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Abstract

Active fluids exhibit spontaneous flows with complex spatiotemporal struc-
ture, which have been observed in bacterial suspensions, sperm cells, cytoskeletal
suspensions, self-propelled colloids, and cell tissues. Despite occurring in the ab-
sence of inertia, chaotic active flows are reminiscent of inertial turbulence, and
hence they are known as active turbulence. Here, we survey the field, providing
a unified perspective over different classes of active turbulence. To this end, we
divide our review in sections for systems with either polar or nematic order, and
with or without momentum conservation (wet/dry). Comparing to inertial turbu-
lence, we highlight the emergence of power-law scaling with either universal or
non-universal exponents. We also contrast scenarios for the transition from steady
to chaotic flows, and we discuss the absence of energy cascades. We link this fea-
ture to both the existence of intrinsic length scales and the self-organized nature of
energy injection in active turbulence, which are fundamental differences with iner-
tial turbulence. We close by outlining the emerging picture, remaining challenges,
and future directions.
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1 Introduction
Turbulence is a ubiquitous phenomenon. It takes place in systems ranging from stars
and interstellar gas clouds to the atmosphere and the oceans, and down to the scales
of our daily activities such as breathing, cooking, and driving. Turbulence is central
in many scientific problems such as mixing processes and drag reduction, and also in
engineering applications. In physics, turbulence is at the crossroads of fluid dynamics
and statistical physics, challenging us to grasp their deep connections [1–3].

Inertial turbulence is controlled by the Reynolds number, which embodies the ratio
between inertial and viscous forces. At high Reynolds number, inertial effects desta-
bilize laminar flow and lead to the chaotic patterns of vortices and jets that we know
as turbulence. In a simplified picture of fully-developed inertial turbulence, the ex-
ternal driving injects kinetic energy at a certain scale, at which viscous dissipation is
negligible. Due to inertial effects, this energy is then transported across scales through
a so-called energy cascade, until it is dissipated by viscous effects at a very different
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scale. In the intermediate scales, known as the inertial range, the flow exhibits self-
similarity, and velocity correlations are scale-invariant — a property that is usually
studied via the energy spectrum of the flow. In seminal work in 1941, Kolmogorov
predicted that the energy spectrum follows a power law as a function of wave number,
E(q) ∼ q−5/3, with a universal exponent independent of both the external driving and
the fluid’s properties. This picture of turbulence, involving the emergence of universal
statistical properties of the flow from the combination of driving and nonlinearity, has
become a paradigm of non-equilibrium physics [1–6].

Two decades ago, seemingly chaotic, multiscale flows were discovered in polymer
solutions at low Reynolds numbers, for which inertial effects are negligible. In this
case, nonlinear elastic effects due to the polymer destabilize the laminar flow and lead
to so-called elastic turbulence [7]. This type of turbulence is controlled by either the
Deborah or the Weissenberg numbers, which compare elastic and viscous effects. The
flow exhibits scale-invariant properties parallel to those of inertial turbulence albeit
with different universal exponents [8, 9].

A few years after the discovery of elastic turbulence, spontaneous chaotic flows
at low Reynolds numbers were found in a bacterial suspension [10]. They were ini-
tially called bacterial turbulence. In the following decade, turbulent-like flows were
discovered and characterized in several other active fluids, often of biological ori-
gin (Fig. 1). Examples include different bacterial suspensions [10–20], swarming
sperm [21], suspensions of microtubules and molecular motors [22–28], tissue cell
monolayers [29–32], and suspensions of artificial self-propelled particles [33, 34].

The defining feature of active matter is that it is driven internally by its constituents,
which transform stored free energy into motion [35]. Active systems are prone to ex-
perience instabilities and self-organization phenomena, thus developing correlated col-
lective flows at large scales. When these self-driven flows become spatiotemporally
chaotic, the situation is analogous to inertial turbulence at a descriptive level. Hence,
these flows are commonly known as active turbulence [36], but also as mesoscale tur-
bulence or simply spatiotemporal chaos. Here, we use the name active turbulence.
Beyond this descriptive analogy, there has been recent progress in establishing to what
extent and in which sense active chaotic flows define new classes of turbulence. The
question, however, remains unsettled and requires further work.

A key difference between active and inertial turbulence is worth emphasizing from
the start. In inertial turbulence, the scale at which energy is injected is imposed by the
external driving. In contrast, active flows are autonomous, and the pattern of energy
injection is self-organized. In other words, the spectrum of energy injection is not an
input of the problem but part of its solution. In active matter, the energy input is ulti-
mately due to its microscopic components, be them self-propelled colloids, swimming
bacteria or molecular motors. However, their motion is correlated over much larger
scales. Therefore, in a continuum description of the system as a fluid, the energy input
into the hydrodynamic modes occurs at the characteristic scales of the flows. Conse-
quently, both energy injection and dissipation are peaked at similar scales, and hence
one may not expect energy cascades spanning an arbitrarily large range of scales as
in traditional turbulence. Nevertheless, the spectra of energy injection and dissipation
need not be exactly equal, thus allowing for energy transfer across scales. Finally, re-
gardless of energy cascades, active turbulence can exhibit scale-free correlations. As
we will discuss, the scaling regimes of active turbulence showcase similarities and dif-
ferences with inertial turbulence.

Here, we review the different types of active turbulence, in an effort to provide a
unified perspective. A key challenge is that, in contrast to the Navier-Stokes equation
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for inertial turbulence, in active turbulence there is no unique fundamental equation
but rather a variety of equations to describe diverse situations. In terms of approach,
there are two classes of equations: (i) phenomenological generalizations of the Navier-
Stokes equation, adding terms that inject energy and produce instabilities, and (ii) the
hydrodynamic equations for active liquid crystals, which derive from symmetries and
conservation laws. Moreover, active turbulence usually takes place in systems with
orientational order. Turbulence is qualitatively different in systems with either polar or
nematic order, and we have thus organized the review according to this distinction. In
each section, we also distinguish between ‘wet’ and ‘dry’ systems. Following the con-
vention in the active matter literature, dry systems do not conserve momentum, usually
due to the presence of a frictional substrate or environment, whereas wet systems are
dominated by hydrodynamic interactions and are described by momentum-conserving
equations. This distinction is not inherent to the physical system but to the model; a
system may be described as wet or dry depending on parameter values and observation
scales. Before discussing theory, we briefly describe experiments.

2 Experiments
Since its original discovery in bacterial suspensions, active turbulence has been found
in an increasing number of systems (Fig. 1). Some are based on active particles.
Microswimmers such as bacteria (Figs. 1a and 1d, sperm cells (Fig. 1b), and self-
propelled colloids (Fig. 1c) are polar entities with head-tail asymmetry. Often, these
particles align via both collisions and hydrodynamic interactions, leading to active po-
lar phases that exhibit collective motion, equivalent to the flocking of birds. However,
polar swimmers can potentially also align in a head-tail-symmetric way, leading to ne-
matic phases. Determining the type of cell alignment in dense bacterial suspensions
remains challenging. Other systems are clearly nematic, as revealed by the presence
of half-integer topological defects. For example, in dense monolayers, eukaryotic cells
have anisotropic shapes and align along a common axis (Fig. 1e). In these conditions,
cells lack a persistent polarity, and therefore align nematically. Similarly, under the
action of a depletant agent, polar cytoskeletal filaments known as microtubules align
nematically into bundles (Fig. 1f). The bundles are then actively sheared by kinesin
molecular motors that crosslink and walk on parallel filaments, producing active ne-
matic forces.

In addition to their varied symmetries, these systems also lie at different points
along the wet-dry spectrum. For example, bacteria in dense suspensions are thought
to interact mainly by steric repulsion and other short-range interactions such as lu-
brication forces [37, 38]. Hence, dense bacterial suspensions have been successfully
modeled as dry systems (Fig. 1a and Section 3.1). Yet, long-range hydrodynamic inter-
actions might dominate in more dilute suspensions, where bacterial turbulence has been
modeled in the wet limit (Fig. 1d and Sections 3.2 and 4.2). Respectively, cohesive cell
monolayers lie on solid substrates, with which they can exchange momentum by fric-
tion. Hence, they are often treated as dry systems. Yet, cell monolayers behave as wet
systems at length scales smaller than the hydrodynamic screening length λ =

√
η/ξ,

where η is the monolayer viscosity and ξ is the cell-substrate friction coefficient. This
length typically ranges from a few tens to several hundreds microns depending on the
strength of cell-cell and cell-substrate adhesion [39–41]; it can therefore encompass
from a few cells up to a few hundreds, placing the system in the wet-dry crossover
(Section 4.3). Finally, two-dimensional microtubule films can be assembled at an oil-
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minimize oxygen gradients that may cause anisotropic streaming
of the oxytactic B. subtilis bacteria (2). To study the effects of
dimensionality and boundary conditions, experiments were per-
formed with two different setups: quasi-2D microfluidic chambers
with a vertical heightH less or equal to the individual body length
of B. subtilis (approximately 5 μm) and 3D chambers with
H ≈ 80 μm (SI Appendix, Figs. S6 and S8 and Movies S7–S10).
To focus on the collective dynamics of the microorganisms rather
than the solvent flow (24, 50), we determined the mean local
motion of B. subtilis directly using particle imaging velocimetry
(PIV; see also SI Appendix). A typical snapshot from a quasi-2D
experiment is shown in Fig. 2A. As evident from the inset, local
density fluctuations that are important in the swarming/flocking
regime (48, 49, 51) become suppressed at very high filling fractions
(SI Appendix, Fig. S5). The corresponding flow fields (Fig. 2B and
SI Appendix, Fig. S8) were used for the statistical analysis pre-
sented below.

Continuum Theory. The analytical understanding of turbulence
phenomena hinges on the availability of simple yet sufficiently
accurate continuum models (27). Considerable efforts have been
made to construct effective field theories for active systems (15–
17, 19, 31, 32, 52–54), but most of them have yet to be tested
quantitatively against experiments. Many continuum models dis-
tinguish solvent velocity, bacterial velocity and/or orientational
order parameter fields, resulting in a prohibitively large number
of phenomenological parameters and making comparison with
experiments very difficult. Aiming to identify a minimal hydro-
dynamic model of self-sustained meso-scale turbulence, we study
a simplified continuum theory for incompressible active fluids,
by focusing solely on the experimentally accessible velocity field
vðt; rÞ. By construction, the theory will not be applicable to re-
gimes where density fluctuations are large (e.g., swarming or
flocking), but it can provide a useful basis for quantitative
comparisons with particle simulations and experiments at high
concentrations.

We next summarize the model equations; a detailed motiva-
tion is given in SI Appendix. Because our experiments suggest that
density fluctuations are negligible (Fig. 2A) we postulate incom-
pressibility, ∇ · v ¼ 0. The dynamics of v is governed by an incom-
pressible Toner–Tu equation (15–17), supplemented with a Swift–
Hohenberg-type fourth-order term (45),

ð∂t þ λ0v · ∇Þv ¼ −∇pþ λ1∇v2 − ðαþ βjvj2Þvþ Γ0∇2v

− Γ2ð∇2Þ2v; [1]

where p denotes pressure, and general hydrodynamic considera-
tions (52) suggest that λ0 > 1; λ1 > 0 for pusher-swimmers like B.
subtilis (see SI Appendix). The ðα; βÞ-terms in Eq. 1 correspond to
a quartic Landau-type velocity potential (15–17). For α > 0 and
β > 0, the fluid is damped to a globally disordered state with
v ¼ 0, whereas for α < 0 a global polar ordering is induced. How-
ever, such global polar ordering is not observed in suspensions of
swimming bacteria, suggesting that other instability mechanisms
prevail (53). A detailed stability analysis (SI Appendix) of Eq. 1
implies that the Swift–Hohenberg-type ðΓ0; Γ2Þ-terms provide the
simplest generic description of self-sustained meso-scale turbu-
lence in incompressible active flow: For Γ0 < 0 and Γ2 > 0,
the model exhibits a range of unstable modes, resulting in turbu-
lent states as shown in Fig. 2D. Intuitively, the ðΓ0; Γ2Þ-terms de-
scribe intermediate-range interactions, and their role in Fourier
space is similar to that of the Landau potential in velocity space
(SI Appendix). We therefore expect that Eq. 1 describes a wide
class of quasi-incompressible active fluids. To compare the con-
tinuum model with experiments and SPR simulations, we next
study traditional turbulence measures.

Velocity Structure Functions. Building on Kolmogorov’s seminal
work (55), a large part of the classical turbulence literature (27,
34, 36–38, 40, 41) focuses on identifying the distribution of the
flow velocity increments δvðt; r; RÞ ¼ vðt; rþ RÞ − vðt; rÞ. Their
statistics is commonly characterized in terms of the longitudinal
and transverse projections, δv‖ ¼ R̂ · δv and δv⊥ ¼ T̂ · δv, where
T̂ ¼ ðϵijR̂jÞ denotes a unit vector perpendicular to the unit shift
vector R̂ ¼ R∕jRj. The separation-dependent statistical moments
of δv‖ and δv⊥ define the longitudinal and transverse velocity
structure functions

Sn
‖;⊥ðRÞ ≔ hðδv‖;⊥Þni; n ¼ 1; 2;…: [2]

These functions have been intensely studied in turbulent high-Re
fluids (27, 34, 35, 41) but are unknown for active flow. For
isotropic steady-state turbulence, spatial averages h·i as in Eq. 2
become time-independent, and the moments Sn

‖;⊥ reduce to func-
tions of the distance R ¼ jRj.

Velocity distributions, increment distributions, and structure
functions for our numerical and experimental data are summar-
ized in Fig. 3. For the SPR model, the velocity statistics can be
calculated either from the raw particle data or from pre-binned
flow field data. The two methods produce similar results,
and Fig. 3 shows averages based on individual particle velocities.
Generally, we find that both the 2D SPR model and the 2D con-
tinuum simulations are capable of reproducing the experimen-
tally measured quasi-2D flow histograms (Fig. 3 A and B) and
structure functions (Fig. 3C). The maxima of the even transverse
structure S2n

⊥ signal a typical vortex size Rv, which is substantially
larger in 3D bulk flow than in quasi-2D bacterial flow. Unlike
their counterparts in high-Re Navier–Stokes flow (27, 34), the
structure functions of active turbulence exhibit only a small re-
gion of power law growth for ℓ ≲ R ≪ Rv and flatten at larger
distances (Fig. 3C).

Fig. 2. Experimental snapshot (A) of a highly concentrated, homogeneous
quasi-2D bacterial suspension (see also Movie S7 and SI Appendix, Fig. S8).
Flow streamlines vðt; rÞ and vorticity fields ωðt; rÞ in the turbulent regime,
as obtained from (B) quasi-2D bacteria experiments, (C) simulations of the
deterministic SPR model (a ¼ 5, ϕ ¼ 0.84), and (D) continuum theory. The
range of the simulation data in D was adapted to the experimental field
of view (217 μm × 217 μm) by matching the typical vortex size. (Scale bars,
50 μm.) Simulation parameters are summarized in SI Appendix.
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function. Panel a adapted from Reference 39, available for reuse under the CC-BY-3.0 license. Panel b adapted from Reference 12 with
permission. Panel c adapted from Reference 152, available for reuse under the CC-BY-4.0 license.

interactions via the transport coef"cients and may therefore be considered a hybrid model in be-
tween the realms of dry and wet active matter. Its applicability is only given, strictly speaking, in
the presence of a momentum sink such as a substrate. Its phenomenology is summarized in this
section (cf. Figures 7 and 8).

Equation 14 has one "xed point |P| = 0 corresponding to a disordered isotropic state and,
for α < 0, a family of "xed points with |P| > 0 describing dynamic states with local polar or-
der. A linear stability analysis shows that an unstable band of modes appears for #2 < 0 when
4α < |#2|2/|#4|, where the isotropic "xed point becomes unstable and is replaced by a square
vortex lattice for small values of λ0 (153). The periodicity of the lattice, i.e., the vortex size, is
given by the fastest-growing mode corresponding to a wavelength % !

√
#4/#2 obtained in the

linear stability analysis. The stability of the square lattice was assessed by amplitude equations in
Reference 154. In the presence of strong enough nonlinear advection, i.e., if the parameter λ0 is
larger than a critical value, the regular periodic vortex lattice is destabilized and a new chaotic
dynamic state with irregular vortex dynamics, called mesoscale turbulence, emerges. Mesoscale
turbulence is still characterized by a distinct length scale. In contrast to conventional turbulence
in Newtonian !uids at high Reynolds numbers, energy spectra at large scales are nonuniversal but
depend on "nite size effects and physical parameters (155). By increasing the advection strength λ0

even further, a new hexagonal vortex pattern arises that spontaneously breaks the clockwise and
anticlockwise rotation symmetry of the vortices. Distinct from classical pattern formation, the
dominant length scale describing the hexagonal vortex lattice is given by the neutral mode of the
dissipation from the linear stability analysis (154).

The mesoscale turbulence state—irregular collective motion of creation and annihilation of
vortices of a similar size—was found in suspensions of motile bacteria (69). A snapshot gallery (2D
slices of a 3D system) of measured !uid !ow (moving !uorescent tracer, via PTV), bacterial ve-
locity (PIV), and numerical simulations indicates good agreement (Figure 7a–d). In particular,
the extensive comparison of the dynamics of dense B. subtilis suspensions with numerical simula-
tions of Equation 14 in two and three spatial dimensions revealed quantitative agreement at the
level of velocity correlations, autocorrelation functions, and energy spectra by simply adjusting
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FIG. 5. (Color online) (a, b) Phase-contrast microscope images of fresh semen placed between two glass plates separated by 100 and
150 µm, respectively (movies S1 and S2 in Ref. [32]). (c) PIV field obtained from (a). (d) Normalized color-coded vorticity field ω′(x,y)/

√
"′

computed from (c) superposed with the instantaneous velocity streamlines (red lines). Scale bars represent 200 µm in a,b, c, and d.

light phase-contrast reveals visible structures of many scales
as shown in Figs. 5(a) and 5(b) (see movies S1 and S2 in
Ref. [32]). The observed whirlpools in Figs. 5(a) and 5(b)
are weakly sensitive to the cell gap H , but insensitive to the
orientation of the glass chamber with respect to gravity. This
dependence is quantitatively analyzed in Sec. III A. Hence
in the following, we will ignore the influence of gravity,
and the glass chamber is set up horizontally in the (x,y)
plane. The collective structures of the resulting swarming flow
can be quantitatively analyzed using PIV measurements (see
Sec. II D).

A. Integral scale

An example of 2D flow field u(x) = (u(x),v(x)) at a hori-
zontal position x ≡ (x,y) is provided in Fig. 5(c). Considering
u′(x) = u(x) − 〈u〉 the velocity fluctuations by subtraction of
the mean flow 〈u〉(t), Fig. 5(d) shows the vertical component of
the vorticity ω′(x) = ∇ × u′ = ∂xv

′(x) − ∂yu
′(x) normalized

by the enstrophy "′ = 〈|ω′2|/2〉 where 〈•〉 ≡
∫
S
•dS/S and

S is the total horizontal surface. We see that the largest flow
structure is typically smaller than the recorded windows but
much larger than individual cells (see movie S3 in Ref. [32]).

In order to further analyze this integral length scale the
spatiotemporal correlation functions were evaluated. This
provides insight into the structure cascade and its dynamics
[7–11]. The energy-to-enstrophy ratio defines an integral
length scale [8]

L$ =
√

E′
‖/"′, (1)

which is shown in Fig. 7(b). The relationship between "′ and
E′

‖ displays a linear trend, leading to a well-defined integral
length scale L$ that is independent of the initial energy of the
active flow. As expected, L$ is close to the observed maximum
whirlpool sizes. Table I shows L$ for different values of H . A

TABLE I. The integral length scale L$ for different gap spans of
the glass chambers H . N is the sample number and φ the evaluated
volume fraction.

N H (µm) L$ (µm) C (109cells/ml) φ(%)

6 100 126 ± 16 5.2 ± 1.1 50 ± 11
1 150 133 5.4 52
1 200 146 5.4 52
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FIG. 8. Fluctuating energy spectrum S(k) =
∫ 2π

0 |û′(k)|2k dkθ

averaged over the azimuthal angle dkθ in the wave-vector plane k
with polar representation k ≡ (k,kθ ) plotted versus the modulus of
k, k = |k|, using bilogarithmic scales. The wave-vector modulus k is
rescaled by a critical wavelength kc = 2π/L# based upon the integral
scale L#. Data gathered from six different experiments in the 100 µm
chamber are averaged over 2000 velocity fields reconstructed from
PIV. The spectrum displays three regimes: k within [kc, ka] where
the motion is well correlated and presents the k−3 power law (gray
dotted line); k > ka which defines the uncorrelated noise (at the
individual scale); and k < kc where we have at large scale coherent
but uncorrelated structures shown in Fig. 5.

fraction hardly affects the integral scale. This is confirmed by
the computation of the power spectrum provided in Fig. 9,
where it can be seen that the normalized spectrum amplitude
is increased at small wavelength and decreased at larger
wavelengths. This is the signature of a decrease of small-scale
velocity correlations and lower energy at small scales. The
effect of the dilution on the small-scale structures is also visible
in the movies (see movie S4 [32]).

Finally, it is important to report that semen dilution dras-
tically decreases the optical phase contrast of the suspension,
so that texture correlation computed by PIV is not reliable or
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FIG. 9. (Color online) Fluctuating energy spectrum S(k) versus
wave-vector modulus k for a single sample of concentration 4.4 × 109

cells/ml and its dilutions. , pure, , ×2 dilution, , ×4 dilution.

difficult to handle. In many cases, we have not been able to
get reliable PIV measurements from many diluted samples.
For dilution larger than ×8 the number of false vectors in
the resulting PIV field becomes larger than 10% so that
velocity field can no longer reliably be estimated. Hence, for
diluted samples, the statistics of the presented results are less
substantial than for pure semen ones.

C. Quasi-2D properties of the flow

The superposition of normalized instantaneous vorticity
and streamlines, presented in Fig. 5(d), are in good agreement,
qualitatively suggesting that the flow field is quasi-2D. This
fundamental feature of the flow is more deeply investigated
with two complementary indicators: (1) the ratio of the
in-plane 2D kinetic energy to the out-of-plane kinetic energy
and (2) the ratio between Lagrangian tracers’ curvilinear path
length in the observation plane to the microscope field depth.

(1) We first evaluate the mean 2D kinetic energy E‖ =
〈|u|2/2〉 = 〈(u2 + v2)/2〉 and examine the time over which
the semen energy decays. A slow decay is observed over a
few minutes. During recording sequences of 40 s, the kinetic
energy typically decreases by about 40%. Computing the 2D
divergence of the flow, we evaluate the out-of-plane fluctuating
kinetic energy. The divergence of the flow field can indeed
provide an estimate of the vertical velocity at the edges of the
microscope depth field. Since locally fluid incompressibility
holds, the divergence of the 2D flow components is

div u′ = −∂zw
′, (2)

where w′ is the vertical component of the fluctuating velocity
field. Integrating (2) in z from z = −δ/2 to z = +δ/2, where
δ is the microscope depth field, and assuming that the actual
measured in-plane velocity is the depth-average velocity leads
to

div
∫ δ/2

−δ/2
u′ dz = −δw′, (3)

where δw′ = w′(+δ/2) − w′(−δ/2) is the out-of-plane fluc-
tuation velocity component differences at the edges of the
microscope field depth δ. Thus, by computing the divergence
of the 2D PIV in-plane flow, we can estimate the fluctuating
component of the vertical flow and the vertical fluctuating
kinetic energy, E′

w = 〈|δw′|2/2〉. Comparing E′
w to E′

‖
averaged for all time over 3000 images and six different
experiments, we found that the ratio E′

w/E′
‖ = 8 × 10−3.

This is a clear indication that the out-of-plane to the in-
plane velocity ratio |w′|/|u′| ∼ 0.0845 ∼ 1/12 is typical of
quasi-2D flows. (1) We seed the semen with highly diluted
fluorescent particles (volume fraction equals 1.2 × 10−5). By
tracking the particle positions within the flow (see Fig. 1
and Sec. II D) we evaluate their curvilinear path length in
the horizontal plane &2D and then compute its average value
&2D for all particles denoted. We find &2D = 356 ± 80 µm,
which is much larger than the estimated microscope field
depth δ = 25 ± 10 µm, as δ/&2D ∼ 0.0844 ∼ 1/12. This is
consistent with the previous estimate |w′|/|u′| ∼ 1/12.
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where ~ω ¼ ω=ωrms is the rescaled vorticity with ωrms ¼
ffiffiffiffiffiffiffiffiffi
ω2h i

p

being the root-mean-square vorticity; Cq ¼ ΓðλqÞ=
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2λq % 3Þ

q
Γðλq % 1=2Þ& and Dq ¼ 1=ð2λq % 3Þ. Based on the

q-Gaussian distribution feature of vorticities, we can obtain the
distribution law of the enstrophy Ω (Fig. 2d), which obeys the
following q-Gaussian statistics:

~penstr ~Ω;q
" #

¼
Cq

ffiffiffiffi
~Ω

p
1þ Dq

~Ω
$ %λq

; ð4Þ

where ~Ω ¼ Ω= Ωh i is the rescaled enstrophy. In addition, to verify
whether the landscape of the energetic PDFs is affected by the PIV
calculation, we have varied the window size of PIV analysis (from 1.5
cell size to 3 cell size) and found that it has no marked effect on the
PDFs of the rescaled kinetic energy and the rescaled enstrophy
(Supplementary Fig. 3).

The kinetic energy and the enstrophy of the whole cell
monolayer can be quantified by E tð Þ ¼ E x; tð Þh ix and
Ω tð Þ ¼ Ω x; tð Þh ix , respectively, where (h ix stands for an average
over the entire FOV. Figure 2e plots the kinetic energy E(t) versus
the enstrophy Ω(t) at different time points during the experi-
mental duration. It shows that both E(t) and Ω(t) reduce over one

order of magnitude within 10 h, indicating a jamming transition
of cellular motions. Intriguingly, the enstrophy Ω(t) scales
linearly with the kinetic energy E(t) during the jamming
transition. This scaling behavior defines a conserved characteristic
length scale ξa ¼

ffiffiffiffiffiffiffiffiffi
E=Ω

p
, which stems from the force balance

between active and passive forces and roughly reflects the size of
vortices23,28,35. For the MDCK cell monolayer, our measurement
gives ξa ) 44:1 μm, approximately corresponding to a length
scale of two cells. We note that a similar scaling behavior of E
versus Ω has been found in other biological systems, such as
human bronchial epithelial cell monolayers23 and bacterial
suspensions28, revealing a potentially conserved energetic prop-
erty in these active matter systems.

We noted that previous theoretical studies have predicted some
universal scaling laws for active nematic turbulence36,37. For
example, there exists power scaling laws of the kinetic energy
spectrum and the enstrophy spectrum. We thus seek to examine
whether these energetic statistics hold for diverse cell monolayer
systems. To gain further insights into the energetic landscape of
mesoscale cell turbulence, we examine the energy spectrum E(k)
of collective cell flows. E(k) is related to the velocity field by
v r; tð Þj j2

& '
r;t¼ 2

Rþ1
0 E kð Þdk, and thus reflects the accumulation

of kinetic energy over different spatial scales. In 2D space, E(k)

Fig. 1 Turbulent cell dynamics in various cell monolayers. a Representative phase contrast images. MDCK for Madin Darby canine kidney cells, HUVEC
for human umbilical vein endothelial cells, C2C12 for C2C12 mouse myoblast cells, and NIH-3T3 for NIH-3T3 mouse embryo fibroblast cells.
b, c Representative fields of b the velocity and c the vorticity at t= 6 h. The color codes refer to the velocity magnitude and the vorticity intensity,
respectively, and the black arrows indicate the velocity vectors. Scale bars, 300 µm.
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distribution, which deviates remarkably from the classical
Maxwell–Boltzmann distribution. Further, Fig. 3d (Supplemen-
tary Fig. 5a, respectively) shows the energy spectra (enstrophy
spectra, respectively) in these different cell monolayer systems,
which demonstrate similar landscapes and scaling behaviors. We
linearly fit these curves at large wavenumbers in the log–log plots,
and extract the scaling exponent β. For these different cell
monolayers, β is bounded in a narrow range from 4.05 to 4.55
(Fig. 3d). These results reveal nearly common statistics of 2D
mesoscale cell turbulence.

Insensitivity of the energetics of mesoscale cell turbulence to
the substrate stiffness. Since the stiffness of the underlying
substrate plays a significant role in regulating cell–matrix adhe-
sion41–44 and cell migration16,45,46, we next explore how it affects
the energetic statistics of 2D mesoscale cell turbulence. We then
culture MDCK cells on various substrates of different Young’s
moduli, including polyacrylamide (PA) gel (!10 kPa), poly-
dimethylsiloxane (PDMS; !2 MPa), plastic (!1 GPa), and glass
(!70 GPa). Mesoscale cell turbulence can be observed in all
MDCK cell monolayers adhering to these substrates. Interest-
ingly, the energetic statistics of cell turbulence, including the

scaling behavior between kinetic energy and enstrophy, energy
distribution, and energy spectrum, are all insensitive to substrate
stiffness (Fig. 4). Although the substrate stiffness varies over six
orders, the characteristic length scale ξa just ranges from 38:5 μm
to 44:1 μm (Fig. 4a and Supplementary Fig. 6), which remains
~2 cell length. The PDFs of rescaled kinetic energy (Fig. 4b), as
well as rescaled enstrophy (Fig. 4c), collapse to a common
q-Gaussian distribution. Besides, the scaling exponent β at large
wavenumbers also remains within a narrow range of 4.43–4.55
(Fig. 4d and Supplementary Fig. 5b). These findings reveal that
the statistics of cell turbulence is almost independent of substrate
stiffness.

Numerical simulations. We use an active vertex model47 to
further probe the energetics of 2D mesoscale cell turbulence. In
this model, a cell monolayer is characterized by a polygonal
network, and cells are described by interconnected polygons

Fig. 3 Energetic statistics of mesoscale cell turbulence in monolayers of
different cell types. a The enstrophy scales linearly with the kinetic energy
over time. Different symbols refer to different cell types: red squares for
Madin Darby canine kidney cells (MDCK); blue circles for human umbilical
vein endothelial cells (HUVEC); purple upward-pointing triangles for C2C12
mouse myoblast cells (C2C12); and green downward-pointing triangles for
NIH-3T3 mouse embryo fibroblast cells (NIH-3T3). For each cell type, data
were collected from eight independent field of views (FOVs) and four
independent samples. The dashed lines represent linear fittings to Ω ¼
E=ξ2a with the characteristic length scales ξa;MDCK " 44:1 μm for MDCK and
ξa;HUVEC " 30:7 μm for HUVEC. The yellow sector represents the data set
area bounded by MDCK and HUVEC. b, c Representative probability
density functions (PDFs) of b the rescaled kinetic energy and c the rescaled
enstrophy. Values are rescaled by their average. The gray dashed curves
represent the Maxwell–Boltzmann distribution, while the black solid curves
refer to the fittings to q-Gaussian distributions (Eq. (2) for b and Eq. (4) for
c) with the Tsallis index q ¼ 1:2. d Representative energy spectra E(k). kc
represents the wavenumber at the scale of one cell. Inset: the scaling
exponent β for each cell type (symbols refer to different cell types). Error
bars: mean ± SD (for each cell type, data were collected from eight
independent FOVs and four independent samples).

Fig. 4 Energetic statistics of mesoscale cell turbulence in Madin Darby
canine kidney cell monolayers adhering to various substrates of different
stiffness. a The enstrophy scales linearly with the kinetic energy over time.
Different symbols refer to different substrates, including polyacrylamide
(PA) gels substrate (red squares), polydimethylsiloxane (PDMS) substrate
(blue circles), plastic substrate (upward-pointing triangles), and glass
substrate (downward-pointing triangles). The numbers refer to the Young’s
moduli of these substrates. Data were collected from some independent
field of views (FOVs): n= 10 for PA gel substrate, n= 9 for PDMS
substrate, n= 8 for plastic substrate, and n= 8 for glass substrate. The
dashed lines represent linear fittings to Ω ¼ E=ξ2a with the characteristic
length scales ξa; plastic " 44:1 μm for plastic substrate and ξa; PA gel "
30:7 μm for PA gel substrate. The yellow sector represents the data set
area (E, Ω) of Ω ¼ E=ξ2a with ξa bounded by ξa; plastic and ξa; PA gel.
b, c Representative probability density functions (PDFs) of b the rescaled
kinetic energy and c the rescaled enstrophy. Values are rescaled by their
average. The gray dashed curves represent the Maxwell–Boltzmann
distribution, while the black solid curves refer to the fittings to q-Gaussian
distributions (Eq. (2) for b and Eq. (4) for c) with the Tsallis index q ¼ 1:2.
d Representative energy spectra E(k). kc represents the wavenumber at the
scale of one cell. Inset: the scaling exponent β as a function of the Young’s
modulus of substrates (symbols refer to different substrates). Error bars:
mean ± SD. Data were collected from n independent FOVs and m
independent samples: n= 10 and m= 4 for PA gel substrate, n= 9 and
m= 4 for PDMS substrate, n= 8 and m= 4 for plastic substrate, and n= 8
and m= 4 for glass substrate.
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FIG. 2. (Color online) A trajectory of a Janus particle for 15
seconds overlaid on the snapshot at the last moment. Due to rotational
Brownian motion and frequent collisions of the particles, their
trajectories are not straight but curved. The polarities of the particles
are invisible with this magnification. The scale bar corresponds to
10 µm (see movie 1 of the Supplemental Material [33] ).

Captured movies were analyzed by detecting all the parti-
cles. After eliminating noise from the raw images, edges of the
particles were detected and then binary images were obtained
by filling holes of the edges. In order to separate the particles in
collision, morphological operations were repeatedly applied to
the binary images if necessary [32]. The magnification of ×40
enabled high accuracy of detection, although the observation
area was smaller compared with lower magnifications. All the
particles were successfully tracked as long as they stay inside
the frame (Fig. 2). However, the polarities of the particles are
not detectable with this magnification due to the thin layers
of chromium. The observation area was 120 µm × 90 µm,
which was centered at the sandwiched suspension with a
diameter of approximately 5 mm and far away enough from the
boundaries compared with the size of the particles to decrease
the effects of boundaries. The spatial resolution of images was
0.19 µm/pixel. Duration of the analyzed movie in this paper
was 30.7 seconds (6094 frames). Because the self-propulsion
speed was as high as 61.4 µm/s on average and the particles
were densely packed, sufficient statistics were obtained from
these data.

III. RESULTS

A. Power spectrum of velocity field

In the previous experimental studies on bacterial turbulence
[5,6] and the numerical studies on a turbulent state of self-
propelled rods [5,10], it was suggested that power laws in
the power spectra might be ubiquitous in the velocity fields
of the turbulent states of self-propelled particles. Such power
laws in power spectra are also found in fluid turbulence [34]
or elastic turbulence [35], although there are differences in
the mechanisms and the exponents of these turbulent states.
Power-law behavior has great significance because it might
work as a clue for finding scale-free structures or conserved
quantities. The velocity field of the Janus particles can be

regarded as a sort of turbulence, because it contains various
scales of vortices as we see in Appendix A. Therefore, it is
of considerable interest to examine what the power spectrum
looks like in the Janus particles system.

The power spectral density E(k) of the two-dimensional
velocity field of the Janus particles was obtained by applying
two-dimensional Fourier transformation to a velocity correla-
tion function C(R),

C(R) := 〈v(t,r) · v(t,r + R)〉t,r , (1)

E(k) = 2πk

∫
d2 R

(2π )2
e−ik·R〈v(t,r) · v(t,r + R)〉t,r , (2)

where v(t,r) is the velocity of the particle at the position r
at time t , R is the relative position vector from one particle
to the other, k is the wave vector in the Fourier space, and k
is the magnitude of k. All the vectors are two-dimensional.
The angle brackets mean the average over all the particle
pairs at relative position R at every time step. The number
of calculated pairs was in total 1.2 × 108. Because our system
is isotropic, the velocity correlation function C(R) does not
depend on the argument of R and we can replace C(R)
with C(R), where R is the magnitude of R (the inset of
Fig. 3). Because the distance between the centroids of the
particles must be larger than their diameters due to exclusive
interactions, the experimentally obtained velocity correlation
function has no data points at the distance between 0 and 3 µm.
We interpolated the velocity correlation function and obtained
the power spectrum according to Eq. (2) (Fig. 3) [36]. The
wave numbers in Fig. 2 are normalized by the wave number
2π/(3 µm), which corresponds to the particle diameter. The
actual calculation procedure is summarized in Appendix B.

The obtained power spectrum has a broad peak with a lower
slope from 0.2 to 0.4 in terms of the normalized wave number,
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FIG. 3. (Color online) Log-log plot of the power spectral density
of the velocity field of the Janus particles. The power spectrum was
calculated according to Eq. (2) using the experimentally obtained
velocity correlation function defined as Eq. (1). The velocity corre-
lation function C(R) is shown in the inset. The blue and green lines
are slopes with the exponents 0.5 and 1 respectively to guide the eye.
Wave number is normalized by the wave number corresponding to
the diameter of the Janus particle. The vertical axis is not normalized.
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FIG. 2. (Color online) A trajectory of a Janus particle for 15
seconds overlaid on the snapshot at the last moment. Due to rotational
Brownian motion and frequent collisions of the particles, their
trajectories are not straight but curved. The polarities of the particles
are invisible with this magnification. The scale bar corresponds to
10 µm (see movie 1 of the Supplemental Material [33] ).

Captured movies were analyzed by detecting all the parti-
cles. After eliminating noise from the raw images, edges of the
particles were detected and then binary images were obtained
by filling holes of the edges. In order to separate the particles in
collision, morphological operations were repeatedly applied to
the binary images if necessary [32]. The magnification of ×40
enabled high accuracy of detection, although the observation
area was smaller compared with lower magnifications. All the
particles were successfully tracked as long as they stay inside
the frame (Fig. 2). However, the polarities of the particles are
not detectable with this magnification due to the thin layers
of chromium. The observation area was 120 µm × 90 µm,
which was centered at the sandwiched suspension with a
diameter of approximately 5 mm and far away enough from the
boundaries compared with the size of the particles to decrease
the effects of boundaries. The spatial resolution of images was
0.19 µm/pixel. Duration of the analyzed movie in this paper
was 30.7 seconds (6094 frames). Because the self-propulsion
speed was as high as 61.4 µm/s on average and the particles
were densely packed, sufficient statistics were obtained from
these data.

III. RESULTS

A. Power spectrum of velocity field

In the previous experimental studies on bacterial turbulence
[5,6] and the numerical studies on a turbulent state of self-
propelled rods [5,10], it was suggested that power laws in
the power spectra might be ubiquitous in the velocity fields
of the turbulent states of self-propelled particles. Such power
laws in power spectra are also found in fluid turbulence [34]
or elastic turbulence [35], although there are differences in
the mechanisms and the exponents of these turbulent states.
Power-law behavior has great significance because it might
work as a clue for finding scale-free structures or conserved
quantities. The velocity field of the Janus particles can be

regarded as a sort of turbulence, because it contains various
scales of vortices as we see in Appendix A. Therefore, it is
of considerable interest to examine what the power spectrum
looks like in the Janus particles system.

The power spectral density E(k) of the two-dimensional
velocity field of the Janus particles was obtained by applying
two-dimensional Fourier transformation to a velocity correla-
tion function C(R),

C(R) := 〈v(t,r) · v(t,r + R)〉t,r , (1)

E(k) = 2πk

∫
d2 R

(2π )2
e−ik·R〈v(t,r) · v(t,r + R)〉t,r , (2)

where v(t,r) is the velocity of the particle at the position r
at time t , R is the relative position vector from one particle
to the other, k is the wave vector in the Fourier space, and k
is the magnitude of k. All the vectors are two-dimensional.
The angle brackets mean the average over all the particle
pairs at relative position R at every time step. The number
of calculated pairs was in total 1.2 × 108. Because our system
is isotropic, the velocity correlation function C(R) does not
depend on the argument of R and we can replace C(R)
with C(R), where R is the magnitude of R (the inset of
Fig. 3). Because the distance between the centroids of the
particles must be larger than their diameters due to exclusive
interactions, the experimentally obtained velocity correlation
function has no data points at the distance between 0 and 3 µm.
We interpolated the velocity correlation function and obtained
the power spectrum according to Eq. (2) (Fig. 3) [36]. The
wave numbers in Fig. 2 are normalized by the wave number
2π/(3 µm), which corresponds to the particle diameter. The
actual calculation procedure is summarized in Appendix B.

The obtained power spectrum has a broad peak with a lower
slope from 0.2 to 0.4 in terms of the normalized wave number,
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FIG. 3. (Color online) Log-log plot of the power spectral density
of the velocity field of the Janus particles. The power spectrum was
calculated according to Eq. (2) using the experimentally obtained
velocity correlation function defined as Eq. (1). The velocity corre-
lation function C(R) is shown in the inset. The blue and green lines
are slopes with the exponents 0.5 and 1 respectively to guide the eye.
Wave number is normalized by the wave number corresponding to
the diameter of the Janus particle. The vertical axis is not normalized.
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FIG. 8. (Color online) Color map of the vorticity. Various scales
of vortices with positive and negative vorticity coexist.
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APPENDIX A: VORTICITY MAP

In order to examine how turbulent the velocity field of
the Janus particles is, we make a color map of the vorticity
of the velocity field (Fig. 8). The velocity of each particle is
calculated from its trajectory, and then the time series of veloc-
ities are smoothed by taking a moving average over 21 frames.
Because the velocity is originally defined only on the centroids
of the particles, we apply a Gaussian filter to obtain the velocity
field. The standard deviation of the applied Gaussian filter is
chosen to be the radius of the Janus particles. Various scales of
vortices with positive and negative vorticity coexist and evolve
in time (see Supplemental Material movie 5 [33]).

APPENDIX B: CALCULATION OF SPECTRUM

When we consider an isotropic two-dimensional system, the
velocity correlation function defined as Eq. (1) is independent
of the angle of R, leading to

C(R) = 〈v(t,r) · v(t,r + R)〉t,r . (B1)

The calculation of its power spectral density defined in Eq. (2)
is the following:

E(k) = k

2π

∫
d2 R e−ik·RC(R) (B2)

= k

2π

∫ ∞

0
RdR

∫ 2π

0
dφ e−ik·RC(R), (B3)

where φ is the argument of R. We can calculate the part of
the integrand with φ by using the periodicity of the cosine
function,

∫ 2π

0
dφ e−ik·R =

∫ 2π

0
dφ e−ikR cos (φ−α) (B4)

=
∫ 2π

0
dφ e−ikR cos φ (B5)

= 2πJ0(kR), (B6)

where α is the argument of k and J0 is the zeroth-order
Bessel function of the first kind. By substituting Eq. (B6)
into Eq. (B3), we obtain the final result,

E(k) = k

∫ ∞

0
dR C(R)R J0(kR). (B7)

We can calculate the power spectrum of an isotropic velocity
field from its correlation function by using Eq. (B7).

APPENDIX C: FLOW FIELD AND HYDRODYNAMIC
INTERACTION

Janus particles are interacting with each other through
hydrodynamic and electrostatic interactions. The electrostatic
interaction is quite complicated, because electrical double lay-
ers around the particles have their own characteristic charging
time and thus their thickness depends on the frequency of the
applied ac electric field. On the other hand, the hydrodynamic
interaction can be understood by solving the Stokes equation.
From the hydrodynamic interactions, we can conclude that
the parallel configuration of two Janus particles moving in the
same direction is unstable.

We can solve the Stokes equation to obtain the flow field
around a Janus particle by assuming slip velocity on the
particle, if we neglect the nearby electrodes and only consider
one Janus particle suspending in fluid. The flow around the
Janus particle is dominated by Stokesian dynamics, because
the Reynolds number of the flow is as low as 10−4. On the
surface of the Janus particle, the fluid is driven by ICEO. The
ICEO flow on the polystyrene side is considerably weaker
than that on the metal side, so it is justified to neglect the
flow on the polystyrene side [27]. We regard that this ICEO
flow exists only in the vicinity of the surface, which is the
thin electric double layer with the thickness of its Debye
length [26]. We replace the nonslip boundary condition on
the metal hemisphere to the slip boundary condition with the
slip velocity calculated in a theoretical study [27].

The method to solve the equation is the following [45].
First, we consider the particle frame, in which the particle is at
rest. We take spherical coordinates as depicted in Fig. 9. The
slip velocity on the surface of the Janus particle us is given as

us(θ,φ) =
{

− 9
8U0(sin 2θ cos2 φ θ̂ − sin θ sin 2φ φ̂) (|θ | < π/2),

0 (|θ | ! π/2),
(C1)
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FIG. 1: Bacterial turbulence. (a) The flow field of a suspension of wild-type E. coli at concentration n = 80n0. The arrows
indicate local velocities from PIV. Scale bar: 20 µm. (b) The corresponding streamlines and the vorticity field (ω), highlighting
the characteristic features of bacterial turbulence including intermittent jets and vortices (see also SI Video 1). (c) The
corresponding velocity orientational correlation field c. The area fraction of red regions with c ≥ 0.9, φ, is used to quantify the
transition to bacterial turbulence. φ < 1 even for this highly turbulent state due to the presence of vortex cores and interstices.

In addition to the phase dynamics, the kinetic pathway
towards the collective motion of swimming microorgan-
isms also remains largely unexplored. Kinetics of a phase
transition affect both the transition rate and the struc-
ture of intermediate states and is of great importance
in understanding the phase dynamics of equilibrium sys-
tems [42, 43]. It plays an equally important role in a
nonequilibrium phase transition, which can provide the
crucial information on the rise of the nonequilibrium or-
der from interparticle interactions and reveal the nature
of the transition. Hence, resolving the route to bacterial
turbulence—a premier example of collective motions—
addresses the central question in active matter: how do
random self-propelled units self-organize into large-scale
dynamic structures?

II. RESULTS AND DISCUSSION

In this study, we fill the important knowledge gap and
experimentally investigate both the phase dynamics and
kinetic route of bacterial turbulence. Our study provides
not only the most comprehensive phase diagram of the
flow of 3D bulk bacterial suspensions hitherto, but also
the detailed quantitative characterization of the kinetics
of the bacterial turbulent transition. In order to explore
a large control parameter space, we use three different
strains of E. coli in our experiments, which all share sim-
ilar body plans (Materials and methods). In addition
to a wild-type strain (BW25113), a strain of tumblers
with cheZ knocked out (RP1616) is used as immobile
passive particles. Moreover, a strain of light-powered
E. coli (BW25113 with proteorhodopsin, a light-driven
transmembrane proton pump [45, 46]) is also used, whose
mobility varies with green light of different intensities
(Fig. S1 in [44]). By mixing different strains of bacteria
and controlling light intensity, we explore the phase dia-

gram of 3D bacterial flows spanned by the total bacterial
concentration, the average swimming speed of bacteria
and the number fraction of active swimmers (Materials
and methods).

A. Transition to bacterial turbulence

The collective motion of bacteria leads to bacterial tur-
bulence with characteristic intermittent jets and whirls,
whose lengths and speeds are much larger than those
of individual bacteria (Figs. 1a, b and SI Video 1). To
quantify bacterial turbulence, we calculate the orienta-
tional correlation of local velocities, ci = minj=1..4(v̂i·v̂j),
where v̂i is the unit vector along the direction of the local
velocity at position i and v̂j is the direction of the veloc-
ity in one of its four neighboring boxes adopted in Parti-
cle Imaging Velocimetry (PIV) (Materials and methods).
We identify a local region with high velocity orientational
correlation when c ≥ 0.9. The area fraction of these
highly correlated regions, φ, is used in our study as an
order parameter quantifying the rise of bacterial turbu-
lence (Fig. 1c). This choice is similar to that used in
previous studies [28]. Quantitatively similar results can
also be obtained if the average orientational correlation
〈c〉 or the velocity correlation length is used as the order
parameter (Fig. S2 in [44]). In addition to the velocity
orientational order, we also measure the strength of bac-
terial flows via energy density, E = 〈v2

x + v2
y〉/2, where

"v = (vx, vy) is the in-plane velocity of 3D bacterial flows.
A transition to bacterial turbulence is observed as we

increase bacterial concentration, n (Fig. 2a). A sharp in-
crease of φ occurs around n = 10n0, where n0 = 8 × 108

ml−1 is the E. coli concentration at OD600 of 1.0 close
to the natural bacterial concentration in the intestinal
tract [47]. The transition point, nc, is then obtained
from the inflection point of the error function fitting of

4

-3

FIG. 4. Energy spectra E(k) of bacterial suspensions of dif-
ferent volume fractions �. Shaded region indicates the range
over which the scaling exponent � is fitted. The black dashed
line indicates a power-law scaling of �3. The red dashed line
is a fitting of E(k) at � = 0.8% using Eq. 1. In the fit-
ting, the bacterial number density n = �Vb and the dipole
length ld = 1.9 µm are from experiments, whereas the dipole
strength  = 100 µm3/s and the regularization length ✏ = 14
µm are taken as fitting parameters. In comparison,  = 300.8
µm3/s from experiments (see text). Inset: Scaling exponent
of E(k), �, as a function of �. Dashed line indicates � = 3.3.

such a correlation also manifests as GNF at small length
scales in low-concentration bacterial suspensions.

Quantitatively, the strength of GNF can be measured
by the scaling exponent ↵ following �N/

p
N ⇠ N↵.

↵ = 0 for equilibrium systems obeying the central limit
theorem, whereas the upper bound ↵ = 0.5 corresponds
to a system with maximal density fluctuations. We ex-
tract ↵ by fitting the experimental curves with the power-
law relation for l < �(�). The inset of Fig. 3 shows ↵ as
a function of �, where ↵ remains approximately constant
at 0.30 ± 0.03 for all �. In contrast, ↵ decreases with
decreasing � for 2D GNF. Notably, for high � � 5.6%, ↵
stabilizes to 0.33± 0.01, quantitatively agreeing with the
theoretical prediction of ↵ = 1/3 for 3D suspensions of
polar-ordered self-propelled particles with hydrodynamic
interactions [20]. Hence, our experiments for the first
time quantitatively verify the theory of the GNF of 3D
wet active fluids. More interestingly, our study shows
that the same GNF scaling persists in low-concentration
suspensions at small scales even before the emergence of
the large-scale orientational order discussed in the theory.

B. Energy spectra

Similar to GNF, the velocity field of active turbulence
also shows scale-dependent structures, which are often
characterized by the energy spectrum of turbulent flows,

E(k) (Appendix B 3). E(k) measures the kinetic en-
ergy density at di↵erent scales in terms of wavenumber
k = 2⇡/l. It is related to the mean kinetic energy density
by hv2i/2 = hv2

x + v2
yi/2 =

R1
0

E(k)dk. Figure 4 shows
E(k) of bacterial suspensions at di↵erent �. In the dilute
suspension of � = 0.8%, E(k) is independent of k in the
small k limit and then decreases at high k. The oscilla-
tion observed at high k likely arises from PIV errors due
to the small number of bacteria in each PIV box of low-�
suspensions. With increasing �, E(k) at small k increases
sharply. In the turbulent regime at high �, the kinetic en-
ergy is concentrated at scales much larger than the size of
single bacteria, even though the turbulent flow is entirely
driven by the swimming of single bacteria. The overall
trend of E(k) with increasing � qualitatively agrees with
the results from large-scale particle simulations [26, 38].

E(k) of low-� suspensions with uncorrelated pusher
swimmers has been predicted [38]

E(k) = 4⇡n2


1

3
+

cos(kld)

(kld)2
� sin(kld)

(kld)3

�
✏4k2

l2d
K2

2 (k✏),

(1)
where n is the number density of bacteria,  is the dipole
strength and ld is the dipolar length of E. coli. ✏ is the dis-
tance for the regularization of the dipolar flow field. K2

is the modified Bessel function of the second kind. The
fitting of Eq. 1 agrees well with our experimental E(k)
at low � in the small k limit (Fig. 4). Particularly, Eq. 1
dictates that E(k) is flat as k ! 0, a key feature con-
firmed by our experiments. A simple dimensional analy-
sis can show that the plateau E(k) at the small k follows
limk!0 E(k) ⇠ n2 for uncorrelated swimmers of density
n. The dipole strength can be estimated as  = Fld/⌘ =
⇠v0ld/⌘ = 300.8 µm3/s, where ⌘ is the viscosity of the
bu↵er. ⇠ is the drag coe�cient of a bacterial body orien-
tated along its major axis, which can be calculated based
on the body geometry ⇠ = 3⇡⌘wb [1 � (1 � lb/wb)/5] [50].
ld = 1.9 µm is taken from direct measurements [51].
Thus, limk!0 E(k) ⇡ 7 ⇥ 102 µm3/s, within the same
order of magnitude of our experiments. The discrepancy
between Eq. 1 and experiments at large k may arise from
the strong bacterial correlation at small length scales as
shown by density fluctuations as well as the PIV errors.

We also extract the scaling exponent � of E(k) ⇠ k��

by fitting the energy spectra at intermediate k, where a
significant change of E(k) with � occurs and E(k) ex-
hibits good power-law relations. � increases with � and
saturates around 3 at high � > �c (Fig. 4 inset). The sat-
urated scaling exponent quantitatively agrees with pre-
vious experimental results obtained from the active tur-
bulence of high-concentration sperm suspensions and B.
subtilis suspensions at large k [32, 43]. At small k, E(k)
reported in Ref. [32] decreases with decreasing k and ex-
hibits a non-monotonic trend, di↵erent from the result in
this work. Such discrepancy is attributed to the confined
geometry used in [32], which limits the size of turbulent
vortices and thus leads to a decrease of E(k) at small k
[36]. The large system size of L = 140 µm of our exper-

Bacterial suspension (E. coli, 3D)d

Figure 1 Experiments on active turbulence. For each experimental system, the three
columns show an image of the system, a snapshot of the vorticity field (with either streamlines
or the flow field in some cases), and the measured energy spectrum E(k) ∝ k〈|ṽk|2〉. a,
Adapted from [15]. b, Adapted from [21]. c, Adapted from [33]. The inset shows the velocity
correlation function from which the spectrum is obtained. d, Adapted from [19, 20]. The
different spectra correspond to different volume fractions of bacteria. The inset shows the
scaling exponent of the spectrum as a function of the volume fraction. e, Adapted from [32].
The different spectra correspond to different cell types. f, Adapted from [24, 28].

5



water interface. Hence, there is also a viscous screening length `v = η/ηext that results
from comparing the two-dimensional viscosity η of the active nematic film with the
three-dimensional viscosity ηext of the external passive fluids. This system therefore
also exhibits a wet-dry crossover [28] (Fig. 1f and Section 4.3).

Over the years, experiments have characterized some statistical properties of active
turbulence. For example, motivated by theoretical predictions, experiments on active
nematics have measured the vortex area distribution [24, 25, 28, 31]. The central quan-
tity common to all types of active turbulence is the velocity correlation function or,
equivalently, the kinetic energy spectrum, which has been measured in most experi-
mental systems [15, 20, 21, 28, 32, 33] (Fig. 1). Although these results are very infor-
mative, further measurements are required to fully characterize the scaling regimes and
sort systems into classes. Moreover, additional relevant quantities have not been mea-
sured yet. These quantities include the spectra of energy transfer across scales, as well
as the spectra of elastic energy in nematics. In addition to revealing this crucial infor-
mation, future research might also discover active turbulence in other systems such as
vibrated granular rods [42], actin-based liquid crystals [43, 44], cilia-driven flows on
bronchial tissues [45], and nematic bacterial colonies migrating on substrates [46].

3 Polar fluids
The observation of turbulent-like flows in bacterial suspensions motivated the first the-
ories of active turbulence. Early approaches were based on models of microswimmer
suspensions, which lead to continuum equations for three coupled fields: swimmer
concentration, coarse-grained polarity, and fluid velocity [47,48]. Simulations of these
equations produced chaotic flows similar to the experiments.

Later work modelled bacterial turbulence ignoring the solvent flow, i.e. treating
the system as dry. For example, simulations of self-propelled particles, either rods
with steric interactions [15, 49] or points with competing alignment interactions [50],
yield a number of phases including irregular vortex patterns similar to the experimen-
tal observations (Fig. 2a). At the continuum level, Wensink, Dunkel, et al. proposed
a phenomenological description based on a single equation for the velocity field of
the bacterial suspension [15, 16, 51]. This equation, known as the Toner-Tu-Swift-
Hohenberg (TTSH) equation, has been the main focus of research in dry polar active
turbulence [15, 16, 51–54]. We discuss its origin and main results in Sections 3.1.1
and 3.1.2. More recently, the TTSH equation has been derived by explicit coarse-
graining from microscopic models of microswimmers [55, 56]. Thus, this work con-
nects the initial wet suspension model with the final dry description in terms of a single
velocity field. Finally, in Section 3.1.3 we discuss other types of turbulence in models
of active polar liquid crystals with friction.

Work in wet polar systems has mainly been in two directions. One follows the phe-
nomenological approach of the TTSH equation to propose a momentum-conserving
extension of the Navier-Stokes equation. We discuss it in Section 3.2.1. The other di-
rection involves further work on active polar suspensions, which uncovered the mech-
anisms of the transition to spatiotemporal chaos in these systems. We discuss it in
Section 3.2.2.
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from a numerical solution of Eq. 1, are shown in Fig. 2. We have
averaged over nearly 10,  000 time steps and (using spherical sym-
metry) summed over modes with the same absolute value (hence
the scalar form of the index k). Note that the advective non-
linearity (green curve) is positive for small k but negative for
intermediate k and, thus, transports energy from small to large
scales. This inverse energy flow is characteristic of 2D turbulent
systems and is due to the constraint of enstrophy conservation
(34). In the present context, it takes energy from the intermedi-
ate wave numbers where the Γ0 injection (magenta) is particu-
larly active and transports it to larger scales where it acts as an
energy source together with the Ekman term (red) for α< 0. At
large length scales, those two sources are balanced by the cubic
nonlinearity (dark blue) acting as an energy sink for most wave
numbers. This energy sink, however, has a nonlinear character
that allows it to dynamically adjust its magnitude to the sources
for a balance to be reached. Additionally, at large scales the
contribution of the cubic interaction is roughly proportional to
the energy spectrum Ek. Later, we show that those two features
can be derived from a closure approximation for small k.

Spectral Shell Decomposition. To further assess the energy transfer
among different length scales, we divide the spectral space into
circular shells SJ, J = 1,2,3, . . . centered at k= 0 and comple-
mentary to each other. (Details on the shell decomposition are
given in SI Text, section S2). Moreover, we introduce the pro-
jection operator PJ defined as

ðPJ f ÞðrÞ := hf ðrÞiJ :=
X

k∈SJ

fkeik · r. [4]

Such a decomposition will prove useful for analyzing the non-
linear terms. The latter terms represent interactions between
different spatial scales and computing the contributions arising
from different shells will help us gain physical insights into those

interactions, e.g., the degree of locality of the energy transfer.
Additionally, examining the symmetry of the shell-to-shell coupling
corresponding to the quadratic and cubic nonlinearity will reveal
their completely different physical character.
Applying PJ to Eq. 1 leads to an evolution equation for the energy

EJ :=
R !!hviJ

!!2dΩ=ð2V Þ of shell SJ, which reads

∂EJ

∂t
=
X

k∈SJ

γðkÞ  jvkj2 +
X

I

"
Tadv
IJ +Tcub

IJ

#
, [5]

with the advective and cubic nonlinear terms

Tadv
IJ =−λ0

X

k

hvkiJ ·F
$
ðv ·∇ÞhviI

%
ðkÞ , [6a]

Tcub
IJ =−β

X

k

hvkiJ ·F
n
jvj2hviI

o
ðkÞ , [6b]

where F denotes the Fourier transform (SI Text, section S1).
The terms Tadv

IJ and Tcub
IJ characterize the transfer of energy

between shells SI and SJ. Due to the incompressibility constraint,
Tadv
IJ is antisymmetric with respect to the shell indexes I and J (SI

Text, section S2); i.e., summing over both indexes gives zero. This
shows that (in an incompressible system) the Navier–Stokes
nonlinearity neither injects nor dissipates energy but only redis-
tributes it among the different shells SJ. A numerical computa-
tion of Tadv

IJ is shown in Fig. 3A. In addition to verifying the
antisymmetry, this also illustrates the direction of energy transfer
in spectral space. There is a combination of forward and inverse
energy flows. At intermediate wave numbers, there is mainly a
local forward energy flux; see the areas next to the diagonal in
Fig. 3A, where red above the diagonal and blue below it indicate
a flow from smaller to larger k. Additionally, there is also a
nonlocal inverse energy flow dominating at small wave numbers,
represented by the smaller side branches in Fig. 3A. The green
curve in Fig. 2 represents the cumulative effect of the 2D struc-
tures seen in Fig. 3A. The Navier–Stokes nonlinearity extracts
energy from the intermediate wave numbers (negative contribu-
tion) and supplies it to both smaller (inverse cascade) and larger
(forward cascade) wave numbers. The contribution of the cubic
nonlinearity, on the other hand, is symmetric (Tcub

IJ =Tcub
JI ) and,

therefore, cannot be viewed as a term that simply transfers energy
from one shell to another in a conservative manner (SI Text,
section S2). Because every second-rank tensor can be uniquely
decomposed into a symmetric and an antisymmetric part, Tcub

IJ
represents physical processes that are fundamentally distinct from
a Navier–Stokes-like energy transfer. It does not redistribute en-
ergy between different shells. Instead, it couples different shells,
say SI and SJ, in such a way that the same amount of energy is
either produced in both shells or extracted from them. The nu-
merical results displayed in Fig. 3B clearly show that the entries of
Tcub
IJ are dominated by the diagonal terms whereas the off-diagonal

terms are negligibly small. Note that the curve in Fig. 3B, Inset
resembles closely the blue line in Fig. 2. Moreover, the diagonal
entries are negative, indicating the dissipative nature of the cubic
nonlinearity. This feature together with the different physical in-
terpretation of the cubic term represents the central result that the
shell-to-shell decomposition yields. Both aspects are essential for
the cubic interaction and should be captured by a successful
closure approximation.

Cubic Damping Term. To make progress beyond a numerical anal-
ysis, we seek an approximate solution for the stationary state of
the energy spectrum. The analysis is complicated by the fact that
the right-hand side of Eq. 2 involves third- and fourth-order ve-
locity correlation functions, Tadv

k and Tcub
k . Formulating evolu-

tion equations for those gives rise to even higher-order velocity
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Fig. 2. Spectral form of the different terms in Eq. 2 in the statistically sta-
tionary state (time averaged): red, Ekman term; green, advective non-
linearity Tadv

k ; dark blue, cubic interaction T cub
k ; magenta, k2 injection; light

blue, k4 dissipation; black, time average of the left-hand side. A positive
contribution means that at these wave numbers the corresponding term acts
as an energy source, and a negative value indicates an energy sink. We see
that the nonlinear terms change their character, depending on the scale
under consideration. At large and intermediate scales, however, the cubic
nonlinearity is always dissipative. Additionally, the Ekman term can provide
energy injection or dissipation, depending on the sign of α. For the simu-
lation presented here the latter was set to ατ=−1; i.e., it represents an ad-
ditional energy source.
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cascade. Eq. 8 together with the integral expression for ωk given
above simplifies the equations and provides a closure that, in the
limit of an energy/enstrophy cascade, i.e., constant energy/enstro-
phy flux, yields the Kraichnan solution for the energy spectrum in
the energy/enstrophy inertial range (37). As evident from Fig. 2,
however, at large scales there is no range of wave numbers for
which the advective nonlinearity is zero; i.e., there is no inertial
range. Furthermore, as shown in Fig. 4, the spectral form of the
ratio Πadv

k =ðkEkÞ is constant at large scales, i.e., ωk =ωc = const,
implying that the physics in our case are qualitatively different
from what we have in classical Navier–Stokes turbulence, both
2D and 3D. The result that the characteristic frequency is not a
function of the local wave number but instead a constant over a
wide range in spectral space implies a kind of synchronization of
the large-scale structures. Such a synchronization deviates consid-
erably from the classical ωk ∝ k2=3 scaling and requires nonlocal
interactions involved in the inverse energy cascade at small k as
seen in Fig. 3A. In addition, in classical turbulence models large
spatial scales are more energetic than smaller ones, giving the
former the potential to shear and distort the latter. For Eq. 1,
however, the energy spectrum Ek first increases with k up to some
maximum and then decreases again; see the red curve in Fig. 2.
Hence, for the spectral region we are interested in, the larger
scales are not able to shear the smaller ones. In summary, our
investigation of the advective nonlinearity in this model shows that
at small wave numbers there is a distinct constant frequency ωc
that controls the energy transfer at large scales. Incorporating this
insight into our analysis will provide us with an approximate solu-
tion for the energy spectrum at those scales.

Variable Spectral Exponent. In the statistically stationary state,
time-averaging Eq. 2 yields zero on the left-hand side,

−2
!
α+ 4βEtot +Γ0k2 −Γ2k4

"
Ek −

dΠadv
k

dk
= 0, [9]

where we have already incorporated the result of the quasi-normal
approximation for the cubic damping term. Discarding the term
proportional to Γ2 that is negligible at small wave numbers and
using Eq. 8 with constant ωk, we arrive at a differential equation
for the energy spectrum Ek, the solution of which reads

Ek = eE0kδ exp
#
−

Γ0

λ0ωc
k2
$
, [10]

where eE0 is a constant of integration and the exponent is given by
δ= ð2α+ 8βEtotÞ=ðλ0ωcÞ− 1. Eq. 10 shows that at small wave
numbers (k→ 0) the energy spectrum behaves as a power law.
However, the exponent δ of this power law is not universal but
depends (directly and indirectly) on various system parameters.
Qualitatively, a stronger dissipation, i.e., a positive α and a higher
factor of βEtot, will induce a steeper power law. An example is
shown in Fig. 5, where the numerical solution of Eq. 1 is pre-
sented for two different values of α. In both cases, the system
exhibits clear power-law spectra over more than one order of
magnitude in wave-number space, and it is evident that our
model predicts the correct qualitative dependence of the spectral
exponents. A quantitative test of our semianalytical result can be
undertaken by carrying out numerical simulations for different
values of α. We note in passing that such a parameter scan
requires that there are always enough instabilities to drive the
turbulence and that statistical homogeneity and isotropy are en-
sured. The linear growth rate of the most unstable mode equals
−α+Γ2

0=ð4Γ2Þ, which gives an upper bound on the variation of α
once Γ0 and Γ2 have been set. On the other hand, the term −αv in
Eq. 1 tries to destroy the statistical isotropy of the system. Thus,
the energy injected by the α term must be considerably smaller
than that injected by the Γ2 term, which imposes a lower bound
on α. The result from such a parameter scan of the numerical
solution of Eq. 1 is displayed in Fig. 6, where every point is
obtained by fitting a power law on the left end of the energy
spectrum. The data from our investigation show a linear depen-
dence of the slope δ on the parameter α, which agrees with the
expression for δ provided by our model. Further numerical sim-
ulations indicate that the dependence of the slope on the
strength of the cubic interaction β is qualitatively the same but
quantitatively much weaker. This can be due to the factor βEtot
appearing in δ. Stability analysis shows that for λ0 =Γ0 =Γ2 = 0
and α< 0 an ordered state arises with a constant velocity field
and total system energy Etot ∝ 1=β. If a similar scaling applies also
in the presence of the advective nonlinearity and the other linear
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Fig. 5. Time-averaged energy spectrum Ek for two different values of ατ at
the two ends of the parameter domain supporting the turbulent regime,
ατ=−1 and ατ= 4. There is a clear power law at large scales and the effect of
varying the strength of the Ekman term manifests as a variation of its slope.
In general, more intensive energy injection (via the parameter α) leads to a
less steep slope of the power law, more energy at each scale, and a peak of
the energy spectrum that occurs at smaller wave numbers.
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Fig. 6. Variation of the slope of the energy spectrum at small wave num-
bers with respect to α. The steepness of the power law at large scales varies
continuously with the driving parameter in a nearly linear fashion as long as
there is a statistically isotropic turbulent regime. The parameter range where
this applies derives from the condition that there are enough linear insta-
bilities to sustain the turbulence: i.e., α should not be too large, and the
energy injection from the Ekman term should not dominate over the Γ0

term; i.e., α should not be too negative.
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HEIDENREICH, DUNKEL, KLAPP, AND BÄR PHYSICAL REVIEW E 94, 020601(R) (2016)

TABLE I. Summary of key parameters and typical values
for B. subtilis suspensions used in our simulations, based on
Refs. [5,7,9,24,55].

Value Description

! 5.0 µm Effective dipole length
d 0.7 µm Width of the swimmer
v0 1 . . . 40 µm/s Self-propulsion speed
φ 0.4 Volume fraction
τ 0.01 . . . 104 s Rotational noise
g0 0.001 . . . 103 µm−1 Strength of polar alignment
ε 3.0 µm Polar alignment range
D 0 . . . 5 µm Diffusion length

Dε ρg0v0πε4/8 Alignment diffusion
λ( τ/16 Tumbling parameter
f0 2πµ0!v0 Force density
µ∗ µ0[1 − (k1 − k2)φ + k3φ] Effective bulk viscosity
λP 2Dετ ε−2 Advection strength
γ2 !2/8 HD stress expansion coeff.
γ4 !4/192 HD stress expansion coeff.
A !d Projected 2D area
λP∗ µµ−1

∗ λP Scaled advection strength

Parameters. The coefficients in Eqs. (11)–(16) can be
directly estimated from experiments [5,7,9,24,55]: In our
simulations, we consider parameters for B. subtilis bacteria
(cell length ∼5 µm and diameter d = 0.7 µm) at high vol-
ume fractions φ ∼ 0.4 [5,55], assuming an effective dipole
length ! = br = 5 µm (Fig. 1) and for the projected 2D
area A ≈ d!. The typical force f0 exerted by a single
microswimmer on the surrounding fluid can be estimated as
f0 ≈ 2πµ0!v0 [55], with a typical bacterial self-propulsion
speed v0 ∈ [1,50] µm/s [22]. In the collision-dominated high-
density regime relevant to our study, translational Brownian
motion is negligible, D & Dε , and we set D = 0 in our
simulations. We further assume that steric short-range inter-
actions occur predominantly on the length scale of the cell
body, ε = 3 µm. After fixing the above parameter values, we
can analyze how changes of the rotational relaxation time
τ , alignment strength g0, and swimming activity v0 affect the
collective dynamics, by exploring the range τ ∼ 0.01 . . . 104 s,
g0 = 0.001 . . . 103 µm−1, and v0 = 1 . . . 40 µm/s (Fig. 3).
The typical coefficient values used to model the collective
dynamics of B. subtilis are summarized in Table I.

Bifurcation diagram. The field equations (11) and (14)
have two fixed points: the disordered state (u = 0,P = 0)
and the polar ordered state (u = 0,P '= 0). Upon varying τ
and g0, these homogeneous states become unstable when
the alignment strength becomes subcritical relative to the
rotational noise [red line in Fig. 3(a)]. Conversely, strong
alignment stabilizes the homogeneous polar state. Defining
τ as the control parameter and the collective velocity vc =
v0

√
α/β as an order parameter, the dotted black line of the

state diagram yields the bifurcation diagram of Fig. 3(b).
Upon linearizing Eq. (14) about the isotropic state, the typical
vortex length follows from the most unstable mode, which
has a wavelength , ∼ 2π

√
2-2/(−-0). As is evident from

the explicit expressions for -0, -2, and α in Eq. (16), this
vortex scale is set by the competition between hydrodynamic

FIG. 3. Bifurcation analysis. (a) State diagram for rodlike pusher
obtained by a linear stability analysis of Eq. (14) for typical B. subtilis
parameters (see text) and v0 = 10 µm/s. The red line demarcates
the transition to mesoscale turbulence. The blue line signals the
transition between disorder and polar order. The purple star indicates
the parameters used in simulations. (b) Bifurcation diagram of the
collective velocity vc = v0

√
α/β for rodlike pushers along the dotted

black line (g0 = 0.04 µm−1) in (a). Red dashed lines depict unstable
branches, whereas blue solid lines depict stable branches. Inset: Zoom
to τ ∈ [0,3] s.

flows, steric alignment interactions, activity, and rotational
noise. In particular, in the limit of strong self-propulsion
and high concentrations, the theoretically predicted vortex
size approaches a constant value in agreement with recent
experiments [5,7].

Simulations versus experiment. To study the full nonlinear
behavior, we solved Eqs. (11) and (14) numerically with
a pseudospectral code that combines antialiasing with an
operator splitting technique [5]. Simulations were performed
using 128 × 128 grid points for an area of 101 × 101 µm2

and time steps of dt = 10−3 s, respectively, for a total
simulation time in the range [500,1000] s. For typical B.
subtilis parameters and τ = 4.5 s, g0 = 0.04 µm−1, we obtain
flow structures that agree with recently measured flow fields
[Fig. 4(a)]. The simulations of the full nonlinear equations

FIG. 4. (a) Representative snapshot of the effective velocity
field w from a simulation with typical B. subtilis parameters (see
text), v0 = 20 µm/s and g0 = 0.04 µm−1. Scale bar corresponds
to 20 µm and color coding indicates vorticity normalized by the
maximum. (b) In dense suspensions, the characteristic vortex size
approaches a constant value at large activity. This prediction agrees
qualitatively with recent measurements [7] in 3D (inset) (reproduced
with permission) and 2D bacterial suspensions [22], which report a
typical velocity correlation length of ∼20 µm (cf. Fig. 5 in Ref. [22]).
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cascade. Eq. 8 together with the integral expression for ωk given
above simplifies the equations and provides a closure that, in the
limit of an energy/enstrophy cascade, i.e., constant energy/enstro-
phy flux, yields the Kraichnan solution for the energy spectrum in
the energy/enstrophy inertial range (37). As evident from Fig. 2,
however, at large scales there is no range of wave numbers for
which the advective nonlinearity is zero; i.e., there is no inertial
range. Furthermore, as shown in Fig. 4, the spectral form of the
ratio Πadv

k =ðkEkÞ is constant at large scales, i.e., ωk =ωc = const,
implying that the physics in our case are qualitatively different
from what we have in classical Navier–Stokes turbulence, both
2D and 3D. The result that the characteristic frequency is not a
function of the local wave number but instead a constant over a
wide range in spectral space implies a kind of synchronization of
the large-scale structures. Such a synchronization deviates consid-
erably from the classical ωk ∝ k2=3 scaling and requires nonlocal
interactions involved in the inverse energy cascade at small k as
seen in Fig. 3A. In addition, in classical turbulence models large
spatial scales are more energetic than smaller ones, giving the
former the potential to shear and distort the latter. For Eq. 1,
however, the energy spectrum Ek first increases with k up to some
maximum and then decreases again; see the red curve in Fig. 2.
Hence, for the spectral region we are interested in, the larger
scales are not able to shear the smaller ones. In summary, our
investigation of the advective nonlinearity in this model shows that
at small wave numbers there is a distinct constant frequency ωc
that controls the energy transfer at large scales. Incorporating this
insight into our analysis will provide us with an approximate solu-
tion for the energy spectrum at those scales.

Variable Spectral Exponent. In the statistically stationary state,
time-averaging Eq. 2 yields zero on the left-hand side,

−2
!
α+ 4βEtot +Γ0k2 −Γ2k4

"
Ek −

dΠadv
k

dk
= 0, [9]

where we have already incorporated the result of the quasi-normal
approximation for the cubic damping term. Discarding the term
proportional to Γ2 that is negligible at small wave numbers and
using Eq. 8 with constant ωk, we arrive at a differential equation
for the energy spectrum Ek, the solution of which reads

Ek = eE0kδ exp
#
−

Γ0

λ0ωc
k2
$
, [10]

where eE0 is a constant of integration and the exponent is given by
δ= ð2α+ 8βEtotÞ=ðλ0ωcÞ− 1. Eq. 10 shows that at small wave
numbers (k→ 0) the energy spectrum behaves as a power law.
However, the exponent δ of this power law is not universal but
depends (directly and indirectly) on various system parameters.
Qualitatively, a stronger dissipation, i.e., a positive α and a higher
factor of βEtot, will induce a steeper power law. An example is
shown in Fig. 5, where the numerical solution of Eq. 1 is pre-
sented for two different values of α. In both cases, the system
exhibits clear power-law spectra over more than one order of
magnitude in wave-number space, and it is evident that our
model predicts the correct qualitative dependence of the spectral
exponents. A quantitative test of our semianalytical result can be
undertaken by carrying out numerical simulations for different
values of α. We note in passing that such a parameter scan
requires that there are always enough instabilities to drive the
turbulence and that statistical homogeneity and isotropy are en-
sured. The linear growth rate of the most unstable mode equals
−α+Γ2

0=ð4Γ2Þ, which gives an upper bound on the variation of α
once Γ0 and Γ2 have been set. On the other hand, the term −αv in
Eq. 1 tries to destroy the statistical isotropy of the system. Thus,
the energy injected by the α term must be considerably smaller
than that injected by the Γ2 term, which imposes a lower bound
on α. The result from such a parameter scan of the numerical
solution of Eq. 1 is displayed in Fig. 6, where every point is
obtained by fitting a power law on the left end of the energy
spectrum. The data from our investigation show a linear depen-
dence of the slope δ on the parameter α, which agrees with the
expression for δ provided by our model. Further numerical sim-
ulations indicate that the dependence of the slope on the
strength of the cubic interaction β is qualitatively the same but
quantitatively much weaker. This can be due to the factor βEtot
appearing in δ. Stability analysis shows that for λ0 =Γ0 =Γ2 = 0
and α< 0 an ordered state arises with a constant velocity field
and total system energy Etot ∝ 1=β. If a similar scaling applies also
in the presence of the advective nonlinearity and the other linear
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Fig. 5. Time-averaged energy spectrum Ek for two different values of ατ at
the two ends of the parameter domain supporting the turbulent regime,
ατ=−1 and ατ= 4. There is a clear power law at large scales and the effect of
varying the strength of the Ekman term manifests as a variation of its slope.
In general, more intensive energy injection (via the parameter α) leads to a
less steep slope of the power law, more energy at each scale, and a peak of
the energy spectrum that occurs at smaller wave numbers.
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Fig. 6. Variation of the slope of the energy spectrum at small wave num-
bers with respect to α. The steepness of the power law at large scales varies
continuously with the driving parameter in a nearly linear fashion as long as
there is a statistically isotropic turbulent regime. The parameter range where
this applies derives from the condition that there are enough linear insta-
bilities to sustain the turbulence: i.e., α should not be too large, and the
energy injection from the Ekman term should not dominate over the Γ0

term; i.e., α should not be too negative.
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cascade. Eq. 8 together with the integral expression for ωk given
above simplifies the equations and provides a closure that, in the
limit of an energy/enstrophy cascade, i.e., constant energy/enstro-
phy flux, yields the Kraichnan solution for the energy spectrum in
the energy/enstrophy inertial range (37). As evident from Fig. 2,
however, at large scales there is no range of wave numbers for
which the advective nonlinearity is zero; i.e., there is no inertial
range. Furthermore, as shown in Fig. 4, the spectral form of the
ratio Πadv

k =ðkEkÞ is constant at large scales, i.e., ωk =ωc = const,
implying that the physics in our case are qualitatively different
from what we have in classical Navier–Stokes turbulence, both
2D and 3D. The result that the characteristic frequency is not a
function of the local wave number but instead a constant over a
wide range in spectral space implies a kind of synchronization of
the large-scale structures. Such a synchronization deviates consid-
erably from the classical ωk ∝ k2=3 scaling and requires nonlocal
interactions involved in the inverse energy cascade at small k as
seen in Fig. 3A. In addition, in classical turbulence models large
spatial scales are more energetic than smaller ones, giving the
former the potential to shear and distort the latter. For Eq. 1,
however, the energy spectrum Ek first increases with k up to some
maximum and then decreases again; see the red curve in Fig. 2.
Hence, for the spectral region we are interested in, the larger
scales are not able to shear the smaller ones. In summary, our
investigation of the advective nonlinearity in this model shows that
at small wave numbers there is a distinct constant frequency ωc
that controls the energy transfer at large scales. Incorporating this
insight into our analysis will provide us with an approximate solu-
tion for the energy spectrum at those scales.

Variable Spectral Exponent. In the statistically stationary state,
time-averaging Eq. 2 yields zero on the left-hand side,

−2
!
α+ 4βEtot +Γ0k2 −Γ2k4

"
Ek −

dΠadv
k

dk
= 0, [9]

where we have already incorporated the result of the quasi-normal
approximation for the cubic damping term. Discarding the term
proportional to Γ2 that is negligible at small wave numbers and
using Eq. 8 with constant ωk, we arrive at a differential equation
for the energy spectrum Ek, the solution of which reads

Ek = eE0kδ exp
#
−

Γ0

λ0ωc
k2
$
, [10]

where eE0 is a constant of integration and the exponent is given by
δ= ð2α+ 8βEtotÞ=ðλ0ωcÞ− 1. Eq. 10 shows that at small wave
numbers (k→ 0) the energy spectrum behaves as a power law.
However, the exponent δ of this power law is not universal but
depends (directly and indirectly) on various system parameters.
Qualitatively, a stronger dissipation, i.e., a positive α and a higher
factor of βEtot, will induce a steeper power law. An example is
shown in Fig. 5, where the numerical solution of Eq. 1 is pre-
sented for two different values of α. In both cases, the system
exhibits clear power-law spectra over more than one order of
magnitude in wave-number space, and it is evident that our
model predicts the correct qualitative dependence of the spectral
exponents. A quantitative test of our semianalytical result can be
undertaken by carrying out numerical simulations for different
values of α. We note in passing that such a parameter scan
requires that there are always enough instabilities to drive the
turbulence and that statistical homogeneity and isotropy are en-
sured. The linear growth rate of the most unstable mode equals
−α+Γ2

0=ð4Γ2Þ, which gives an upper bound on the variation of α
once Γ0 and Γ2 have been set. On the other hand, the term −αv in
Eq. 1 tries to destroy the statistical isotropy of the system. Thus,
the energy injected by the α term must be considerably smaller
than that injected by the Γ2 term, which imposes a lower bound
on α. The result from such a parameter scan of the numerical
solution of Eq. 1 is displayed in Fig. 6, where every point is
obtained by fitting a power law on the left end of the energy
spectrum. The data from our investigation show a linear depen-
dence of the slope δ on the parameter α, which agrees with the
expression for δ provided by our model. Further numerical sim-
ulations indicate that the dependence of the slope on the
strength of the cubic interaction β is qualitatively the same but
quantitatively much weaker. This can be due to the factor βEtot
appearing in δ. Stability analysis shows that for λ0 =Γ0 =Γ2 = 0
and α< 0 an ordered state arises with a constant velocity field
and total system energy Etot ∝ 1=β. If a similar scaling applies also
in the presence of the advective nonlinearity and the other linear
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Fig. 5. Time-averaged energy spectrum Ek for two different values of ατ at
the two ends of the parameter domain supporting the turbulent regime,
ατ=−1 and ατ= 4. There is a clear power law at large scales and the effect of
varying the strength of the Ekman term manifests as a variation of its slope.
In general, more intensive energy injection (via the parameter α) leads to a
less steep slope of the power law, more energy at each scale, and a peak of
the energy spectrum that occurs at smaller wave numbers.
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Fig. 6. Variation of the slope of the energy spectrum at small wave num-
bers with respect to α. The steepness of the power law at large scales varies
continuously with the driving parameter in a nearly linear fashion as long as
there is a statistically isotropic turbulent regime. The parameter range where
this applies derives from the condition that there are enough linear insta-
bilities to sustain the turbulence: i.e., α should not be too large, and the
energy injection from the Ekman term should not dominate over the Γ0

term; i.e., α should not be too negative.

15052 | www.pnas.org/cgi/doi/10.1073/pnas.1509304112 Bratanov et al.

Rescaled wave number

cascade. Eq. 8 together with the integral expression for ωk given
above simplifies the equations and provides a closure that, in the
limit of an energy/enstrophy cascade, i.e., constant energy/enstro-
phy flux, yields the Kraichnan solution for the energy spectrum in
the energy/enstrophy inertial range (37). As evident from Fig. 2,
however, at large scales there is no range of wave numbers for
which the advective nonlinearity is zero; i.e., there is no inertial
range. Furthermore, as shown in Fig. 4, the spectral form of the
ratio Πadv

k =ðkEkÞ is constant at large scales, i.e., ωk =ωc = const,
implying that the physics in our case are qualitatively different
from what we have in classical Navier–Stokes turbulence, both
2D and 3D. The result that the characteristic frequency is not a
function of the local wave number but instead a constant over a
wide range in spectral space implies a kind of synchronization of
the large-scale structures. Such a synchronization deviates consid-
erably from the classical ωk ∝ k2=3 scaling and requires nonlocal
interactions involved in the inverse energy cascade at small k as
seen in Fig. 3A. In addition, in classical turbulence models large
spatial scales are more energetic than smaller ones, giving the
former the potential to shear and distort the latter. For Eq. 1,
however, the energy spectrum Ek first increases with k up to some
maximum and then decreases again; see the red curve in Fig. 2.
Hence, for the spectral region we are interested in, the larger
scales are not able to shear the smaller ones. In summary, our
investigation of the advective nonlinearity in this model shows that
at small wave numbers there is a distinct constant frequency ωc
that controls the energy transfer at large scales. Incorporating this
insight into our analysis will provide us with an approximate solu-
tion for the energy spectrum at those scales.

Variable Spectral Exponent. In the statistically stationary state,
time-averaging Eq. 2 yields zero on the left-hand side,

−2
!
α+ 4βEtot +Γ0k2 −Γ2k4

"
Ek −

dΠadv
k

dk
= 0, [9]

where we have already incorporated the result of the quasi-normal
approximation for the cubic damping term. Discarding the term
proportional to Γ2 that is negligible at small wave numbers and
using Eq. 8 with constant ωk, we arrive at a differential equation
for the energy spectrum Ek, the solution of which reads

Ek = eE0kδ exp
#
−

Γ0

λ0ωc
k2
$
, [10]

where eE0 is a constant of integration and the exponent is given by
δ= ð2α+ 8βEtotÞ=ðλ0ωcÞ− 1. Eq. 10 shows that at small wave
numbers (k→ 0) the energy spectrum behaves as a power law.
However, the exponent δ of this power law is not universal but
depends (directly and indirectly) on various system parameters.
Qualitatively, a stronger dissipation, i.e., a positive α and a higher
factor of βEtot, will induce a steeper power law. An example is
shown in Fig. 5, where the numerical solution of Eq. 1 is pre-
sented for two different values of α. In both cases, the system
exhibits clear power-law spectra over more than one order of
magnitude in wave-number space, and it is evident that our
model predicts the correct qualitative dependence of the spectral
exponents. A quantitative test of our semianalytical result can be
undertaken by carrying out numerical simulations for different
values of α. We note in passing that such a parameter scan
requires that there are always enough instabilities to drive the
turbulence and that statistical homogeneity and isotropy are en-
sured. The linear growth rate of the most unstable mode equals
−α+Γ2

0=ð4Γ2Þ, which gives an upper bound on the variation of α
once Γ0 and Γ2 have been set. On the other hand, the term −αv in
Eq. 1 tries to destroy the statistical isotropy of the system. Thus,
the energy injected by the α term must be considerably smaller
than that injected by the Γ2 term, which imposes a lower bound
on α. The result from such a parameter scan of the numerical
solution of Eq. 1 is displayed in Fig. 6, where every point is
obtained by fitting a power law on the left end of the energy
spectrum. The data from our investigation show a linear depen-
dence of the slope δ on the parameter α, which agrees with the
expression for δ provided by our model. Further numerical sim-
ulations indicate that the dependence of the slope on the
strength of the cubic interaction β is qualitatively the same but
quantitatively much weaker. This can be due to the factor βEtot
appearing in δ. Stability analysis shows that for λ0 =Γ0 =Γ2 = 0
and α< 0 an ordered state arises with a constant velocity field
and total system energy Etot ∝ 1=β. If a similar scaling applies also
in the presence of the advective nonlinearity and the other linear
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Fig. 5. Time-averaged energy spectrum Ek for two different values of ατ at
the two ends of the parameter domain supporting the turbulent regime,
ατ=−1 and ατ= 4. There is a clear power law at large scales and the effect of
varying the strength of the Ekman term manifests as a variation of its slope.
In general, more intensive energy injection (via the parameter α) leads to a
less steep slope of the power law, more energy at each scale, and a peak of
the energy spectrum that occurs at smaller wave numbers.
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Fig. 6. Variation of the slope of the energy spectrum at small wave num-
bers with respect to α. The steepness of the power law at large scales varies
continuously with the driving parameter in a nearly linear fashion as long as
there is a statistically isotropic turbulent regime. The parameter range where
this applies derives from the condition that there are enough linear insta-
bilities to sustain the turbulence: i.e., α should not be too large, and the
energy injection from the Ekman term should not dominate over the Γ0

term; i.e., α should not be too negative.
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minimize oxygen gradients that may cause anisotropic streaming
of the oxytactic B. subtilis bacteria (2). To study the effects of
dimensionality and boundary conditions, experiments were per-
formed with two different setups: quasi-2D microfluidic chambers
with a vertical heightH less or equal to the individual body length
of B. subtilis (approximately 5 μm) and 3D chambers with
H ≈ 80 μm (SI Appendix, Figs. S6 and S8 and Movies S7–S10).
To focus on the collective dynamics of the microorganisms rather
than the solvent flow (24, 50), we determined the mean local
motion of B. subtilis directly using particle imaging velocimetry
(PIV; see also SI Appendix). A typical snapshot from a quasi-2D
experiment is shown in Fig. 2A. As evident from the inset, local
density fluctuations that are important in the swarming/flocking
regime (48, 49, 51) become suppressed at very high filling fractions
(SI Appendix, Fig. S5). The corresponding flow fields (Fig. 2B and
SI Appendix, Fig. S8) were used for the statistical analysis pre-
sented below.

Continuum Theory. The analytical understanding of turbulence
phenomena hinges on the availability of simple yet sufficiently
accurate continuum models (27). Considerable efforts have been
made to construct effective field theories for active systems (15–
17, 19, 31, 32, 52–54), but most of them have yet to be tested
quantitatively against experiments. Many continuum models dis-
tinguish solvent velocity, bacterial velocity and/or orientational
order parameter fields, resulting in a prohibitively large number
of phenomenological parameters and making comparison with
experiments very difficult. Aiming to identify a minimal hydro-
dynamic model of self-sustained meso-scale turbulence, we study
a simplified continuum theory for incompressible active fluids,
by focusing solely on the experimentally accessible velocity field
vðt; rÞ. By construction, the theory will not be applicable to re-
gimes where density fluctuations are large (e.g., swarming or
flocking), but it can provide a useful basis for quantitative
comparisons with particle simulations and experiments at high
concentrations.

We next summarize the model equations; a detailed motiva-
tion is given in SI Appendix. Because our experiments suggest that
density fluctuations are negligible (Fig. 2A) we postulate incom-
pressibility, ∇ · v ¼ 0. The dynamics of v is governed by an incom-
pressible Toner–Tu equation (15–17), supplemented with a Swift–
Hohenberg-type fourth-order term (45),

ð∂t þ λ0v · ∇Þv ¼ −∇pþ λ1∇v2 − ðαþ βjvj2Þvþ Γ0∇2v

− Γ2ð∇2Þ2v; [1]

where p denotes pressure, and general hydrodynamic considera-
tions (52) suggest that λ0 > 1; λ1 > 0 for pusher-swimmers like B.
subtilis (see SI Appendix). The ðα; βÞ-terms in Eq. 1 correspond to
a quartic Landau-type velocity potential (15–17). For α > 0 and
β > 0, the fluid is damped to a globally disordered state with
v ¼ 0, whereas for α < 0 a global polar ordering is induced. How-
ever, such global polar ordering is not observed in suspensions of
swimming bacteria, suggesting that other instability mechanisms
prevail (53). A detailed stability analysis (SI Appendix) of Eq. 1
implies that the Swift–Hohenberg-type ðΓ0; Γ2Þ-terms provide the
simplest generic description of self-sustained meso-scale turbu-
lence in incompressible active flow: For Γ0 < 0 and Γ2 > 0,
the model exhibits a range of unstable modes, resulting in turbu-
lent states as shown in Fig. 2D. Intuitively, the ðΓ0; Γ2Þ-terms de-
scribe intermediate-range interactions, and their role in Fourier
space is similar to that of the Landau potential in velocity space
(SI Appendix). We therefore expect that Eq. 1 describes a wide
class of quasi-incompressible active fluids. To compare the con-
tinuum model with experiments and SPR simulations, we next
study traditional turbulence measures.

Velocity Structure Functions. Building on Kolmogorov’s seminal
work (55), a large part of the classical turbulence literature (27,
34, 36–38, 40, 41) focuses on identifying the distribution of the
flow velocity increments δvðt; r; RÞ ¼ vðt; rþ RÞ − vðt; rÞ. Their
statistics is commonly characterized in terms of the longitudinal
and transverse projections, δv‖ ¼ R̂ · δv and δv⊥ ¼ T̂ · δv, where
T̂ ¼ ðϵijR̂jÞ denotes a unit vector perpendicular to the unit shift
vector R̂ ¼ R∕jRj. The separation-dependent statistical moments
of δv‖ and δv⊥ define the longitudinal and transverse velocity
structure functions

Sn
‖;⊥ðRÞ ≔ hðδv‖;⊥Þni; n ¼ 1; 2;…: [2]

These functions have been intensely studied in turbulent high-Re
fluids (27, 34, 35, 41) but are unknown for active flow. For
isotropic steady-state turbulence, spatial averages h·i as in Eq. 2
become time-independent, and the moments Sn

‖;⊥ reduce to func-
tions of the distance R ¼ jRj.

Velocity distributions, increment distributions, and structure
functions for our numerical and experimental data are summar-
ized in Fig. 3. For the SPR model, the velocity statistics can be
calculated either from the raw particle data or from pre-binned
flow field data. The two methods produce similar results,
and Fig. 3 shows averages based on individual particle velocities.
Generally, we find that both the 2D SPR model and the 2D con-
tinuum simulations are capable of reproducing the experimen-
tally measured quasi-2D flow histograms (Fig. 3 A and B) and
structure functions (Fig. 3C). The maxima of the even transverse
structure S2n

⊥ signal a typical vortex size Rv, which is substantially
larger in 3D bulk flow than in quasi-2D bacterial flow. Unlike
their counterparts in high-Re Navier–Stokes flow (27, 34), the
structure functions of active turbulence exhibit only a small re-
gion of power law growth for ℓ ≲ R ≪ Rv and flatten at larger
distances (Fig. 3C).

Fig. 2. Experimental snapshot (A) of a highly concentrated, homogeneous
quasi-2D bacterial suspension (see also Movie S7 and SI Appendix, Fig. S8).
Flow streamlines vðt; rÞ and vorticity fields ωðt; rÞ in the turbulent regime,
as obtained from (B) quasi-2D bacteria experiments, (C) simulations of the
deterministic SPR model (a ¼ 5, ϕ ¼ 0.84), and (D) continuum theory. The
range of the simulation data in D was adapted to the experimental field
of view (217 μm × 217 μm) by matching the typical vortex size. (Scale bars,
50 μm.) Simulation parameters are summarized in SI Appendix.
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pressibility, ∇ · v ¼ 0. The dynamics of v is governed by an incom-
pressible Toner–Tu equation (15–17), supplemented with a Swift–
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where p denotes pressure, and general hydrodynamic considera-
tions (52) suggest that λ0 > 1; λ1 > 0 for pusher-swimmers like B.
subtilis (see SI Appendix). The ðα; βÞ-terms in Eq. 1 correspond to
a quartic Landau-type velocity potential (15–17). For α > 0 and
β > 0, the fluid is damped to a globally disordered state with
v ¼ 0, whereas for α < 0 a global polar ordering is induced. How-
ever, such global polar ordering is not observed in suspensions of
swimming bacteria, suggesting that other instability mechanisms
prevail (53). A detailed stability analysis (SI Appendix) of Eq. 1
implies that the Swift–Hohenberg-type ðΓ0; Γ2Þ-terms provide the
simplest generic description of self-sustained meso-scale turbu-
lence in incompressible active flow: For Γ0 < 0 and Γ2 > 0,
the model exhibits a range of unstable modes, resulting in turbu-
lent states as shown in Fig. 2D. Intuitively, the ðΓ0; Γ2Þ-terms de-
scribe intermediate-range interactions, and their role in Fourier
space is similar to that of the Landau potential in velocity space
(SI Appendix). We therefore expect that Eq. 1 describes a wide
class of quasi-incompressible active fluids. To compare the con-
tinuum model with experiments and SPR simulations, we next
study traditional turbulence measures.
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fluids (27, 34, 35, 41) but are unknown for active flow. For
isotropic steady-state turbulence, spatial averages h·i as in Eq. 2
become time-independent, and the moments Sn

‖;⊥ reduce to func-
tions of the distance R ¼ jRj.

Velocity distributions, increment distributions, and structure
functions for our numerical and experimental data are summar-
ized in Fig. 3. For the SPR model, the velocity statistics can be
calculated either from the raw particle data or from pre-binned
flow field data. The two methods produce similar results,
and Fig. 3 shows averages based on individual particle velocities.
Generally, we find that both the 2D SPR model and the 2D con-
tinuum simulations are capable of reproducing the experimen-
tally measured quasi-2D flow histograms (Fig. 3 A and B) and
structure functions (Fig. 3C). The maxima of the even transverse
structure S2n

⊥ signal a typical vortex size Rv, which is substantially
larger in 3D bulk flow than in quasi-2D bacterial flow. Unlike
their counterparts in high-Re Navier–Stokes flow (27, 34), the
structure functions of active turbulence exhibit only a small re-
gion of power law growth for ℓ ≲ R ≪ Rv and flatten at larger
distances (Fig. 3C).

Fig. 2. Experimental snapshot (A) of a highly concentrated, homogeneous
quasi-2D bacterial suspension (see also Movie S7 and SI Appendix, Fig. S8).
Flow streamlines vðt; rÞ and vorticity fields ωðt; rÞ in the turbulent regime,
as obtained from (B) quasi-2D bacteria experiments, (C) simulations of the
deterministic SPR model (a ¼ 5, ϕ ¼ 0.84), and (D) continuum theory. The
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Figure 2 Active turbulence in dry polar fluids. a, Snapshot of the vorticity field and
streamlines obtained from a simulation of self-propelled rods, which produces results similar to
those of the continuum TTSH equation. Adapted from [15]. b, Growth rate of velocity
perturbations in the TTSH equation for α < 0, Γ0 < 0, and Γ2 > 0. In this regime, the
quiescent state is unstable at long wavelengths, producing vortices with a characteristic size
∼ q−1

c . c, Simulations of the TTSH equation derived from a microscopic model of
self-propelled swimmers also show the selection of a characteristic vortex size that saturates at
high activity. A similar trend is found for the velocity correlation length measured
experimentally in 3D bacterial suspensions [14] (inset). Adapted from [55]. d, The energy
spectrum of the TTSH equation exhibits a scaling regime with a non-universal exponent that
varies with the parameter α. This parameter controls energy injection, from lower (blue) to
higher (red). e, Spectra of the contributions to the energy balance in the stationary turbulence
regime of the TTSH equation (ατ = −1). The advective nonlinearity transfers energy across
scales. Panels d and e adapted from [52].

3.1 Dry systems
3.1.1 Toner-Tu-Swift-Hohenberg equation

The TTSH equation builds on the Toner-Tu equations for flocking [35, 57, 58], which
provide a coarse-grained description of the Vicsek model for self-propelled aligning
particles [35, 59]. As in flocking, the TTSH equation describes the coarse-grained
velocity v of the particles, and it ignores hydrodynamic interactions mediated by the
solvent. The solvent, however, exchanges momentum with the particles. Thus, the
momentum of the particle system is not conserved, making the theory dry. This de-
scription does not distinguish the velocity from the polarity field and assumes that
motion always occurs along the particle orientation direction. Finally, in contrast to the
original Toner-Tu equations, the TTSH assumes incompressibility, i.e. ∇ · v = 0.

Following the structure of the Toner-Tu equation, the TTSH equation can be ex-
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pressed as [15]

(∂t + v ·∇)v = −∇P − (α+ β|v|2)v + ∇ ·E (1)

where the pressure P is determined by the incompressibility constraint ∇ ·v = 0. The
Landau-like expansion in powers of the velocity describes the flocking transition. For
α < 0, with β > 0, the system develops long-range polar order, flowing with velocity
v0 =

√
−α/β in an arbitrary direction. Respectively, the strain-rate tensorE takes the

form

Eij = S

(
vivj −

1

d
|v|2δij

)
+
(
Γ0 − Γ2∇2

)
(∂ivj + ∂jvi) . (2)

The first term, with d the space dimension, corresponds to anisotropic active nematic
stresses due to the microswimmers. These stresses give contributions to the advection
and the pressure terms, and Eq. (1) can be rewritten as [15]

(∂t + λ0v ·∇)v + ∇
(
p− λ1|v|2

)
=
[
Γ0∇2 − Γ2∇4 − (α+ β|v|2)

]
v, (3)

where λ0 = 1 − S and λ1 = −S/d. Note that, because of the absence of Galilean
invariance, the coefficient λ0 of the self-advection term can be different from one. For
puller swimmers, such as the algae C. reinhardtii, S > 0. For pushers, such as the
bacterium B. subtilis, S < 0. The Γ0 term corresponds to effective viscous stresses in
the suspension.

All the terms discussed so far are taken from the original Toner-Tu equation. How-
ever, to destabilize the flocking state and produce vortices, the TTSH equation assumes
the effective viscosity to be negative, Γ0 < 0 [15]. Even though this is a phenomeno-
logical assumption, negative effective viscosities are possible in active suspensions due
to a combination of extensile activity and flow alignment, which decrease and may per-
haps even reverse the viscous resistance to shear [35,60–66]. Moreover, derivations of
the TTSH equation from microscopic models reveal that activity indeed leads to a de-
creased effective viscosity Γ0, which could possibly turn negative [50,55,56]. Note that
there are important active or non-equilibrium contributions in three terms: the negative
friction α, the self-advection term λ0, and the negative viscosity Γ0.

With Γ0 < 0, one needs the next-order term in the velocity gradient expansion,
with Γ2 > 0, to stabilize the flow at short wavelengths. The right-hand side of
Eq. (3) has the structure of the Swift-Hohenberg equation for pattern formation, orig-
inally obtained in the context of thermal convection [67, 68]. The right-hand side of
Eq. (3) produces a long-wavelength instability, which leads to energy injection across
the range of unstable modes. The growth rate has a maximum at a finite wave num-
ber, qc =

√
−Γ0/(2Γ2), which defines a characteristic vortex size (Fig. 2b). This is

consistent with both microswimmer models [55] and experiments [14], which reveal a
characteristic velocity correlation length that saturates at high activity (Fig. 2c). Γ0 and
Γ2 also define a characteristic velocity VΓ =

√
|Γ0|3/Γ2. The existence of these char-

acteristic scales of velocity and vortex size, at which the energy spectrum is maximal
(Fig. 1a), is an important difference with inertial turbulence, which features scale-free
vortex distributions.

Overall, the quiescent, isotropic state (v = 0) of the TTSH equation is subject
to two activity-driven instabilities, which respectively yield a uniform transition to
flocking due to a negative friction (α < 0), and spatial pattern formation due to a
negative viscosity (Γ0 < 0). The combination of these two instabilities with the non-
linear effects of velocity self-advection lead to turbulent states in the TTSH equation.
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In fact, velocity self-advection makes the TTSH equation non-potential, whereas the
right-hand side can be derived from an effective free energy and would therefore not
produce chaos. The parameters in Eq. (3) can be fitted to achieve good quantitative
agreement with the experimentally-measured velocity correlation functions and energy
spectra (Fig. 1a), both in 2D [15] and in 3D [16] dense bacterial suspensions. These
spectra exhibit scaling regimes described by power laws, which we discuss next.

3.1.2 Power laws with non-universal exponents

At scales larger and smaller than the typical vortex size, the spectrum obtained in
Ref. [15] exhibits scaling regimes with exponents close to 5/3 and −8/3, respectively
(Fig. 1a). With the simplifying choice λ1 = 0 in Eq. (3), later work analyzed TTSH
turbulence in more detail, searching for parallels and differences with inertial turbu-
lence [52]. This study revealed that the scaling exponents are non-universal, in the
sense that they depend on parameter values (Fig. 2d). Non-universal behavior in the
TTSH equation arises from its cubic nonlinearity (β|v|2v), which is not present in the
Navier-Stokes equation. Combined with the advective nonlinearity (v ·∇v) common
to inertial turbulence, the cubic Toner-Tu term provides additional freedom, allowing
the system to self-organize into turbulent states with parameter-dependent statistical
properties. In this sense, the authors of Ref. [52] claim that these properties define a
new class of turbulence.

The spectral energy balance reveals that energy injection is indeed controlled by the
α and Γ0 terms driving the instabilities [52]. The Γ2 term contributes to dissipation. As
in 2D Navier-Stokes turbulence, the advective nonlinearity transports energy from in-
termediate to large scales. The additional cubic nonlinearity dominates the dissipation
at large scales (Fig. 2e). In particular, it dissipates the energy transported by the advec-
tive effects, thus preventing the inverse energy cascade of inertial 2D turbulence [52].
More recent work has confirmed this scenario and revealed that a very strong advective
transfer leads to the emergence of vortex patterns from a transient turbulent state [53].

3.1.3 Active polar liquid crystals with friction

Other types of dry turbulence can take place in models for active polar liquid crystals
with friction. In contrast to the TTSH equation, and like in two-phase suspensions, in
liquid crystals the velocity and the polarity fields can be different from one another.
In fact, polarity-velocity misalignment occurs in systems such as Janus colloids [69]
and epithelial monolayers [70–72], in which cells polarize in response to mechanical
stresses and environmental cues [72]. Similarly, early experiments and simulations on
bacterial turbulence found a low correlation between the velocity and polarity fields,
suggesting a strong advection of bacteria by the solvent [12, 47].

Despite being simpler than full microswimmer suspensions, turbulence in polar liq-
uid crystals has not received as much attention. An exception is Ref. [73]. Motivated by
mechanical waves in epithelial cell monolayers on solid substrates, this study proposed
an active polar fluid model based on the following force balance: ∇ · σ = ξv − T0p.
Here, σ is the stress tensor of the fluid, which includes viscous, active, and flow align-
ment contributions. The interaction forces with the substrate include viscous friction
with coefficient ξ and active traction with magnitude T0 in the direction of cell polarity
p. In turn, the polarity evolves as dictated by liquid crystal hydrodynamics [35,74–76],
which includes advection and co-rotation of the polarity by the flow.
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The polar state, with |p| = 1 and speed v0 = T0/ξ, is destabilized by the ac-
tive stresses. Moreover, the advection term v ·∇p in the polarity dynamics endows
the growth rate with an imaginary part, which leads to nonlinear traveling waves.
Near the instability threshold, modulations of these waves follow the so-called com-
plex Ginzburg-Landau equation, originally proposed in the context of pattern forma-
tion [68, 77]. This equation exhibits several forms of spatiotemporal chaos, includ-
ing phase turbulence, amplitude turbulence, spatiotemporal intermittency, and bistable
chaos [78]. These states could therefore arise via secondary bifurcations from the
nonlinear waves [73], as also suggested in Ref. [79]. Whether such forms of active
turbulence are found in polarized epithelial tissues or other polar systems remains an
open question.

3.2 Wet systems
3.2.1 Generalized Navier-Stokes equation

Following the phenomenological approach of the TTSH equation, Słomka and Dunkel
proposed the so-called Generalized Navier-Stokes (GNS) equation to describe active
turbulence in polar momentum-conserving systems [80]. In contrast to the TTSH
equation, the GNS equation does not include Toner-Tu flocking terms. Therefore, it
contains neither the negative friction leading to polar order nor the cubic nonlinearity
that enables non-universal scaling in the TTSH equation (see Sections 3.1.1 and 3.1.2).
Instead, the activity is phenomenologically encoded in a postulated, generic extension
of the stress tensor. This approach is again similar in spirit to the Swift-Hohenberg
equation for pattern formation [67, 68], and it had also been used in the context of
granular media [81]. Here, the effective stress tensor is proposed to be linear in the
velocity field, and it is expressed as a gradient expansion, thus conserving momentum.
The only nonlinearity of the GNS equation is thus the velocity self-advection term,
as in the Navier-Stokes equation. Assuming incompressibility (∇ · v = 0), the GNS
equation reads

(∂t + v ·∇)v = −∇P + ∇ · σ, (4)

with
σij =

[
Γ0 − Γ2∇2 + Γ4∇4

]
(∂ivj + ∂jvi) . (5)

Except for the Γ2 and Γ4 terms, this equation has the form of the Navier-Stokes equa-
tion. In contrast to the TTSH equation, here Γ0 is a positive viscosity. Therefore, we
may think of this model as having an effective kinematic viscosity that depends on the
spatial scale, which is represented in Fourier space via the following dependence on
the wave number q: ν̃eff(q) = Γ0 + Γ2q

2 + Γ4q
4. Turbulence at low Reynolds num-

ber is then modeled as arising from an instability obtained by setting Γ2 < 0 while
keeping Γ4 > 0. This choice produces a band of unstable modes which, unlike for
the TTSH equation (Fig. 2b), exclude the longest wavelengths (q → 0). The unstable
modes inject energy to drive flows and, as in the TTSH equation, they produce patterns
of vortices with a characteristic size. These patterns can then become turbulent thanks
to the nonlinear advection term inherited from the Navier-Stokes equation [80].

The GNS equation was proposed as an alternative model for the bacterial turbu-
lence experiments. As for the dry TTSH equation, the parameters of the GNS equation
were also fitted to the velocity correlation functions and probability distributions of 3D
bacterial suspensions [82], as originally measured in Refs. [15, 16]. On the theoreti-
cal side, the relative mathematical simplicity of the GNS equation enabled analytical
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solutions of vortex lattices [83]. It was also formulated in a covariant way to simulate
active turbulence on curved surfaces [84]. In 3D, the theory predicted an inverse energy
cascade [82, 85], opposite to the direct cascade of inertial 3D turbulence. The active
inverse cascade is also different from the inverse cascade of inertial 2D turbulence in
that it is not driven by vortex merging. Instead, the active cascade involves the for-
mation of moving vortex chains, and it results from a spontaneous breaking of chiral
symmetry [82, 85]. Observing these effects in experiments remains a challenge.

Finally, a variant of the GNS equation was also used to study the crossover from
active to inertial 2D turbulence as the Reynolds number is increased. By varying the
effective viscosity spectrum ν̃eff(q), simulations revealed a sharp transition between the
small vortices characteristic of GNS active turbulence and the emergence of a classic
inverse cascade that accumulates energy at the largest scales, giving rise to a so-called
condensate of two large vortices [86, 87]. The authors argue that this transition might
be observable in bacterial suspensions, which could reach moderate Reynolds numbers
owing to the reduction of their effective viscosity by activity (see discussion in Sec-
tion 3.1.1). The active-to-inertial transition might also be observable in other systems
where turbulence is driven by larger active objects such as magnetic spinners [88] and
camphor boats [89], which might reach even higher Reynolds numbers.

3.2.2 Active polar liquid crystals and suspensions

As in the dry case, wet polar systems can also be modeled using the formalism of
liquid crystal hydrodynamics. In contrast to the phenomenological approach of the
GNS equation (Section 3.2.1), the hydrodynamic equations of polar liquid crystals are
established by symmetries and conservation laws [35, 74–76], and the parameters are
measurable quantities with a direct physical interpretation. The hydrodynamic equa-
tions are similar to those of active nematics (see Section 4.1.1), replacing the director
field by a polarity field and adding polar terms that break the invariance under p→ −p.

Work on wet turbulence in one-component polar liquid crystals has been surpris-
ingly scarce [92]. Most work has focused on two-component suspensions, whose equa-
tions include a swimmer concentration field c [47, 48, 90, 93, 94]. In this case, active
stresses become proportional to the concentration field. Moreover, the swimmers self-
propel with respect to the fluid, and therefore the concentration and the polarity fields
are advected both by the fluid and by the swimmers. Accordingly, the material deriva-
tives in the transport equations read ∂tc+∇·[(v + wcp)c] and [∂t + (v + wpp) ·∇]p.
Here, wc and wp characterize the self-advection terms arising from self-propulsion,
which were found to enhance concentration inhomogeneities [94].

Polarity self-advection is a feature common with polar dry systems; it appears in
the Toner-Tu equations. Consequently, active polar suspensions share some of the
instabilities and spatiotemporal patterns of dry polar fluids [90], such as the traveling
density waves found in the Toner-Tu equations [35, 95–97] (Fig. 3a). Moreover, the
hydrodynamic equations of polar fluids reduce to those of nematic fluids when the
polar terms are ignored. Hence, active polar suspensions share the spontaneous flow
instability of active nematics (Fig. 3a), which we discuss in Section 4.1.2. Yet other
instabilities arise from the interplay between advection and active stresses, leading to
hydrodynamic traveling waves [90] (Fig. 3a) reminiscent of experimental observations
in bacterial swarms [98]. These waves, as those discussed in Section 3.1.3, are specific
to polar fluids.

Unlike in nematic fluids, instabilities in polar fluids can occur via Hopf bifurca-
tions, giving rise to oscillatory phenomena. Simulations of polar suspensions indeed
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FIG. 3. Time-averaged components of the total energy flux at ζ = 0.013 (left) and ζ = 0.050 (right).
Notice the different y range in the two graphs.

This surprising behavior (and its connection to morphology) has been confirmed by keeping fixed
the active parameter ζ = 0.015 and varying the nominal viscosity of the suspension (not shown).
Once again we found that total kinetic energy rises and develops on progressively bigger length
scales as viscous effects are lowered and mixing of the two components occurs, thus driving the
active agents in an unconfined state.

It is well known that spectra do not bring enough information to disentangle the complicated
network of transfer mechanisms inside a complex flow [30]. Thus, we performed a systematic
analysis of the energy balance in Fourier space by looking at the scale-by-scale contribution of
all terms, either dissipative or reactive. We thus Fourier transform both sides of the Navier-Stokes
equation and we multiply them by v∗(k) to obtain the following balance equation, spherically
averaged on shells of equal momentum:

ρ∂t E (k, t ) + T (k, t ) =
∑

i

S (i)(k, t ). (4)

Here T (k, t ) = 〈v∗(k, t ) · J(k, t )〉 represents the rate of energy transfer due to nonlinear hydrody-
namic interactions [with J(k, t ) standing for the Fourier transform of ρv · ∇v + ∇p]. The terms
on the right-hand side of Eq. (4) are energy source/sink contributions, where the terms S (i)(k, t )
are defined as in Eq. (3) and (i) denotes the different kinds of contributions: viscous, binary, polar,
or active (see SM for explicit definition [32]). Finally, we define each separate component of the
energy flux as the total variation per unit time of the energy contained in a sphere of radius k:

$(i)(k) =
∫ k

0
dk′S (i)(k′), $T (k) =

∫ k

0
dk′T (k′).

Figure 3 shows fluxes for ζ = 0.013, 0.050, measured at steady state. In both cases, the only source
contribution is the active one, $act, while all the others are energy sinks. Before the transition to
mixing [ζ = 0.013, Fig. 3 (left)] the binary and polar terms are also contributing (as sinks). After,
the dynamics is characterized by an almost perfect matching among viscous and active terms [Fig. 3
(right)]. The advection term, $T , is, for all practical effects, null, as expected for fluids flowing at
negligible Reynolds numbers. The previous findings suggest some important conclusions. First, the
scenario is in agreement with the absence of hydrodynamic turbulence. Here multiscale effects and
chaotic evolution arise from the competition between sink terms and active injection, leading to a
nontrivial scale-to-scale balance. The phenomenology is similar to the case of elastic turbulence,
where the nonlinear evolution for the velocity field is dominated by the non-Newtonian stress,

011302-5
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TABLE I. Mapping between physical and simulation units. Length scale l∗ = 1 µm, timescale t∗ = 10 ms,
and force scale f ∗ = 102 nN are set to 1 in LB units. Viscosity η is expressed in kPa s, the elastic constant of
the polar gel kP in nN, the diffusivity D = Ma in µm2 s−1, while " and ζ are respectively expressed in kPa s
and kPa.

Units η kP D " ζ

Simulation 5/6 0.01 0.0004 1 0.01–0.06
Physical 0.83 10 0.004 10 100–600

on the activity ζ , with an accumulation of energy at scales larger than kv as soon as the coalescence
starts to act. The typical Reynolds numbers are Re ∼ 10−2 to 1, a regime close to experimental
observations, where we defined Re = ρE1/2(kv )lv/η in terms of the typical flow wave number
kv = [

∫ ∞
0 dk′k′E (k′)]/Etot—namely the first moment of the energy distribution—and length scale

lv = L/kv , where Etot =
∫ ∞

0 dk′E (k′) is the total kinetic energy. The right panel of the same figure
shows the spectral properties of the active energy injection:

Sact (k, t ) = 〈v∗(k, t ) · Fact (k, t )〉, (3)

where Fact (k, t ) = 2π ik · σ̃ act (k, t )/L. As anticipated, energy pumping is considerably localized
at high wave number (ka/L = l−1

a ( 0.1, being ka the first moment of Sact) when activity is low
enough, due to small-scale deformations of the polarization field homeotropically and strongly
anchored to interfaces [27,28]. By increasing ζ , as the system undergoes first coalescence (ζ =
0.02) and then mixing, interfaces broaden and progressively disappear, thus attenuating energy
supply at high wave numbers and leading to a situation where energy is injected on a wider range
of scales, typical of the active-driven bending instabilities of the polar gel [12,46].

Going back to the spectra, we notice that the presence of small droplets of typical size ld =
L/kd ( 15 does not produce any Gibbs effects: As long as the droplet phase survives, energy is
accumulated on the typical length scale of the droplet size as suggested by the bulge in energy
spectra, for small values of ζ , located at wave number kd . As confinement is lost (ζ ! 0.035),
energy is instead spread on much larger scales (kv/L = l−1

v ( 0.025). Even more interesting is the
observation that the energy injected in the system at low activity is substantially greater than the one
delivered at higher active dopings.

FIG. 2. Left: Log-log plot of time-averaged energy spectra varying activity (ζ =
0.013, 0.015, 0.02, 0.03, 0.04, 0.05). Right: Total amount of energy injected in the system by active
agents. Vertical black dashed lines mark the wave number kv , kd , and ka, respectively (see text), for the case at
ζ = 0.05.

011302-4

polarization vector oscillate around its initial orientation (x̂ in

this case), the formation of traveling vortices is anticipated by an

inversion of the polarization vector (i.e. p ! "x̂). The origin of

this inversion is likely due to the short time scale at which the

active stress is initially injected in the system, which makes the

polarization field undergo dramatic distortions before it is able to

settle on a limit cycle.

Upon further decreasing a, the traveling vortices become

unstable and the system undergoes a transition to a chaotic

regime (Fig. 10). The polarization valleys now continuously form

and disappear in unpredictable fashion. The flow still exhibits

larger vortices, which however move chaotically across the

sample with variable direction and magnitude. Interestingly, the

polarization direction is continuously distorted and does not

posses regions of partial alignment. This differs from the spatio-

temporal chaos found active nematics22 where the chaotic flow is

organized in grains of uniform orientation separated by chaoti-

cally moving grain boundaries. The nonlinear spatiotemporal

Fig. 11 Phase diagram of the nonlinear spatiotemporal patterns:

homogeneous steady state (HSS), traveling waves (TW), traveling

vortices (TV) and chaos (CH). The dots have been obtained from the

numerical integration of eqn (3), (4) and (6) for l¼ 0.1, h¼D0 ¼D1 ¼ 1,

L ¼ 10 and w ¼ 0.1a. The solid blue line separating the homogeneous

steady state from the traveling waves regime is given by eqn (18). The

dashed line separating the traveling waves and the traveling vortices

regime has been inferred from the data. The color gradient between the

traveling vortices and the chaotic regime indicates a fuzzy boundary line.

Fig. 9 The quantities c, u, Px and Py at the point x ¼ y ¼ L/2 as

a function of time in the traveling vortices for a ¼ "5.

Fig. 10 The velocity field (left) and the polarization direction (right)

superimposed to a density plot of the concentration and the polarization

magnitude for a ¼ "6. The flow consists of large vortices that move

chaotically across the system with variable direction and magnitude.

Fig. 8 The velocity field (left) and the polarization direction (right)

superimposed to a density plot of the concentration and the polarization

magnitude at two different times for a¼"5. The flow is characterized by

two vortices and two stagnation saddle points traveling across the system

from left to right.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 129–139 | 137
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the region of parameters where this linear instability occurs as

longitudinal traveling Vicsek-type waves (V) regime.

The coupled dynamics of fluctuations in the transverse

component Py of the order parameter, describing director fluc-

tuations, and vorticity u yields additional instabilities, both in

the (1, 0) and (0, 1) directions, controlled by the dnm matrix. The

first unstable modes are the longitudinal mode (1, 0) and the

transverse mode (0, 1). These modes becomes unstable for

negative and positive values of the combination a(1 ! l),
respectively. These instabilities arise from the coupling of

director deformations and flow and occur even for w ¼ 0, cor-

responding to systems with nematic symmetry. For a(1 ! l) > 0,

transverse modes (0, 1) go unstable, corresponding to coupled

splay deformations of the director and fluctuations of the vy
velocity. For l < 1, the instability occurs above a positive critical

value of a given by

a01 ¼
q2
h
4hþ P2

0ð1! lÞ2
i

2c0P2
0ð1! lÞ

: (17)

More precisely this instability occurs for tumbling (|l| < 1)

or disk-like (l < !1) pullers for a > a01 > 0 and for rod-like (l
> 1) pushers for a < a01 < 0. The interplay between the

parameter l controlling the flow alignment properties of an

orientationally ordered suspension and the activity a in

controlling the instabilities of active fluids was discussed in ref.

14 and we refer to that work for details. The critical value a01
of transverse or bend instability does not depend on w and is

identical to the value obtained for active nematic, with the

replacement P0 / S, where S is the magnitude of the nematic

order parameter. This instability has been obtained before in

the literature4 and is commonly referred to as the generic

instability. For a(1 + l) < 0, corresponding to tensile active

stresses as generated by pushers, such as E. coli, longitudinal

modes (1, 0) go unstable, corresponding to coupled bend

deformations of the director and fluctuations in the vx velocity.

This instability occurs for l > !1 and a < a10 < 0 and for l <

!1 and a > a10 > 0, with

a10 ¼ !
4hq2ð1þ hÞ2þP2

0

h
4hw2 þ q2ð1þ hÞ2ð1þ lÞ2

i

2c0P2
0ð1þ lÞð1þ hÞ2

: (18)

Notice that the critical value a10 depends on w (a finite w in this

case actually suppresses the instability). When w ¼ 0, this coin-

cides with the generic instability discussed in [4] for pushers and

active nematic. For finite w, however, the modes that goes

unstable is a propagating wave, suggesting that the system may

support traveling waves solutions in this region of parameter.

This region is labelled at TW in Fig. 2. Finally, the splay/bend

instabilities obtained here are simply the 2D generalization of the

instability to a spontaneously flowing state discussed in ref. 12

and 14 for nematic and polar active fluids, respectively, in

a quasi-one-dimensional strip geometry. Their origin lies in the

long-range nature of the hydrodynamic interactions between

active swimming particles, as shown in ref. 39. Some additional

detail on the eigenvalues of the dnm matrix can be found in

Appendix B.

A. Relation to dry systems

For completeness we compare the behavior of the active

suspension considered here to that of active particles on a fric-

tional substrate, referred to so far as dry systems. In this case the

only conserved field is the concentration of active particles and

the continuum equations are written solely in terms of concen-

tration and polarization fields. The momentum of the system is

not conserved and there is no equation for the flow velocity.40

The low density longitudinal instability of the ordered state

obtained near the mean-field order order-disorder transition

(c0 / c*+) is unique to polar active fluids with aligning interac-

tions, corresponding for instance to coarse-grained versions of

the Vicsek model, and does not couple to the flow velocity. It is

present in both dry systems and suspensions. It was discussed for

the case polar particles on a substrate in ref. 32 and 34.

In contrast, the splay and bend instabilities obtained at high

density are due curvature-induced currents arising from the

coupling of director deformation and flow.

One can obtain the limit of dry systems from our general

equations for a suspension by adding a drag !zv to the right

hand side of eqn (6), describing the coupling frictional coupling

to a substrate. In the limit of large friction z, one can then neglect

inertial terms and write the solution of eqn (6) to lowest order in

the gradients as

vix
1

z

!
! viPþ vjs

a
ij

"
; (19)

where the active stress saij is given in eqn (9a) and we must satisfy

V$v ¼ 0. If eqn (19) is used to eliminate v from the equations for

concentration and polarization, one then recovers both the splay

and bend instabilities. Note that when eqn (19) is used to elimi-

nate the flow velocity in favor of polarization and density the

terms responsible for the splay and bend instabilities are of order

(V2P3). These terms have been neglected in the continuummodels

of polar fluids on a substrate discussed in the literature, which

explain why such instabilities were not obtained to linear order.41

When considering the full nonlinear equations similar effects are,

however, provided by other nonlinearities.

Fig. 2 Phase-diagram in the plane (c0 ! c*, a) for w¼ a and q¼ 0.2, l¼
0.5, h ¼ D0 ¼ D1 ¼ 1. The labeled regions correspond to the homoge-

neous steady state (HSS), the spontaneous flow regime (SF), the traveling

waves regime (TW) and the region of longitudinal traveling waves of

Vicsek-type (V).

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 129–139 | 133
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Figure 3 Transition to chaos and active turbulence in wet polar suspensions. a, Phase
diagram obtained from a linear stability analysis of the homogeneous state. Density waves are
like those found in the Toner-Tu equations, i.e. in the dry limit. In addition to spontaneous flow,
wet polar suspensions can exhibit traveling waves. b, Nonlinear spatiotemporal patterns
obtained in simulations of the continuum equations, revealing the emergence of chaos via
traveling waves and vortices. Panels a and b adapted from [90]. c, The energy spectrum in
simulations of wet polar emulsions features activity-dependent scaling regimes. kv is the first
moment of the energy distribution, and kd is related to the scale of emulsion droplets. d, Spectra
of the contributions to the energy balance in simulations of active polar emulsions, which
exhibit no energy transfer across scales (orange). The other contributions are associated with
viscosity (dark blue), the binary composition of the system (yellow), passive polar stresses
(light blue), and activity (red). Panels c and d adapted from [91].

find oscillatory flows that become increasingly complex, with the sequential addition
of frequencies in the spectrum, as activity increases [93]. In fact, more complete sim-
ulations revealed a route to spatiotemporal chaos through patterns of traveling waves
and vortices [90] (Fig. 3b). Simulations of polar liquid crystals with polarity-velocity
alignment painted a similar picture, with oscillatory and traveling patterns leading to
chaos [92]. Intriguingly, this sequence of patterns was also observed in simulations of
active nematics confined between two walls with different friction [99]. Apart from
this specific case, the route to chaos through Hopf bifurcations is different than that
of nematic systems, either the one-component fluids that we discuss in Section 4.2, or
suspensions, which exhibit excitable behavior prior to the transition to chaos [100].

The chaotic flow regime is only beginning to be characterized. Recent work by
Carenza et al. has obtained the statistical properties of turbulent-like flows in simula-
tions of active polar emulsions, in which the active component is localized in the emul-
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sion droplets [91]. The results show energy spectra featuring three scaling regimes, and
the exponent of the intermediate regime seems to vary with activity (Fig. 3c). Predict-
ing these results remains an open challenge. Furthermore, the energy injected by active
stresses is dissipated by a combination of passive effects (Fig. 3d). Hence, the chaotic
flows involve no energy transfer across scales, and therefore no turbulent cascades.

Finally, recent work by Škultéty et al. has used kinetic theory to coarse-grain a
microscopic model of microswimmers with hydrodynamic interactions. Going beyond
the usual mean-field approximation, this work showed that, below the onset of collec-
tive motion, velocity correlations are suppressed by particle self-propulsion [101].

4 Nematic fluids
The early observations of bacterial turbulence led to the theories for active polar tur-
bulence that we discussed in Section 3. In this section, we discuss theories of active
nematic turbulence, which were motivated by chaotic flows reported first in micro-
tubule suspensions (Fig. 1f) and then in epithelial monolayers (Fig. 1e). Like for polar
fluids, both dry and wet models have been put forward, as well as models that focus
on the wet-dry crossover. Unlike in Section 3, however, we discuss wet systems first
and dry systems later. Before, we give a general introduction to active nematic hy-
drodynamics, discussing the spontaneous-flow instability that leads to active nematic
turbulence, and the dimensionless number that controls it.

4.1 Active nematics
4.1.1 Hydrodynamic equations

Most theoretical work on turbulence in active nematics is based on hydrodynamic equa-
tions for macroscopic slow variables [35, 63, 75, 76]. These variables are either con-
served quantities, such as concentrations and momentum, or soft modes arising from
the spontaneous breaking of continuous symmetries such as isotropy.

In nematics, orientational order is described by a traceless symmetric tensor known
as the nematic order parameter, Q. It can be expressed as Q = 2

3Sq, where qij =
ninj − 1

dδij and d is the space dimension [74]. Here, n̂ is the so-called director field,
which indicates the axis of alignment. Its direction is a soft mode. Respectively, S is
the amplitude of the order parameter, which quantifies the degree of alignment. Strictly
speaking, it is not a soft mode. However, it can be useful to keep it in hydrodynamic
equations to study situations in which the nematic order varies sharply, such as around
topological defects. This approach is followed in most numerical work on active ne-
matic turbulence, which we describe in the sections below.

The free energy F of a passive nematic is a functional of the order parameter. The
free energy per unit volume F is split into two terms [36, 74, 102]: the Maier-Saupe
free energy FMS describes the isotropic-nematic transition and it depends only on the
order parameter Q; the Frank free FF energy describes the orientational elasticity of
the nematic and it depends on the gradients ofQ.

Deep in the nematic phase, the amplitude of the order parameter is S = 1, and it is
sufficient to describe the nematic order by the director orientation, given by its angle θ
in two dimensions. The free energy then reduces to the Frank contribution. In the one-
constant approximation [74], it reads FF = K

2 (∇Q)2, where K is the Frank elastic
constant. The relaxation of this energy is driven by the so-called orientational field
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h = − δFδn . In two dimensions, its component perpendicular to n is h⊥ = K∇2θ [74],
which tends to make the director relax to a uniform configuration.

In addition to relaxing according to the orientational field, the nematic order pa-
rameter is also advected by the flow v, co-rotated by the vorticity ω = ∇ × v, and
it realigns in response to shear, which is described by the symmetric shear-rate ten-
sor uij = 1

2 (∂ivj + ∂jvi). Taking all these effects into account, the dynamics of the
director field is given by

∂tn+ v ·∇n+
1

2
ω × n =

h

γ
− νu · n. (6)

Here, γ is the rotational viscosity, and ν is the flow-alignment parameter. This pa-
rameter depends on the shape of the nematic particles: ν < 0 for rod-like or prolate
particles, and ν > 0 for disk-like or oblate particles. If |ν| > 1, the director tends to
align at a fixed angle with respect to the shear. In contrast, for |ν| < 1, bulk passive
nematics exhibit the so-called tumbling instability whereby the director rotates without
settling at any particular angle. Equation (6) specifies the director dynamics when ne-
matic order is fully described by the director field, and for an incompressible nematic
(∇ · v = 0). The structure of the equation for the full order parameter is very similar,
see Refs. [36, 102]. The main difference is that all the transport coefficients defined
above depend on the amplitude S of the order parameter.

The hydrodynamic theory of passive nematics has been generalized to active ne-
matics [35, 75, 76, 103]. In this case, the stress tensor can be decomposed into active
and passive contributions: σ = σpas +σact. The passive stress includes the pressure P ,
three elastic contributions, and the viscous stress: σpas = −PI +σE +σa +σν +σv.
The Ericksen stress σE is a non-isotropic contribution to the pressure; in two di-
mensions, it is given by σijE = K∂iθ∂jθ − K

2 |∇θ|2δij . The antisymmetric stress
σija = 1

2 (njhj − njhi) arises from torques associated with the conservation of an-
gular momentum. The third elastic term is the conjugate to the flow-alignment term
in Eq. (6): σαβν = ν

2 (nihj + njhi). An incompressible nematic has three indepen-
dent viscosities that we assume here equal and given by η. The viscous stress is then
σv = 2ηu , where u is the symmetric shear-rate tensor defined above. Finally, the
active stress is proportional to the orientational tensor: σact = −ζQ. It is extensile
along the direction of the director for ζ > 0, and it is contractile for ζ < 0.

These constitutive equations must then be completed by the conservation laws.
Here, we focus on systems at low Reynolds numbers, for which inertia is negligible.
Force balance then reads

∂iσ
ij = 0. (7)

For dry systems, in contact with a substrate or environment, the right-hand side of
Eq. (7) would include additional forces such as friction or active traction, as we discuss
in Section 4.3.

4.1.2 Spontaneous-flow instability

One of the general properties of active nematics is that the quiescent steady state with
uniform director field is unstable, leading to spontaneous flows [104–106]. The growth
rate of orientational perturbations around the uniform state, with a wave vector q at an
angle φ from the director, is given by [40]

Ω(q) =
ζ cos 2φ(1− ν cos 2φ)

2
(
η + γν2 sin2 2φ/4

) − Kq2

γ

η + γ/4(ν2 − 2ν cos 2φ+ 1)

η + γν2 sin2 2φ/4
. (8)
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This growth rate turns positive at long wavelengths (Fig. 4a), in a way that depends on
the angle φ between the director and the wave vector. For φ = 0, the perturbations are
along the direction of alignment, corresponding to bend distortions of the director field
(Fig. 4b left). In this case, the quiescent state is unstable if ζ(1 − ν) ≥ 0. Thus, for
rod-like objects (ν < 0), the instability to bend distortions occurs for extensile active
stresses (ζ > 0, Fig. 4b left). For φ = π/2, the perturbations are perpendicular to the
direction of alignment, corresponding to splay distortions of the director field (Fig. 4b
right). In this case, the instability occurs if ζ(ν + 1) ≤ 0. Thus, for rod-like objects,
splay distortions produce an instability if active stresses are contractile (ζ < 0, Fig. 4b
right). In all cases, the instability is based on the following mechanism: a director
perturbation produces active forces, given by ∇·σact = −ζ∇·(nn), which drive flows
that further distort the director, amplifying the original perturbation (Fig. 4b). Director
distortions offer less resistance for longer wavelengths, and hence the maximal growth
rate is found at q → 0 (Fig. 4a). As a result, right past the instability threshold, the
pattern of spontaneous flows has a wavelength given by the system size.

Overall, active nematics are generically unstable at long wavelengths. The criti-
cal wave number qc = `−1

a f(ν, η/γ, φ) is mainly set by so-called active length `a =√
K/|ζ|, above which active stresses overcome the restoring elastic stresses of the ne-

matic. As activity increases, the active length decreases, and hence the band of unstable
modes becomes wider (Fig. 4a).

4.1.3 Dimensionless numbers and the high-activity limit

Finally, the hydrodynamic equations of active nematics that we have introduced can be
made dimensionless by rescaling lengths by the system size L, time by the active time
τa = η/|ζ| (Fig. 4a), and stresses by the active stress coefficient |ζ|. The equations
then contain only three dimensionless parameters: the viscosity ratio γ/η, the flow-
alignment parameter ν, and the activity number A = (L/`a)

2.
Active turbulence occurs in the limit of high activity number, corresponding to large

systems and/or large active stresses. In this limit, among the three elastic contributions
to the stress (see Section 4.1.1), only the flow-alignment term is not negligible with
respect to the active stress at length scales larger than `a. This is because all stresses
proportional to the Frank constant K (including via h⊥) scale like 1/A, and only h‖
yields non-vanishing contributions at high activity. To obtain h‖, we project Eq. (6) on
the director, which gives h‖ = γν n · u · n. Using this result, we express the flow-
alignment stress as σν = γν2(n · u · n)(nn). This expression shows that this elastic
stress is equivalent to a viscous stress with an anisotropic viscosity tensor. Therefore,
we expect it not to modify the scaling properties of active nematic turbulence, which
we discuss next.

4.2 Wet systems
4.2.1 Transition to turbulence

Turbulence in active nematics ultimately emerges from the spontaneous-flow instability
described in Section 4.1.2. Right past the instability threshold, the instability leads to
steady states with periodic flow patterns. As activity is increased, smaller-wavelength
modes become unstable (Fig. 4a), which destabilizes the roughly-uniform regions in
the flow patterns. Thus, starting from a uniform state, the system experiences a se-
quence of instabilities that lead to steady states with vortex patterns. Finally, at high
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activity, flows become unsteady, creating spatio-temporal chaos. This scenario for the
transition to turbulence based on a sequence of instabilities was recently illustrated in
simulations without topological defects [107], and it is consistent with experimental
observations on microtubule suspensions [26].

Previous work had uncovered an overall similar picture, albeit enhanced by the
presence and dynamics of topological defects, i.e. singular points of the nematic or-
der [108]. In two-dimensional nematics, the lowest-energy defects are those with topo-
logical charge +1/2 and −1/2. Because of their different structures, +1/2 defects
are propelled by active forces whereas −1/2 defects are not [102, 109]. This effect
facilitates the proliferation of defects in active nematics. When an active nematic spon-
taneously flows, it generates sharp walls with a steep gradient of the director field sep-
arating nematic domains. As the activity increases, the walls decay into pairs of +1/2
and −1/2 defects [36, 110, 111], which can unbind because of the self-propulsion of
+1/2 defects. This process was first observed in experiments with active microtubule
suspensions [22], and then studied numerically [112, 113] and theoretically [114]. In
recent years, the defect dynamics has been extensively characterized in several experi-
mental realizations of active nematics [102].

The emergence of defects locally destroys the nematic order, which can be restored
by the annihilation of pairs of opposite-sign defects. At high activity, the continuous
creation and annihilation of defect pairs drives the chaotic formation and destruction
of nematic domains, leading to active turbulence. This process has therefore been an-
alyzed in terms of the rates of creation and annihilation of defect pairs, whose balance
gives the steady-state defect density [111, 115, 116].

The transition to turbulence in active nematics has also been studied in confined
systems, for example in channels [117–121]. As in unconfined systems, defect pairs
are also generated above a critical activity. Under confinement, however, the defects
organize in space and exhibit coordinated motions along an array of vortices rotating
in alternating directions [118, 119], as recently observed in microtubule experiments
[121]. Further increasing the activity, the final transition from vortex arrays to chaotic
flows occurs through the intermittent appearance of locally disordered flow patches,
known as active puffs. Below a critical activity, these puffs split and decay. Above a
critical activity, however, the active puffs percolate through the channel, corresponding
to the emergence of turbulence. As a function of the distance to the critical activity, the
active-puff fraction grows as a power law, with an exponent that coincides with that of
the direct percolation universality class [120]. Overall, the intermittent-like behavior
and the connection to critical phenomena is reminiscent of similar phenomena in the
transition to inertial turbulence in channels [1–3]. Thus, future work along these lines
might reveal further connections between active and inertial turbulence.

4.2.2 Scaling with universal exponents

Fully-developed active turbulence arises in the limit of high activity number. In two
dimensions, the turbulent state appears as a disordered array of swirling regions, which
are strongly coupled to defects of the nematic order (Fig. 4c). In this section, we
focus on the structure and statistical properties of the flow and the director’s orientation
patterns.

Giomi analyzed the turbulent regime in two-dimensional simulations (with param-
eters ν � 1 and γ ∼ η), focusing first on the statistical properties of the vorticity
pattern [116]. Vortices are identified as regions where the so-called Okubo-Weiss pa-
rameter, which measures the local Lyapunov exponent, is negative. The statistics of
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demonstrate that, as for inertial turbulence, low Reynolds
number turbulence in active nematics is, in fact, a multi-
scale phenomenon characterized by the formation of
vortices spanning a range of length scales. Within this
active range, the areas of the vortices are exponentially
distributed, while their vorticity is approximately constant.
Building on these observations, I then formulate a mean-
field theory of turbulence in active nematics that allows
the analytical calculation of several measurable quantities,
including the mean kinetic energy and enstrophy, their
corresponding spectral densities, and the velocity and
vorticity correlation functions. The connection between
the topological structure of the nematic phase and the
geometry of the flow is then elucidated through a quanti-
tative description of the defect statistics.

II. RESULTS

A. Active nematdynamics

Let us consider an incompressible uniaxial active
nematic liquid crystal in two spatial dimensions. The two-
dimensional setting is appropriate to describe experiments,

such as that by Sanchez et al. [18], where the microtubule
bundles are confined to awater-oil interface forming a dense
active nematicmonolayer, but is also of considerable interest
in its own right. Let then ρ and v be the density and velocity
of an incompressible nematic fluid. Incompressibility
requires ∇ · v ¼ 0. Nematic order is described by the
alignment tensorQij ¼ Sðninj − δij=2Þ, with n the director
and 0 ≤ S ≤ 1 the nematic order parameter. The tensor Qij
is by construction traceless and symmetric and has only
two independent components in two dimensions. The
hydrodynamic equations of an active nematic can be
constructed from phenomenological arguments [14,28,29]
or derived from microscopic models [30,31] in the form

ρ
Dvi
Dt

¼ η∇2vi − ∂ipþ ∂jσij; ð1aÞ

DQij

Dt
¼ λSuij þQikωkj − ωikQkj þ γ−1Hij: ð1bÞ

Here, D=Dt ¼ ∂t þ v ·∇ indicates the material derivative,
p is the pressure, η the shear viscosity, λ the flow alignment
parameter, and γ the rotational viscosity [32]. In Eq. (1b),
uij ¼ ð∂ivj þ ∂jviÞ=2 and ωij ¼ ð∂ivj − ∂jviÞ=2 are the
strain rate and vorticity tensors corresponding to the
symmetric and antisymmetric parts of the velocity gradient,
whileHij ¼ −δFLdG=δQij is the so-calledmolecular tensor,
governing the relaxational dynamics of the nematic phase
and obtained from the two-dimensional Landau–de Gennes
free energy [32]:

FLdG ¼ 1

2

Z
d2r½Kj∇Qj2 þ CtrQ2ðtrQ2 − 1Þ&; ð2Þ

with K and C material constants. Finally, the stress tensor
σij ¼ σeij þ σaij is the sum of the elastic stress
σeij ¼ −λHij þQikHkj −HikQkj, due to the entropic elas-
ticity of the nematic phase, and an active contribution
σaij ¼ αQij describing the contractile ðα > 0Þ and extensile
ðα < 0Þ stresses exerted by the active particles in the
direction of the director field. The Ericksen stress,
σEij ¼ −∂iQklδFLdG=δð∂jQklÞ, has been neglected because
of higher order in the derivatives ofQij compared to σeij. This
simplification is known not to have appreciable conse-
quences in the fluid mechanics of two-dimensional active
nematics [28,29].
Equations 1(a) and 1(b) have been numerically inte-

grated in a square domain of size L with periodic boundary
conditions (see the movie in the Supplemental Material
[33]). To render the equations dimensionless, all the
variables have been normalized by the typical scales
associated with the viscous flow. Distances are then scaled
by the system size L, time by the time scale of viscous
dissipation τ ¼ ρL2=η, and stress by the viscous stress
scale Σ ¼ η=τ. Finally, low Reynolds number is imposed
by setting Dvi=Dt ¼ ∂tvi in Eq. (1a). The integration

(a) (b)

(c) (d)

FIG. 1. (a) A two-dimensional active nematic suspension of
microtubule bundles and kinesin at the water-oil interface. The
white scale bar corresponds to 100 μm (courtesy of the Dogic
Lab). (b)–(d) Numerical simulations of an extensile active
nematic obtained from an integration of Eq. (1). (b) Flow velocity
(black streamlines) and vorticity (background color). (c) Schlieren
texture constructed from the director field n. The red and blue
dots mark, respectively, the þ1=2 and −1=2 disclinations.
(d) Clockwise rotating (blue) and counterclockwise rotating
(red) vortices, detected by measuring the Okubo-Weiss field as
described in the text.
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active range, the areas of the vortices are exponentially
distributed, while their vorticity is approximately constant.
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uij ¼ ð∂ivj þ ∂jviÞ=2 and ωij ¼ ð∂ivj − ∂jviÞ=2 are the
strain rate and vorticity tensors corresponding to the
symmetric and antisymmetric parts of the velocity gradient,
whileHij ¼ −δFLdG=δQij is the so-calledmolecular tensor,
governing the relaxational dynamics of the nematic phase
and obtained from the two-dimensional Landau–de Gennes
free energy [32]:

FLdG ¼ 1
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with K and C material constants. Finally, the stress tensor
σij ¼ σeij þ σaij is the sum of the elastic stress
σeij ¼ −λHij þQikHkj −HikQkj, due to the entropic elas-
ticity of the nematic phase, and an active contribution
σaij ¼ αQij describing the contractile ðα > 0Þ and extensile
ðα < 0Þ stresses exerted by the active particles in the
direction of the director field. The Ericksen stress,
σEij ¼ −∂iQklδFLdG=δð∂jQklÞ, has been neglected because
of higher order in the derivatives ofQij compared to σeij. This
simplification is known not to have appreciable conse-
quences in the fluid mechanics of two-dimensional active
nematics [28,29].
Equations 1(a) and 1(b) have been numerically inte-

grated in a square domain of size L with periodic boundary
conditions (see the movie in the Supplemental Material
[33]). To render the equations dimensionless, all the
variables have been normalized by the typical scales
associated with the viscous flow. Distances are then scaled
by the system size L, time by the time scale of viscous
dissipation τ ¼ ρL2=η, and stress by the viscous stress
scale Σ ¼ η=τ. Finally, low Reynolds number is imposed
by setting Dvi=Dt ¼ ∂tvi in Eq. (1a). The integration
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FIG. 1. (a) A two-dimensional active nematic suspension of
microtubule bundles and kinesin at the water-oil interface. The
white scale bar corresponds to 100 μm (courtesy of the Dogic
Lab). (b)–(d) Numerical simulations of an extensile active
nematic obtained from an integration of Eq. (1). (b) Flow velocity
(black streamlines) and vorticity (background color). (c) Schlieren
texture constructed from the director field n. The red and blue
dots mark, respectively, the þ1=2 and −1=2 disclinations.
(d) Clockwise rotating (blue) and counterclockwise rotating
(red) vortices, detected by measuring the Okubo-Weiss field as
described in the text.
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function of a. Unlike nðaÞ, ωv remains roughly constant
across the scales and shows some dependence only for
large activity values, where the mean vortex size is
substantially smaller than the size of the system (see the
blue line in the inset of Fig. 2).
As activity is increased, the vortices become smaller and

faster as indicated by the dependence of amin, a#, and ωv
on α. With la the only length scale associated with
activity, intuitively one could expect that amin ≈ a# ∼ l2

a.
Analogously, the balance of active and viscous stresses
over the scale of a vortex suggests that ωv ∼ α=η. These
expectations are confirmed from the numerical data shown
in Fig. 3.
It is useful to recall that the microtubules-kinesin

suspensions studied in Refs. [18,19] consist of an active
nematic monolayer at the interface of a three-dimensional

bulk fluid. As was investigated in a classic paper by Stone
and Ajdari [40], the frictional damping exerted by the
surrounding fluid dissipates momentum through a force of
the form f fri ¼ −ξv in Eq. (1a). Such a frictional interaction
removes kinetic energy from the flow at scales lfri ¼

ffiffiffiffiffiffiffi
η=ξ

p

and is expected to have no effect on the global properties of
the flow as long as lfri ≫ la.

C. Statistical geometry of the flow

The multiscale organization and the exponential distri-
bution of the vortex areas have striking consequences on
the overall statistical properties of the flow. From a gross
application of the central limit theorem, we could expect
the velocity components to be Gaussianly distributed. The
numerical data shown in Fig. 4(a) support this expectation.
As in classic high Reynolds number turbulence, on the
other hand, vorticity and, in general, any function of the
velocity gradients do not obey the Gaussian distribution
due to the spatial correlation introduced by the derivatives
[41]. In this particular case, the vorticity probability density
function (PDF) exhibits a visible deviation from
Gaussianity along the tails [see Fig. 4(c).
Figures 4(c) and 4(d) show the normalized velocity

and vorticity correlation functions: CvvðrÞ ¼ hvð0Þ ·
vðrÞi=hjv2ð0Þji and CωωðrÞ ¼ hωð0ÞωðrÞi=hω2ð0Þi, where
the angular brackets hi indicate an average over space and
time. These quantities have played a central role in the
study of active turbulence starting from the experimental
work by Sanchez et al. [18]. In the latter work, it was
argued that, after rescaling by the mean-squared value, the
correlation functions no longer depend on activity, sug-
gesting that the underlying geometrical structure of the

FIG. 2. Number of vortices nðaÞΔa (with Δa=L2¼1.5×10−5)
with area in between a and Δa as a function of a, obtained, in
extensile systems, from a numerical integration of Eq. (1) for
various α values. The shaded regions surrounding the curves
correspond to the statistical error obtained from five simulations
with different (disordered) initial conditions. The data show a
prominent exponential distribution in the range amin < a < L,
with amin the area of the smallest active vortex. Inset: Average
vorticity of an individual vortex as a function of its area.

(a) (b)

FIG. 3. (a) The areas amin (red tones) and a# (blue tones)
appearing in the vortex probability distribution Eq. (3) for various
activity and Frank constant K values. The collapse of the data
demonstrates that amin ≈ a# ∼ l2

a. (b) Vortices’ mean vorticity ωv
versus activity for various K values. As expected, ωv grows
linearly with activity, with a prefactor weakly dependent on the
Frank constant.

(a) (b)

(c) (d)

FIG. 4. Probability distribution function of the velocity com-
ponents (a) and vorticity (b). All of the data are normalized
by their corresponding standard deviation. The black solid
line represents a unit-variance Gaussian function: fðxÞ ¼
1=

ffiffiffiffiffi
2π

p
expð−x2=2Þ. Velocity (c) and vorticity (d) correlation

functions (CF) for various activity values. The distance is
normalized by rmax ¼

ffiffiffi
2

p
=2L, corresponding to the maximal

distance between two points on a periodic square of size L.
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Figure 4 Active turbulence in wet nematic fluids. a, Growth rate of director perturbations in
wet active nematics. As discussed in the text, the system can exhibit a long-wavelength
instability, with a critical wavelength proportional to the active length `a. Increasing activity
therefore widens the range of unstable modes. b, Schematic of the instability mechanism.
Flows generated by director perturbations further rotate the director field, amplifying the initial
perturbation. Extensile systems can be unstable to longitudinal (bend) perturbations; contractile
systems can be unstable to transverse (splay) perturbations. Adapted from [122]. c, Snapshots
of the director and the vorticity fields in simulations of active nematic turbulence. The director
is represented by the Schlieren texture (see [74]), with +1/2 and −1/2 defects indicated in red
and blue, respectively. d, Distribution of vortex areas in simulations show an exponential tail.
The vorticity of individual vortices is rather independent of vortex size (inset). Panels c and d
adapted from [116]. e, Spectrum of the Frank elastic energy of the director field in simulations
of active nematic turbulence. The peak at qi is related to the characteristic size of the vortices
and director domains shown in the inset. f, Energy spectrum in simulations of active nematic
turbulence feature scaling regimes with universal exponents both above and below the
characteristic vortex size. g, Spectra of the contributions to the energy balance in simulations of
a minimal model of wet active nematics. There is no energy transfer across scales; the energy
injected at each scale is dissipated at that same scale by the combined effects of shear and
rotational viscosity. Panels e to g adapted from [107].

the vortex areas a is well described by an exponential distribution p(a) ∼ exp(a/a∗)
(Fig. 4d), whose characteristic vortex area a∗ = πR2

∗ defines the average vortex ra-
dius R∗. This characteristic vortex size is proportional to the active length `a, which
is the only intrinsic length scale [123] (see Section 4.1.2 and Fig. 4a). Simulations
also show that the individual vortices have a vorticity ω0 that is rather independent of
their size (Fig. 4d inset), and which is inversely proportional to the active time (see
Section 4.1.3): ω0 ∼ τ−1

a ∼ |ζ|/η.
Based on these observations, Giomi describes the turbulent state by making two

assumptions [116]: (i) the absolute value of the vorticity is uniform and equal to ω0

inside each vortex, and (ii) vortices are not correlated, which corresponds to a mean-
field approximation. Averaging over the vortex area distribution, these two assumptions
allow to calculate the spectrum of the enstrophy Ω =

∫
1
2ω

2(r) dr =
∫

dq
4π2 Ω̃(q),
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which characterizes the vorticity distribution in Fourier space. This calculation shows
that the enstrophy spectrum Ω̃(q) features two scaling regimes. At scales smaller than
the characteristic vortex size (qR∗ � 1), it scales as Ω̃(q) ∼ q−2, and at large scales
(qR∗ � 1), it scales as Ω̃(q) ∼ q. Finally, the spectrum of the kinetic energy per
unit mass density E =

∫
1
2v

2(r) dr =
∫

dq
4π2 Ẽ(q) is directly related to the enstrophy

spectrum: Ẽ(q) ∼ Ω̃(q)/q2. Therefore, the predicted scaling laws are

Ẽ(q) ∼ q−1 for qR∗ � 1,

Ẽ(q) ∼ q−4 for qR∗ � 1.
(9)

The scaling at small scales is well observed in Giomi’s simulations [116]. However,
the activity number was not large enough to observe the scaling at large scales.

More recently, Alert et al. have performed simulations in two dimensions (with
ν = 0 and γ ∼ η) at much higher activity number, reaching A = 3.5 × 105 [107].
This study formulated a minimal theory that considers only the nematic orientation
angle, assuming a fixed strength S = 1 of the order parameter as we introduced in
Section 4.1.1. Thus, this formulation does not allow for the spontaneous creation of
defects. Yet, simulations show disordered patterns of elongated orientation domains
that exhibit persistent dynamics that looks chaotic in both space and time (Fig. 4e inset).
The orientational pattern is statistically isotropic and has a characteristic wavelength
proportional to the active length `a, as revealed by the spectrum F̃ (q) of the elastic
Frank free energy F =

∫
1
2 |∇θ|2dr =

∫
dq
4π2 F̃ (q), which is peaked around a wave

number qi ∼ 1/`a (Fig. 4e). At larger scales (q → 0), the spectrum of the director
angle scales as 〈|θ̃(q)|2〉 ∼ q0, meaning that angle correlations decay over the active
length `a, consistent with the existence of orientational domains of this characteristic
size.

Regarding the flow spectrum, the simulations by Alert et al. reached sufficiently
high activity to clearly show the two scaling regimes of Eq. (9), separated by a crossover
at qi ∼ 1/`a [107] (Fig. 4f). Complementary to the calculations leading to Eq. (9), the
large-scale scaling Ẽ(q) ∼ q−1 can be predicted in the high-activity limit via the fol-
lowing argument. At distances large compared to `a, director correlations can be con-
sidered as short range. Hence, the only non-vanishing contribution to the elastic stress,
σν (see Section 4.1.3), can be locally averaged over the director orientation, giving
〈σν〉 = γν2〈(n ·u ·n)(nn)〉 = 2γν

2

8 u. The elastic stresses therefore renormalize the

shear viscosity to ηeff = η(1 + γν2

8η ).
The statistical properties of the flow can then be predicted from the equation for the

vorticity, which can be derived by taking the curl of the force balance Eq. (7). Using
dimensionless variables, and in the high-activity limit, the vorticity equation reads

(
1 +

γν2

8η

)
∇2ω = sgn(ζ)

[
1

2

[
∂2
x − ∂2

y

]
sin 2θ − ∂2

xy cos 2θ

]
. (10)

This is a Poisson equation with a source that depends only on the director’s angle θ.
As argued above, at large scales, the angle can be considered considered as a random
variable which is delta-correlated in space. However, the propagator of the Laplace
operator in Eq. (10) is long-ranged (varying with distance as log r in two dimensions),
reflecting the long-range nature of hydrodynamic interactions. As a result, short-range
angle correlations can lead to long-range correlations of the flow field. Accordingly,
using 〈|θ̃(q)|2〉 ∼ q0 in Eq. (10) in Fourier space leads to 〈|ω̃(q)|2〉 ∼ q0. Finally,
this result leads to the scaling of Eq. (9), Ẽ(q) ∼ q−1, which corresponds to a velocity
correlation function 〈v(0)v(r)〉 ∼ K|ζ|

η2eff
log r.
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These results establish that active nematic turbulence exhibits a universal scaling
regime at large scales. The scaling exponent is universal: it does not depend on the
sign of the active stress; it is observed in simulations for both contractile and extensile
stresses. It is also independent of the flow-alignment parameter ν and of the viscosity
ratio γ/η. Furthermore, the defect-free simulations also demonstrate that the scaling
properties of active nematic turbulence are not sensitive to the existence of topological
defects [107]. Finally, recent microtubule suspension experiments are consistent with
the predicted scaling regimes [28] (Fig. 1f).

So far, our discussion has been restricted to two-dimensional turbulence, which has
been the primary focus of both experimental and theoretical work. However, some ex-
perimental systems are three-dimensional. In fact, the scaling arguments above can be
extended to three dimensions, predicting Ẽ(q) ∼ q0 and Ẽ(q) ∼ q−3 at scales respec-
tively larger and smaller than the typical vortex size. These scalings have also been
predicted in the context of microswimmer suspensions. Below the onset of collective
motion, Bárdfalvy et al. proposed to treat swimmers as hydrodynamically-interacting
force dipoles [124]. Assuming that the dipoles undergo random reorientations, the the-
ory indeed predicts a plateau of the energy spectrum at large scales, Ẽ(q) ∼ cκ2, where
c is the swimmer concentration and κ is the strength of the force dipoles.

Finally, these scaling laws for 3D flows, Ẽ(q) ∼ q0 and Ẽ(q) ∼ q−3, have been
recently found in bacterial suspensions experiments [20] (Fig. 1d). At first sight, this
finding is surprising because bacterial turbulence has been successfully modeled using
theories for polar fluids (Section 3 and Fig. 1a), including recent generalizations to ac-
count for density inhomogeneities [125]. Yet, these results suggest that, at least below
the onset of collective motion, the spectra in 3D are well described by the hydrody-
namics of active nematics (Section 4 and Fig. 1d). Understanding if and how polar and
nematic theories capture different regimes of bacterial turbulence in a consistent way
will require further work.

4.2.3 Absence of energy cascades

A hallmark of inertial turbulence is the existence of an energy cascade. In three dimen-
sions, the kinetic energy injected by the driving at large scales is transported across
the inertial range of scales until it is dissipated by viscous effects at small scales. The
cascade is therefore called direct: from large to small scales [1–4]. In two dimen-
sions, however, the injected energy is transferred to larger scales; the energy cascade is
inverse [2, 3, 5, 6].

The situation in active fluids is entirely different. Recent work has revealed that
there is no energy cascade in active nematic turbulence [107, 126, 127]. Alert et al.
derived the spectral energy balance in an active nematic fluid, which has four contribu-
tions [107]:

∂tF̃ (q) = −D̃s(q)− D̃r(q) + Ĩ(q) + T̃ (q). (11)

The left-hand side corresponds to the power spectrum of the Frank elastic energy. The
right-hand side contains, in order, the power spectra of the shear viscous dissipation
(2ηu2), the rotational viscous dissipation (h2/γ), the injection of energy by the active
stress (σijactuij), and the energy transfer between scales, whose integral over q vanishes
in the steady state due to energy conservation. The simulation results showed that
energy is injected at all scales, but primarily at the characteristic scale qi ∼ `a of the
vortex and orientation patterns (Fig. 4g). Moreover, the simulations also revealed that,
in the absence of flow alignment (ν = 0), all the energy injected at a given scale is
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dissipated at that same scale. Therefore, there is no energy left to be transferred to
other scales, and hence there is no energy cascade [107] (Fig. 4g). The numerical
results by Urzay et al. and Carenza et al. are consistent with this conclusion [126,127].

Beyond the numerical results, an integral expression for the energy transfer spec-
trum T (q) can be derived from the director dynamics. The advection of the director
field in Eq. (6) gives rise to potential energy transfer across scales. However, sym-
metry arguments show that this contribution to the energy transfer vanishes identically
for the statistically-isotropic turbulent state [107]. Besides advection of the director,
flow-alignment and other elastic stresses yield additional contributions to the energy
transfer, which may be significant at scales comparable to the active length `a. Indeed,
recent simulations by Carenza et al. have uncovered some energy transfer at interme-
diate scales due to elastic stresses [127]. However, they did not find the scaling regime
Ẽ(q) ∼ q−1 at large scales (see Section 4.2.2 and Fig. 4f), possibly due to not reaching
sufficiently high activity numbers.

In fact, we expect the spectral energy balance to be simpler in the high-activity limit
and in the scaling regime. By the same arguments given in Section 4.1.3, rotational
dissipation scales like 1/A and hence becomes negligible in front of shear dissipation
and injection. Similarly, the elastic contributions to energy transfer also scale like
1/A and therefore also become negligible. Finally, as also argued in Sections 4.1.3
and 4.2.2, the flow-alignment contribution amounts to a renormalization of the shear
viscosity. Thus, the emerging picture at high activity is that, in the scaling range,
there is a simple scale-by-scale balance between energy injection and the renormalized
viscous dissipation. At intermediate scales of order ∼ `a, where most energy injection
and dissipation takes place, there can be energy transfer due to both flow-alignment and
elastic nonlinearities. Testing these predictions, both in simulations and in experiments,
remains an important task for future work.

4.3 Dry systems and the wet-dry crossover
When interacting with a substrate or an external medium, the active fluid’s momen-
tum is not conserved, and hence the system is classified as dry [35, 49, 128]. Active
turbulence in dry nematics can occur in systems of particles or rods with nematic inter-
actions and whose concentration can vary. Microscopic models of these systems can
be coarse-grained to obtain hydrodynamic equations for the order parameter and the
density fields. Numerical work on these equations has revealed a rich phase diagram
that includes regimes of spatiotemporal chaos [49, 128–132]. The chaotic behavior
arises from the unstable dynamics of nematic density bands. Thus, turbulence in these
systems is associated with density segregation, and thus also with giant number fluctu-
ations [129].

A different type of dry active turbulence occurs in incompressible nematic fluids.
In this case, the theoretical description starts from the hydrodynamic theory that we
presented in Section 4.2, and extends the force balance Eq. (7) to add interaction forces
between the fluid and a substrate. These interaction forces may have both passive and
active contributions, corresponding respectively to friction and traction forces. Friction
comes in different types, which affect active turbulence in several ways that we discuss
below. Before, we briefly introduce the active forces, whose role in active turbulence
has not been particularly studied.

The functional form of interfacial active forces is dictated by nematic symmetry:
f act = ζ1n∇ · n + ζ2n ·∇n. If momentum were conserved, the coefficients ζ1 and
ζ2 would have to be equal so that the active force results from the divergence of a sym-
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metric stress, f act = ζ∇ · (nn), as in Section 4.1.1. However, if the fluid exchanges
momentum with the substrate, ζ1 and ζ2 can be different from one another. Supris-
ingly, these active forces can stabilize nematic suspensions against the well-known
spontaneous-flow instability of Section 4.1.2 [122].

4.3.1 Substrate friction

In nematic phases, friction can be anisotropic, with different coefficients for the direc-
tions parallel and perpendicular to the director n: f pass = −ξv + ∆ξn(n · v). In
fact, friction anisotropy leads to asymmetries in the flow field around topological de-
fects, which has been found to lead to cell accumulation at defects in monolayers of
tissue cells [133] and bacteria [46]. Anisotropic friction can also organize otherwise
chaotic flows into lanes with alternating directions [134], which had previously been
discovered in experiments [135].

Even isotropic friction has a strong influence on active turbulence. Frictional dis-
sipation dominates over viscous dissipation at length scales above the hydrodynamic
screening length λ =

√
η/ξ, which therefore controls the crossover from wet to dry

situations. This crossover has been studied in several simulations by adding friction to
the hydrodynamic equations of active nematics (see Section 4.1.1) [119, 136–142]. As
friction increases and the screening length gets closer to the active length `a (see Sec-
tion 4.1.2), the number of defects actually first increases [136, 137] (Fig. 5a). In these
conditions, recent simulations have observed turbulent flows whose energy spectrum
features scaling regimes with exponents close to 5/3 and −8/3 [141] (Fig. 5b). These
scaling laws, however, are different than those obtained by extending the arguments
presented in Section 4.2.2 to include friction, which would predict Ẽ(q) ∼ q3 at large
scales q � λ−1 (see Section 4.3.2 below and Fig. 5d). Future work is required to
clarify this point.

When friction becomes strong enough to screen the flow over distances compara-
ble and even lower than the active length `a, the number of defects decreases sharply
(Fig. 5a). Friction then stabilizes the flow into vortex lattices, and it organizes defects
into dynamic yet positionally and orientationally ordered structures [130, 132, 137–
140, 142]. These structures are reminiscent of ordered phases of defects reported in
microtubule suspensions experiments [143, 144]. In this same context, other work has
proposed to treat an active nematic as a fluid of defects [145]. Taking into account the
active forces and torques between defects, Shankar and Marchetti developed a hydro-
dynamic theory of the defect fluid, and used it to predict transitions between a nematic,
a chaotic, and a polar phase of defects [145]. Testing all these theoretical predictions
and establishing the rich phase diagram of overdamped active nematics, including their
defect phases, remains an experimental challenge for the future.

4.3.2 Interaction with an external fluid

Beyond substrate friction, recent work has studied the effects of a different type of ex-
ternal dissipation on active nematic turbulence [28,146]. Instead of on a solid substrate,
active nematic microtubule films can be assembled at an oil-water interface. Thus, the
spontaneous flow in the active film induces flows in the adjacent passive fluids (oil
and water) which, in turn, impact the flows in the active film via viscous forces. By
varying the viscosity of the external oil, one can tune the external dissipation and vary
the so-called viscous screening length `v = η/ηext, above which external dissipation
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root-mean-square (RMS) velocity by a factor B10 (Fig. 2c).
Surprisingly, the slower dynamics is accompanied by an increase
in the number of topological defects (Fig. 2d), a consequence of
the larger number of walls at higher friction. Similar trends
have been recently observed in active nematics without any
concentration variation40. However, as described earlier,
concentration variation is necessary to approach the dry limit
where activity manifests in concentration phase separation.

Linked to the wall formation is the emergence of coincident
concentration bands, with a higher number of active particles at
the walls, where the magnitude of the nematic ordering is
reduced. The concentration ordering is driven by an advective
flux of active particles towards the walls, down the gradient in Q.
In the steady state this is balanced by diffusion of the active
particles from high to low concentrations.

Figure 2c,d show that the active system behaves very differently
for higher values of the friction. The RMS velocity is very low and
topological defects are not formed. We note that although,
topological defects do not appear in the dry limit, such defects
have been observed in shaken rod experiments and in a
simulation of active rods. As pointed out in ref. 41 this occurs,
in their model at least, because the collisions include a relative
rotation of the colliding particles as well as nematic alignment.
Figure 2b indicates that concentration bands still appear in the
dry limit but, in the absence of an advective flux, the way in which
they are formed must be very different. The relevant mechanism
is an instability driven by curvature in the nematic order,
described by the final term in equation (9). The coupling between
the concentration and the nematic order is established by the
molecular potential resulting in a strong (weak) ordering at high
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Figure 2 | Increasing friction drives the crossover from wet to dry active nematics. (a,b) Temporal evolution of the concentration field and nematic
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where r is the density. The first term on the right hand side of
the Navier–Stokes equation describes the friction with the
substrate with strength set by w. The second term describes
viscous stresses with Z the shear-viscosity. The last term is the
active stress, which corresponds to a force dipole density, with
z the activity parameter being positive for extensile systems
and negative for contractile ones.20 Gradients in Q thus
produce a flow field, which is the source of the hydrodynamic
instability in active nematics. Finally, the passive nematic stress
tensor is:17

Pab ¼ " P0dab þ 2x Qab þ
dab
3

! "
QgeHge

" xHag Qgb þ
dgb
3

! "
" x Qag þ

dag
3

! "
Hgb

" @aQgn
dF

d @bQgn
# $þQagHgb "HagQgb;

(6)

where P0 is the hydrostatic pressure and the other terms derive
from the free-energy functional. The system dependent para-
meter x sets the tendency of the flow to align the particles in the
flow direction.

We used the numerical method described in ref. 11 and 15.
This method uses lattice-Boltzmann to solve the equations for
the fluid motion, recovering eqn (5) macroscopically, and finite
differences to solve eqn (1). Some of our results are given in
lattice units expressed as ‘‘l.u.’’ in the figures: the distance
between nodes is Dx = 1 and the time step is Dt = 1 (see
Section 3 of the ESI† to transform these to physical units). In
the following simulations (except in Section 6), we set the
parameters: t = 1.2 (relaxation time in the Boltzmann equation,
which gives the kinematic viscosity n = (t " 1/2)/3 = 0.23),
K = 0.01, A0 = 0.1, g = 2.7, G = 0.34 and r = 40 on average.
The aligning parameter is set to x = 0.7 (flow aligning regime).
With these parameters LN = 1 l.u. meaning that we do not
resolve smaller length scales. We note that the length of

Fig. 1 Statistical properties of the active turbulent nematic phase for a substrate with friction w = 0.1 and different activities. (A) Normalized velocity
distribution for five activities (legend as in C). The inset shows the peak velocity vp for each distribution, which is used as the characteristic velocity in the
next panels. (B) Space correlation function calculated using the vorticity field for five activities (legend as in C); the inset illustrates the vorticity field in a
small window for z = 0.007, where the scale bar is 10 l.u. (see Fig. S1 of ESI† for the vorticity and velocity field in the entire system). (C) Time
autocorrelation function calculated using the vorticity field for five activities. (D) Energy spectrum for three different activities. Notice that the correlation
functions and the energy spectrum collapse when reduced units (non-dimensional variables) are used.
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Figure 5 Active turbulence in dry active nematics and the wet-dry crossover. a, As friction
increases, the number of defects in active nematic turbulence first increases and then decreases
sharply as friction damps and stabilizes the flow. Adapted from [137]. b, Energy spectrum in
simulations of active nematic turbulence with friction. Adapted from [141]. These results show
scaling regimes with exponents different than those predicted by theory. c,d, Scaling regimes
predicted for an active nematic film in contact with a passive fluid layer. This is a common
experimental setup [28]. The scaling regimes are classified in terms of three lengths: the
thickness of the passive fluid layer H (panel c vs d), the average vortex size R∗, and the viscous
length `v = η/ηext above which dissipation is dominated by the external passive fluid. For thin
external layers (d), some of the scaling laws depend on whether the external fluid has a free
surface or is in contact with a solid substrate (no-slip boundary condition). From [28].

dominates. Therefore, this setup provides a way to probe the wet-dry crossover in
experiments.

As oil viscosity was increased, experiments found slower defect motion and smaller
vortices [147]. In recent experiments where the oil has a free surface, measurements of
the energy spectrum have also revealed a new scaling regime Ẽ(q) ∼ q at scales larger
than the viscous length `v [28] (Fig. 1f). This result has been explained by generalizing
the theoretical framework of Sections 4.1 and 4.2 to account for the viscous forces be-
tween the active film and the external fluids [28]. The generalized theory then fits the
experimental spectra over a wide range of oil viscosities, and through scales across the
wet-dry crossover [28] (Fig. 1f). Besides explaining the measurements, the theory pre-
dicts up to six different scaling regimes, which are classified in terms of three lengths:
the average vortex size R∗, the viscous length `v, and the thickness H of the external
fluid layer (Figs. 5c and 5d). When the external layer is thin, the scaling laws also
depend on its boundary conditions; no-slip conditions then correspond to the case of
friction with a solid substrate discussed in Section 4.3.1 (Fig. 5d). Finally, while three
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scaling regimes were observed in Ref. [28] (Fig. 1f), three additional scaling laws await
experimental verification.

5 Conclusions and outlook
Since its origins in bacterial suspensions, the field of active turbulence has thrived.
Chaotic flows at low Reynolds number have been observed in a wide variety of active
fluids (Fig. 1). Accordingly, different classes of theories have been developed to un-
derstand the statistical properties of these turbulent-like flows. Here, we have reviewed
all these scenarios, highlighting their similarities and differences, and their compari-
son with inertial turbulence. Although there is debate on the technical use of the term
active turbulence, here we have employed it in a loose sense to denote chaotic active
flows. We note, however, that these flows represent a broad class of phenomena, which
are described by a variety of model equations rather than being a single well-posed
problem as for inertial turbulence.

We classified this variety of active turbulences according to whether systems have
either polar or nematic order, and to whether they are described by models where mo-
mentum is either conserved (wet) or not conserved (dry). These key features define
different scenarios of the transition from steady to turbulent flows: While it proceeds
through non-oscillatory instabilities and defect proliferation in nematic fluids (Sec-
tion 4.2.1), it generally involves oscillatory phenomena for polar fluids (Sections 3.1.3
and 3.2.2 and Figs. 3a and 3b). This oscillatory behavior arises from active self-
advection of the polar order. In fact, this advective nonlinearity of polar fluids is par-
allel to the velocity self-advection responsible for inertial turbulence. Consequently,
active polar fluids at zero Reynolds number share advective mechanisms of energy
transfer with passive fluids at high Reynolds number. In contrast, nematic fluids at zero
Reynolds number lack self-advection terms. Thus, energy transfer in nematics is solely
due to other nonlinear effects such as flow alignment and elastic stresses.

Besides instabilities and energy transfer, the differences between polar and nematic
active turbulence are apparent in their scaling properties. Similar to Kolmogorov’s
scaling of inertial turbulence, active turbulence is also characterized by the emergence
of power laws in the energy spectrum. However, in flocking-type models of polar fluids,
these power laws have parameter-dependent exponents; their scaling properties are
therefore non-universal (Section 3.1.2 and Fig. 2d). This non-universality is due to the
fact that, in addition to the self-advective nonlinearity, flocking-type models for polar
fluid feature nonlinearities that allow for extra freedom in their spectra. In contrast,
nematic fluids exhibit scaling laws with universal, parameter-independent exponents
(Sections 4.2.2 and 4.3.2 and Fig. 4f). In this case, there are a few possible sets of
exponents given by integer numbers (Figs. 5c and 5d). Whether one or another set
applies to a particular situation depends only on general properties of the system such
as its dimensionality and the dominant mechanism of dissipation, including their wet
or dry nature. A similar picture with universal exponents might apply to polar liquid
crystals — an issue to be addressed in future work. Altogether, in the bigger scheme of
active matter physics, the scaling properties of active turbulence are a promising way
of attaching simple numbers (exponents) to classes of active matter.

From this variety of scenarios, a generic picture of active turbulence emerges. In
other forms of turbulence, including inertial and elastic, the fluid is driven externally
by means of stirring, shaking, or shearing. Therefore, the spectrum of energy injection
is externally imposed by the driving protocol. In contrast, active fluids are internally
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driven. Thus, the spectrum of energy injection is not imposed but results from a self-
organized, autonomous process. Energy injection is therefore built into active turbu-
lence equations in the form of terms that produce activity-driven instabilities. These
instabilities feature characteristic length scales, which determine the primary scales of
both energy injection and dissipation. Hence, active turbulence generally lacks energy
cascades. The picture is strikingly different from that of inertial turbulence, where the
scales of energy injection and dissipation are separated by a wide range of scales across
which energy is transported. In this same range of scales, the energy spectrum behaves
as a power law. In active turbulence, instead, injection and dissipation scales are not
widely separated, and scaling regimes emerge not in between but on each side of the
injection and dissipation scales.

Looking forward, this emerging picture still poses considerable challenges, for both
theory and experiments. For example, future work is needed to clarify the regimes of
applicability of the different theories. Perhaps the clearest example is that of bacte-
rial suspensions, which have been described using both polar and nematic theories,
and both in the wet and the dry limits. Other remaining tasks include searching for
non-universal exponents in experiments, further characterizing the phase behavior and
universal scaling regimes of active nematics, and beginning to do so in polar liquid
crystals. Another important challenge across different systems is to experimentally
measure elastic energy and energy transfer spectra, which also needs to be better un-
derstood theoretically.

Beyond these immediate challenges, we finish by outlining promising directions
for future work. For example, the spectral properties of active turbulence in the time
domain remain to be uncovered. In particular, the extent to which intermittency and
anomalous exponents might be relevant in active turbulence is an open question. Along
similar lines, analyzing active turbulence using metrics from chaos theory such as Lya-
punov exponents and topological entropy [27, 148] might provide profound insights.
Studying active turbulence on curved surfaces with different topologies, as in recent
work [84, 149], might also reveal qualitatively new spectral features.

Along a different direction, active turbulence in 3D remains relatively unexplored.
This situation, however, might change in the near future. For example, recent exper-
iments on microtubule suspensions have revealed complex dynamics of topological
disclination loops in 3D [150], which might soon enable experimental studies of 3D
turbulence. On the numerical side, simulations had been previously used to study the
crossover between 2D and 3D nematic turbulence [151]. Fully in 3D, more recent sim-
ulations have analyzed the formation of defect loops and their entanglement in dense
defect networks [152–154]. Understanding the connections between topological and
flow structures in 3D and investigating their spectral properties are interesting avenues
for future research.

Still in 3D, chirality generates active torques. As active forces, active torques and
torque dipoles can induce flows and, for example, induce the rotation or translation of
chiral active droplets [155]. The effects of chirality on active turbulence have hardly
been explored and might lead to surprising behaviors. Along these lines, recent work
has shown that the spontaneous breaking of chiral symmetry leads to parity-violating
Beltrami flows and an inverse energy cascade in 3D active fluids [82, 85].

Finally, it is appealing to think about the role of active turbulence in biological
systems [156]. On the one hand, chaotic flows might have to be tamed by biochem-
ical regulation to enable robust biological functions and development [157]. On the
other hand, biological systems might also exploit active turbulence to enhance mix-
ing and transport, thus overcoming the limitations imposed by flow reversibility in
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low-Reynolds hydrodynamics [8, 158]. When moving toward more complex biologi-
cal systems, it will be interesting to understand how viscoelastic effects modify active
turbulence [159–161], as well as to consider other forms of turbulence driven by active
biochemical reactions in cells [162].
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