise separable convolution
(Chollet 2017; Howard et al. 2017; Sandler et al. 2018) for
reduced computation costs and deformable convolution (Dai
et al. 2017; Zhu et al. 2019) for objects of diverse shapes. It
is noteworthy that the deformable convolution also allows
learnable token selection for token mixing but ignores the
semantic differences across channels (Bau et al. 2020; Wu,
Lischinski, and Shechtman 2021) and usually suffers from
optimization difficulties (Chan et al. 2021).

Self-Attention Based Models
(Kolesnikov et al. 2021) firstly introduces a pure self-
attention based backbone to computer vision, i.e., ViT,
which achieves promising performance on image classifica-
tion especially trained with extremely large-scale data. (Tou-
vron et al. 2021b) improves the training strategy of ViT and
proposes a knowledge distillation method, which helps ViT
achieve higher performance trained only on ImageNet. Af-
terwards, various works endeavor to explore efficient vision
Transformer architectures, e.g., PVT (Wang et al. 2021b,
2022b), Swin (Liu et al. 2021, 2022a), Twins (Chu et al.
2021a), MViT (Yan et al. 2022; Li et al. 2021), and others
(Chu et al. 2021b; Dong et al. 2021; Ali et al. 2021; Tou-
vron et al. 2021c; Yang et al. 2021; Bertasius, Wang, and
Torresani 2021; Li et al. 2022).

MLP-Like Models
Recently, MLP-like models have been reinvigorated. The
pioneering works MLP-Mixer (Tolstikhin et al. 2021) and
ResMLP (Touvron et al. 2021a) stack two types of MLP
layers, i.e., token-mixing MLP and channel-mixing MLP,
alternately. The token-mixing MLP enables spatial infor-
mation interaction over all tokens while the channel-mixing
MLP mixes information across all channels within each to-
ken. ViP (Hou et al. 2022) and sMLP (Tang et al. 2022) en-
code the feature representations along two axial dimensions
to improve MLPs’ efficiency and capability. Shift (Wang
et al. 2022a), ASMLP (Lian et al. 2022) and S2MLP (Yu
et al. 2022) perform spatial information mixing with spa-
tial shift operations along different dimensions. CycleMLP
(Chen et al. 2022), WaveMLP (Tang et al. 2021) and Mor-
phMLP (Zhang et al. 2021) restrict the spatial information
interaction within hand-craft fixed local windows in a de-
terministic way. As opposed to them, our ATM achieves a
learnable content-adaptive token-mixing, which considers
the diverse semantics attributed in different channels and
spatial positions with global receptive fields, so that it can
attain high flexibility and strong modeling capacity.

Method
A Unified Perspective of Token Mixing
For most prevailing model architectures, the input image is
first patchified into a feature tensor X ∈ RH×W×C with the
height H , the width W and the number of channels C. In vi-
sion tasks, token mixing is especially critical since the con-
textual information is inevitably required for understanding
visual semantics. Before introducing our proposed method,
we firstly review different token mixing mechanisms in the
literature from a unified perspective. Mathematically, we
formulate token mixing with a unified function:

f(X)|xq =
∑

k∈N (xq)

ωk→q ∗ g(xk), (1)

where xq denotes the query token while N (xq) refers to a
set of its contextual tokens. ωk→q is the weight determining
the degree of message passing from xk to xq . g(·) is an em-
bedding function. ∗ is a unified representation for element-
wise or matrix multiplication.
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Figure 1: Illustration of our proposed Active Token Mixer (ATM). (a) ATM along the horizontal (width) dimension. For a
query xq , ATM actively captures the useful contexts by recomposing the elements from selected tokens into x̃W ∈ RC based
on the learned channel-wise offsets. (b) ATM module consisting of ATMW along horizontal dimension, ATMH along vertical
dimension, and the identity branch ATMI . The two recomposed tokens (x̃W , x̃H ) and the original x̃I are then adaptively fused
after being embedded by FC{W,H,I}.

For conventional CNNs, g(·) is an identity function, and
ωk→q ∈ RC×C corresponds to the convolutional kernels
shared for different queries, and the message passing is re-
stricted within a fixed-size sliding window N (·). Transform-
ers achieve a non-local N (·) and adopt a computationally
expensive ωk→q ∈ RC through calculating the affinity be-
tween xk and xq in the embedding space. In recent MLP-
like backbones (Chen et al. 2022; Touvron et al. 2021a; Tol-
stikhin et al. 2021; Zhang et al. 2021; Lian et al. 2022; Tang
et al. 2022, 2021), N (·) and ωk→q are manually designed to
perform token mixing in a deterministic way, leading to the
lack of content adaptivity. In Transformers or MLPs, g(·) is
commonly a learnable embedding function.

Active Token Mixer
Based on the token mixing methods detailed in Sec. , we
have two key observations: 1) For the spatial dimension, vi-
sual objects/stuffs present diverse shapes and deformations.
Therefore, information mixing within a fixed-range N (·)
(Touvron et al. 2021a; Chen et al. 2022; Tolstikhin et al.
2021; Lian et al. 2022) is inefficient and inadequate. The
adaptive ωk→q and N (·) for message passing are desirable
for extracting visual representations. 2) For the channel di-
mension, multiple semantic attributes carried in one token
would distribute in its different channels (Bau et al. 2020;
Wu, Lischinski, and Shechtman 2021). The token-level mes-
sage passing with ωk→q ∈ R shared over all channels can
not treat different semantics adaptively and limits their full
use, thus is less effective (Touvron et al. 2021a; Tolstikhin
et al. 2021). In this work, we pinpoint the importance of
more fine-grained message passing for treating different se-
mantics adaptively.

To address the aforementioned limitations in existing
token-mixing methods, we propose Active Token Mixer
(ATM) as shown in Fig. 1. It first predicts the relative lo-
cations of useful contextual tokens along each direction at
channel level, then learns to fuse the contextual tokens and

query token. These two steps correspond to learn where the
useful context tokens locate in and how to fuse them with
the original information, respectively.

Drawing on the success of multi-branch design in (Hou
et al. 2022; Chen et al. 2022; Lian et al. 2022), we propose
a three-branch architecture for facilitating the context local-
ization along different directions. Two branches are respon-
sible for recomposing tokens into a new one along two axial
directions separately as shown in Fig. 1 (b). In addition, we
adopt an identity branch to preserve the original query infor-
mation. The two recomposed tokens and query are further
mixed as the final output.

ATM along the horizontal dimension We illustrate the
ATM along the horizontal (width) dimension, denoted by
ATMW , in Fig. 1 (a). Given the query xq ∈ RC (marked
with ⋆), we first feed it into a FC layer to adaptively predict
C offsets O = {oi}Ci=1 for context localization. Note that we
impose no constraint on the offset generation, thus N (xq) is
allowed to be extended to all spatial positions along the hori-
zontal direction. In this way, ATM can incorporate the infor-
mation from the global scope, wherever needed, into xq in a
flexible and active manner. The predicted offsets determine
the tokens in N (·) per channel, which are used to recompose
the selected tokens into a new token x̃W ∈ RC as output of
ATMW :

x̃W =
[
X[i,j+o1,1],X[i,j+o2,2], . . . ,X[i,j+oC ,C]

]T
, (2)

where X[i,j+o,c] denotes the cth channel element of the to-
ken at spatial position [i, j + o] where [i, j] is the position
of xq . ATMW is capable of mixing information horizontally
and globally into x̃W .

ATM along the vertical dimension Likewise, another
ATMH branch is adopted to recompose a token x̃H along
the vertical (height) dimension.

Fusion Here, we introduce how to fuse the recomposed
x̃W , x̃H and the original x̃I into the final token-mixing re-
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Model Size #P.(M) FLOPs(G) Top-1(%)

ResNet18 2242 12 1.8 69.8
ResMLP-S12 2242 15 3.0 76.6
CycleMLP-B1 2242 15 2.1 78.9
ATMNet-xT 2242 15 2.2 79.7

ResNet50 2242 26 4.1 78.5
Deit-S 2242 22 4.6 79.8
PVT-S 2242 25 3.8 79.8
Swin-T 2242 29 4.6 81.2
TwinsP-S 2242 24 3.8 81.2
Twins-S 2242 24 2.9 81.7
ResMLP-S24 2242 30 6.0 79.4
ASMLP-T 2242 28 4.4 81.3
ViP-S 2242 25 6.9 81.5
MorphMLP-T 2242 23 3.9 81.6
CycleMLP-B2 2242 27 3.9 81.6
Shift-T 2242 29 4.5 81.7
ATMNet-T 2242 27 4.0 82.0

PVT-M 2242 44 6.7 81.2
TwinsP-B 2242 44 6.7 82.7
MorphMLP-S 2242 38 7.0 82.6
CycleMLP-B3 2242 38 6.9 82.6
ATMNet-S 2242 39 6.9 83.1

Model Size #P.(M) FLOPs(G) Top-1(%)

PVT-L 2242 61 9.8 81.7
Swin-S 2242 50 8.7 83.2
Twins-B 2242 56 8.6 83.2
ViP-M 2242 55 16.3 82.7
Shift-S 2242 50 8.8 82.8
CycleMLP-B4 2242 52 10.1 83.0
ASMLP-S 2242 50 8.5 83.1
MorphMLP-B 2242 58 10.2 83.2
ATMNet-B 2242 52 10.1 83.5

Deit-B 2242 86 17.5 81.8
Swin-B 2242 88 15.4 83.5
S2MLP-W 2242 71 14.0 80.0
CycleMLP-B5 2242 76 15.3 83.1
ViP-L 2242 88 24.4 83.2
Shift-B 2242 89 15.6 83.3
ASMLP-B 2242 88 15.2 83.3
MorphMLP-L 2242 76 12.5 83.4
ATMNet-L 2242 76 12.3 83.8
ViT-B/16↑ 3842 86 55.4 77.9
Deit-B↑ 3842 86 55.4 83.1
Swin-B↑ 3842 88 47.1 84.5
ATMNet-L↑ 3842 76 36.4 84.8

Table 1: Comparisons with state-of-the-art models on ImageNet-1K without extra data. All models are trained with input size
of 224×224, except ↑ with 384×384.

sult. First, we adopt three FC layers FC{W,H,I} to embed
x̃{W,H,I} to x̂{W,H,I}, respectively, which are then mixed
with learned weights, formulated as:

x̂ = αW ⊙ x̂W +αH ⊙ x̂H +αI ⊙ x̂I , (3)

where ⊙ denotes element-wise multiplication. α{W,H,I} ∈
RC are learned from the summation x̂

∑
of x̂{W,H,I} with

W {W,H,I} ∈ RC×C :

[αW ,αH ,αI ] = σ([WW · x̂
∑
,WH · x̂

∑
,W I · x̂

∑
]), (4)

where σ(·) is a softmax function for normalizing each chan-
nel separately.

Discussion Our ATM has three hallmarks: 1) Content
adaptivity. The context selection/localization is adaptively
learned for the query token in an active way, instead of being
passively determined by manual designed rules (Chen et al.
2022; Lian et al. 2022; Yu et al. 2022; Zhang et al. 2021).
2) Flexibility. In general, different channels are character-
ized with different semantics. Our proposed ATM enables to
dynamically select context tokens at the channel level from
a global range N (·), adaptive to visual contents with var-
ious scales and deformations. 3) Efficiency. By incorporat-
ing contexts from C tokens into the two recomposed tokens,
the computation complexity of ATM is O

(
HWC2

)
, which

is linear with the input resolution and is agnostic to the re-
ceptive fields, making it computation-friendly to larger-size
images used in object detection and segmentation tasks.

Compared with the conventional convolutions, ATM is
able to enlarge its receptive field to global-scope flexibly

with constant computation cost. Compared with the multi-
head self-attention in Transformers, ATM globally mixes to-
ken information per channel with the actively learned off-
sets, avoiding the computation-consuming attention calcu-
lation. ATM may be reminiscent of the deformable con-
volution (Dai et al. 2017; Zhu et al. 2019). In fact, there
are two crucial differences: 1) The learned offsets in de-
formable convolutions are shared over all channels, with-
out consideration on semantic differences across channels.
Our ATM can incorporate contextual information in channel
wise, achieving a more flexible and fine-grained context ex-
ploitation mechanism in token mixing. 2) We decouple the
learning of context localization along different directions,
making ATMNet easier to be optimized.

Model Architectures

ATM Block We build our ATMNet by stacking multiple
ATM blocks in sequence. Here, we introduce the architec-
ture of an ATM block. For the output Xl-1 of the (l − 1)-th
block ATMl-1, we feed it to the l-th block ATMl for token
mixing. Further, we use an MLP module to further modulate
the feature along its channel dimension. Skip connections
are adopted to facilitate the training. The entire process can
be formulated as:

X̂l = ATM l(LN(Xl-1)) +Xl-1, (5)

Xl = MLP l(LN(X̂l)) + X̂l, (6)

where LN is LayerNorm (Ba, Kiros, and Hinton 2016).
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UperNet
Model #P FLOPs mIoU/mIoU(ms)

Swin-T 60 945 44.5 / 45.8
Twins-S 54 931 46.2 / 47.1
ConvNeXt-T 60 939 - / 46.7
ASMLP-T 60 937 - / 46.5
CycleMLP-T 60 937 - / 47.1
ATMNet-T 57 927 46.5 / 47.6
Swin-B 121 1188 48.1 / 49.7
Twins-L 133 1236 48.8 / 50.2
ConvNeXt-T 122 1170 - / 49.9
ASMLP-B 121 1166 - / 49.5
CycleMLP-B 121 1166 - / 49.7
ATMNet-S 69 988 48.4 / 49.5
ATMNet-L 108 1106 50.1 / 51.1

Semantic FPN
Model #P FLOPs mIoU

Swin-T 31.9 48 41.5
Twins-S 28.3 37 43.2
TwinsP-S 28.4 40 44.3
MorphMLP-T 26.4 - 43.0
CycleMLP-B2 30.6 42 43.4
Wave-MLP-S 31.2 - 44.4
ATMNet-T 30.9 42.4 45.8
Swin-B 91.2 107 46.0
TwinsP-L 65.3 71 46.4
Twins-L 103.7 102 46.7
CycleMLP-B5 79.4 86 45.5
MorphMLP-B 59.3 - 45.9
ATMNet-L 79.8 86.6 48.1

Table 2: Semantic segmentation results on ADE20K val with UperNet and Semantic FPN. FLOPs are evaluated on 512×2048
for UperNet and 512×512 for Semantic FPN. All backbones are pretrained on ImageNet-1K. mIoU(ms): mIoU with multi-scale
inference. The results of other variants are in the Supplementary.

ATMNet Following the typical hierarchical architecture
designs (He et al. 2016; Liu et al. 2021), we provide
five four-stage backbone architecture variants with differ-
ent channel dimensions and numbers of the ATM blocks,
which are ATMNet-xT/T/S/B/L, respectively. Note that the
offset generation layer is shared across the tokens within
each ATM branch. Here, the awareness of the position of
query token can facilitate offsets prediction. We thus intro-
duce one positional encoding generator (PEG) (Chu et al.
2021b) for each stage before ATM, which helps a little for
dense prediction tasks. More details are placed in the sup-
plementary.

ATMFPN In addition to the strong capability of construct-
ing vision backbones, ATM is also an enhanced alterna-
tive for conventional convolutions in convolution-based de-
coders for downstream tasks. We replace the convolutions
in the prevailing FPN (Lin et al. 2017b), which is widely
applied as the neck for object detection and segmentation,
with our ATM and name this new neck as ATMFPN. We
demonstrate the effectiveness of our ATMFPN in Table 4.

Experiments
ImageNet-1K Classification

Settings We train our models on the ImageNet-1K dataset
(Deng et al. 2009) from scratch. All models are trained with
input size of 224×224 for 300 epochs with the batch size
of 1024. The ATMNet-L is finetuned with input size of
384×384 for 30 epochs. More details are shown in the Sup-
plementary.

Results We report the top-1 accuracy comparison between
our ATMNet with recent CNN-, Transformer- and MLP-
based backbones in Table 1, where all methods are catego-
rized into different groups w.r.t. the model size (#Parame-
ters) and computation complexity (FLOPs). All our different

variants achieve higher accuracy compared with the scale-
comparable methods. 1) Our ATMNet-T, -B, and -L variants
outperform the prominent Transformer Swin-T, -S, and -B
by +0.8%, +0.3% and +0.3% with comparable parameters
and FLOPs. For larger models, ATMNet-L↑ surpasses Swin-
B↑ with -23% computation cost. 2) Our ATMNet also sur-
passes all recent MLP-like backbones (ASMLP, CycleMLP,
ViP, and etc). Compared with the recent CycleMLP mixing
tokens in a deterministic and local manner, our five vari-
ants outperforms the corresponding CycleMLP variants by
+0.8%, 0.5%, +0.4%, +0.5% and +0.7% respectively, with
comparable computation cost.

Note that some MLP-like backbones (e.g., MLP-Mixer,
ResMLP, gMLP, ResMLP, ViP, sMLP and etc) in Table 1 are
not validated in downstream dense prediction tasks, where
the most architectures are not compatible with various input
resolutions. In contrast, our ATMNet is capable of dealing
with different input scales, and shows pronounced perfor-
mance on dense prediction tasks, which will be shown in the
following sections.

Semantic Segmentation

Settings Following the common practice (Chu et al.
2021a; Lian et al. 2022), we evaluate the potential of
ATMNet on the challenging semantic segmentation task on
ADE20K (Zhou et al. 2019). We adopt two widely used
frameworks, Semantic FPN (Kirillov et al. 2019) and Uper-
Net (Xiao et al. 2018). More experimental details can be
found in the Supplementary.

Results The results on top of UperNet and Semantic FPN
are shown in Table 2. For different model scales, ATM-
Net outperforms all previous methods with comparable
computation costs. The largest ATMNet-L with Sematic
FPN outperforms previous state-of-the-art Twins-L by +1.4
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Backbone FLOPs
(G)

Mask R-CNN 1× Mask R-CNN 3× MS
APb APb

50 APb
75 APm APm

50 APm
75 APb APb

50 APb
75 APm APm

50 APm
75

ResNet-50 44 260 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
Swin-T 48 264 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
ConvNext-T 48 262 - - - - - - 46.2 67.9 50.8 41.7 65.0 44.9
ASMLP-T 48 260 - - - - - - 46.0 67.5 50.7 41.5 64.6 44.5
CycleMLP-B2 47 250 42.1 64.0 45.7 38.9 61.2 41.8 - - - - - -
WaveMLP-S 47 250 44.0 65.8 48.2 40.0 63.1 42.9 - - - - - -
ATMNet-xT 35 215 42.8 64.9 46.9 39.5 62.1 42.5 45.0 67.4 49.5 41.1 64.4 44.2
ATMNet-T 47 251 44.8 66.9 49.0 41.0 64.2 44.3 47.1 69.0 51.7 42.7 66.5 46.0
X101-64 102 493 42.8 63.8 47.3 38.4 60.6 41.3 44.4 64.9 48.8 39.7 61.9 42.6
Twins-L 120 474 45.9 - - 41.6 - - - - - - - -
Swin-B 107 496 45.5 - - 41.3 - - 48.5 69.8 53.2 43.4 66.8 46.9
MViT-B 73 438 - - - - - - 48.8 71.2 53.5 44.2 68.4 47.6
CycleMLP-B5 95 421 44.1 65.5 48.4 40.1 62.8 43.0 - - - - - -
WaveMLP-B 75 353 45.7 67.5 50.1 27.8 49.2 59.7 - - - - - -
ATMNet-B 72 377 46.5 68.6 51.0 42.5 66.1 45.8 49.0 70.7 54.0 43.9 67.7 47.5
ATMNet-L 96 424 47.4 69.9 52.0 43.2 67.3 46.5 49.5 71.5 54.3 44.5 68.7 48.1

#Params.
(M)

Table 3: Object detection results on COCO val2017 with Mask R-CNN 1× and RetinaNet 1×. FLOPS are evaluated with
resolution 800×1280. The complete comparison table and results of 3× can be found in the Supplementary.

mIoU with -23% parameters and -16% FLOPs. ATMNet-
L also achieves the new state-of-the-art (51.1 ms mIoU) with
UperNet, which surpasses the representative network Swin-
B by +1.4 mIoU with -10% parameters. Note that ATMNet-
S achieves comparable performance with Swin-B, but only
requires about -50% parameters.

It also shows that most previous MLP-like backbones
(e.g., CycleMLP, ASMLP, MorphMLP) perform better than
Transformer-based Swin/Twins for smaller models, but lag
behind them for larger models. These manually designed to-
ken mixing methods within them leads to remarkable limi-
tations in exploring rich feature patterns, while the global-
scope attention in Transformers allows extracting better fea-
tures as model scaling up. In contrast, ATMNet shows its
strong capability and scalability on segmentation over dif-
ferent model scales, especially for the large-scale models.
The superiority of ATMNet lies in the flexibility of ATM,
which provides great capability to exploit sufficient features
from visual signals with various scales and deformations,
especially for the pixel-level tasks heavily relying on spatial
information interaction.

Object Detection

Settings We further evaluate the performance of our ATM-
Net on object detection task on the COCO (Lin et al. 2014)
dataset. We adopt three detection frameworks (Mask R-
CNN, RetinaNet and Cascade Mask R-CNN) and report the
1×/3× (MS) schedule results on COCO 2017 val. Detailed
configurations can be found in the Supplementary.

Results The object detection results for Mask R-CNN 1×
and 3×(MS) are shown in Table 3. Thanks to ATM’s flexibil-
ity and effectiveness for token mixing, our ATMNet obtains
promising results on the challenging object detection. ATM-

Semantic FPN Mask R-CNN
Backbone Neck FLOPS mIoU FLOPS APb

ResNet-50 FPN 45.9 37.3 259.8 38.0
ATMFPN 48.9 40.3↑3.0 298.9 39.9↑1.9

Swin-Tiny FPN 47.5 41.5 267.0 42.2
ATMFPN 47.5 43.7↑2.2 267.1 43.5↑1.3

ATMNet-T FPN 42.4 45.8 251.1 44.8
ATMFPN 41.4 46.5↑0.7 247.0 45.6↑0.8

ATMNet-L FPN 86.6 48.1 423.7 47.4
ATMFPN 86.6 48.3↑0.2 423.8 48.4↑1.0

Table 4: FPN/ATMFPN for semantic segmentation with Se-
mantic FPN and object detection with Mask R-CNN 1×.

Net achieves the state-of-the-art for the most model scales
with different detectors. For the Mask R-CNN 1× setting,
our different model variants outperform the correspond-
ing parameter-comparable Swin variants by +2.6/+1.9 and
+1.9/+1.9 mAPb/mAPm respectively, which demonstrates
the ATMNet’s superiority on dense prediction task, where
the input is usually with larger resolution. For the largest
models, ATMNet-L surpasses the state-of-the-art Twins-L
by +1.5 mAPb with -20% parameters. The comparisons with
RetinaNet 1×/3× and Cascade Mask R-CNN 1×/3× can be
found in the Supplementary.

ATMFPN
Our proposed ATM can be adopted not only for construct-
ing vision backbones, but also as an enhanced alternative
for convolution-based decoders. Based on FPN (Lin et al.
2017b), we build an ATMFPN neck with ATM, and report

2764



ID Model FLOPs INT COCO ADE20K
① Baseline 3.890 79.3 36.0 37.9
② ATMNet w/o PEG 3.924 82.0↑2.7 43.4↑7.4 45.6↑7.7
③ ATMNet 3.972 82.0↑2.7 43.6↑7.6 45.8↑7.9

Table 5: Ablation study. FLOPs are obtained on ImageNet-
1K. COCO: APb for RetinaNet 1×. ADE20K: mIoU for Se-
mantic FPN.

Figure 2: Comparisons of different offset configura-
tions on ImageNet-1K. ATMNet-xTA(♦): offset learn-
ing is not decoupled along different directions, i.e., the
selected contextual tokens are directly recomposed as
x̃=[X[i+oh1,j+ow1,1],X[i+oh2,j+ow2,2], . . . ]

T with the pre-
dicted offsets {ohc, owc}. ATMNet-xTB(⋆): the number of
selected contextual tokens per channel is extended from 1 to
3 for each direction.

the results on different backbones for object detection and
semantic segmentation in Table 4. With comparable compu-
tation cost, ResNet-50 with ATMFPN outperforms the naı̈ve
FPN by +3.0 mIoU/+1.9 APb for segmentation and object
detection respectively. ATMFPN also helps improve the per-
formance for the backbone of Swin and ATMNet. Thanks to
the flexibility, our proposed ATM is basically applicable for
extracting better visual feature representations.

Ablation Study and Analysis

Effectiveness of ATM Table 5 shows our ablation results.
In the baseline ① of ATMNet, all offsets are fixed to 0,
which means there is no spatial information interaction be-
tween different tokens in ①. This baseline achieves 79.3%
accuracy on ImageNet-1K while its performance on dense
prediction tasks is severely bounded due to the lack of ade-
quate spatial interaction. This also validates that token mix-
ing is sorely vital for dense prediction tasks. With our pro-
posed ATMNet w/o PEG (②), the classification accuracy
is improved by +2.7%, and the performance on the dense
prediction task is significantly improved by a large margin
(+7.4 mAPb on COCO and +7.7 mIoU on ADE20K). Our
proposed ATM brings sufficient information mixing to help
extract more powerful features with negligible additional
computation overhead. The PEG module is introduced for
providing position information for offset generation, which
helps a little for dense tasks.

Figure 3: Histograms of learned offsets for center token of
different layers, counted on all samples of ADE20K val.
layer i j: the jth layer of the ith stage.

Comparison with other offset configurations 1) Effec-
tiveness of directional decomposition. As show in Fig. 2,
our ATMNet-xT is clearly superior to ATMNet-xTA(♦) with
very close FLOPs, demonstrating the effectiveness of direc-
tional decomposition during predicting offsets. 2) The num-
ber of selected contextual tokens. The ATMNet-xTB(⋆)
with more contextual tokens for each query outperforms
ATMNet-xT by 0.2% but with +50% additional computa-
tion cost. This shows our ATM is a better trade-off between
the computation cost and the final performance as an effi-
cient and effective token mixer.

Analyses of learned offsets We investigate the distribu-
tions of the learned offsets via the histograms of offsets w.r.t.
the center token in Fig. 3. We observe: 1) As the depth in-
creases, the learned offsets expand to a larger range. This is
in line with the conclusion in (Raghu et al. 2021; Zhang et al.
2021) that local receptive fields in shallower layers are con-
ductive to training vision models, while the long-range in-
formation is required for deeper layers. 2) For a query token,
the learned offsets differ for different channels and such flex-
ibility enables efficient semantic-adaptive information inter-
action. 3) Besides the network depth, the learned offsets of
ATM are also adaptive to different datasets or tasks (shown
in the Supplementary), endowing ATMNet with higher flex-
ibility and better adaptivity. This observation indicates that
mixing tokens with hand-crafted and deterministic rules is
in fact insufficient to model the various distributions of dif-
ferent datasets. More results are in the Supplementary.

Conclusion
In this work, we propose an innovative token mixing mech-
anism, ATM, which actively and meticulously learns to fuse
content-adaptive contextual information in the global scope.
With the proposed basic operator, we build a general vi-
sion backbone ATMNet for various vision tasks and an
enhanced FPN, i.e., ATMFPN for dense prediction tasks.
ATMNet is capable of flexibly and effciently capturing di-
verse visual patterns. Comprehensive experiments demon-
strate our ATMNet is generally applicable and effective for
various vision tasks including image classification, object
detection and semantic segmentation.
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